COS 423                                             Problem Set 4                        Due: Wednesday, April 16

Spring 2008 







     Collaboration allowed
These problems are worth 15 points each, 5 points per section.

1. The goal of this problem is to try to apply the idea of depth-first search to the single-source shortest path problem. (Hint: it does not work so well.) Consider the following algorithm for finding shortest paths from a start vertex s to all vertices reachable from s.  Let 
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 for every other vertex v.  Set 
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 (d(v) is the tentative shortest distance to v; 
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 is the parent of v in the tentative shortest path tree.) Execute 
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is defined recursively as follows: 
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 for each arc (v, w) if 
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end.

(a) Prove that, on a graph with arc weights c(v, w), this algorithm will stop, having computed correct shortest distances and a correct shortest path tree, if and only if there is no negative cycle reachable from s.  (If there is a negative cycle, the algorithm runs forever.)

(b) Prove that if there are no negative cycles, the algorithm updates distance labels at most 
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 times, where m is the number of edges.

(c)  Construct a set of examples of acyclic graphs with positive arc weights such that the algorithm does at least 
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distance label updates, where n is the number of vertices and c is a suitable small fixed positive constant (independent of n).

2. The goal of this problem is to fill in the details of the idea I discussed in class, for reporting a negative cycle as soon as the labeling and scanning algorithm for shortest paths encounters one.  Recall how the labeling and scanning algorithm works: initialize 
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 for every other vertex v.  Initialize L = {s}. While L ≠ {} do begin delete some vertex v from L; for each arc (v, w) if 
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 if w not in L then add w to L end end. For purposes of this problem we'll assume that L is a queue: vertices are deleted from the front and added to the back.  By the results in class we know that this algorithm will stop after n or fewer passes through the queue, taking 
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time, as long as there are no negative cycles.  We want to add to this algorithm an additional test: when an arc (v,w) such that 
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 is found, if w is an ancestor of v in the tentative shortest path tree, the algorithm should stop and report a negative cycle, consisting of the tree path from w to v followed by the arc (v, w).

(a) An easy way to test whether w is an ancestor of v is by following parent pointers from v until reaching either w or s.  Give a set of examples that show that this way of doing the test can result in a factor of n blow-up in the running time; that is, on the examples, the running time is 
[image: image19.wmf]2

cnm

for some positive constant c independent of n and m. (As a side effect, your class of examples will show that the 
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time bound for the unmodified algorithm is tight.)
(b) A better way to test whether w is an ancestor of v is to visit the descendants of w in the tentative shortest path tree, deleting each such vertex from the tree, and stopping when reaching v or when reaching a vertex that is not a descendant of w. Give a detailed implementation of this idea, using a doubly-linked list of the tree vertices in preorder (with respect to some depth-first traversal of the tree). Prove that the modified algorithm still correctly computes shortest distances and a shortest path tree if there is no negative cycle, stops and reports a negative cycle if there is one, and runs in 
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time. (In particular, describe exactly how to update the preorder list and the parent pointers as needed, and how to test whether all descendants of w have been visited.)

(c) The algorithm developed in part (b) always terminates, whether or not there is a negative cycle. Experiments suggest that it runs much faster on many graphs than the unmodified algorithm, even though the worst-case bound is the same. A further improvement is possible: when the label of a vertex w is updated, from 
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say, we can also reduce the label of every vertex that is a descendant of w, by an amount 
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 Modify the algorithm you developed in part (b) so that it does this. Prove that the modified algorithm is correct. (It computes a shortest path tree or finds a negative cycle.)  Prove that the time bound is still 
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