COS 423 Problem Set 4 Due: Wednesday, April 16

Spring 2008

 Collaboration allowed
These problems are worth 15 points each, 5 points per section.

1. The goal of this problem is to try to apply the idea of depth-first search to the single-source shortest path problem. (Hint: it does not work so well.) Consider the following algorithm for finding shortest paths from a start vertex s to all vertices reachable from s. Let
[image: image1.wmf]()0

ds

=

 and
[image: image2.wmf]()

dv

=¥

 for every other vertex v. Set
[image: image3.wmf]()null.

ps

=

 (d(v) is the tentative shortest distance to v;
[image: image4.wmf]()

pv

 is the parent of v in the tentative shortest path tree.) Execute
[image: image5.wmf](),

dfss

where
[image: image6.wmf]()

dfsv

is defined recursively as follows:
[image: image7.wmf]():

dfsv

 for each arc (v, w) if
[image: image8.wmf]()(,)()

dvcvwdw

+<

then begin
[image: image9.wmf]()()(,);();

dwdvcvwpwv

=+=

 EMBED Equation.DSMT4 [image: image10.wmf]()

dfsw

end.

(a) Prove that, on a graph with arc weights c(v, w), this algorithm will stop, having computed correct shortest distances and a correct shortest path tree, if and only if there is no negative cycle reachable from s. (If there is a negative cycle, the algorithm runs forever.)

(b) Prove that if there are no negative cycles, the algorithm updates distance labels at most
[image: image11.wmf]2

m

 times, where m is the number of edges.

(c) Construct a set of examples of acyclic graphs with positive arc weights such that the algorithm does at least
[image: image12.wmf]2

cn

distance label updates, where n is the number of vertices and c is a suitable small fixed positive constant (independent of n).

2. The goal of this problem is to fill in the details of the idea I discussed in class, for reporting a negative cycle as soon as the labeling and scanning algorithm for shortest paths encounters one. Recall how the labeling and scanning algorithm works: initialize
[image: image13.wmf]()0,()null,

dsps

==

 and
[image: image14.wmf]()

dv

=¥

 for every other vertex v. Initialize L = {s}. While L ≠ {} do begin delete some vertex v from L; for each arc (v, w) if
[image: image15.wmf]()(,)()

dvcvwdw

+<

 then begin
[image: image16.wmf]()()(,);();

dwdvcvwpwv

=+=

 if w not in L then add w to L end end. For purposes of this problem we'll assume that L is a queue: vertices are deleted from the front and added to the back. By the results in class we know that this algorithm will stop after n or fewer passes through the queue, taking
[image: image17.wmf]O()

nm

time, as long as there are no negative cycles. We want to add to this algorithm an additional test: when an arc (v,w) such that
[image: image18.wmf]()(,)()

dvcvwdw

+<

 is found, if w is an ancestor of v in the tentative shortest path tree, the algorithm should stop and report a negative cycle, consisting of the tree path from w to v followed by the arc (v, w).

(a) An easy way to test whether w is an ancestor of v is by following parent pointers from v until reaching either w or s. Give a set of examples that show that this way of doing the test can result in a factor of n blow-up in the running time; that is, on the examples, the running time is
[image: image19.wmf]2

cnm

for some positive constant c independent of n and m. (As a side effect, your class of examples will show that the
[image: image20.wmf]O()

nm

time bound for the unmodified algorithm is tight.)
(b) A better way to test whether w is an ancestor of v is to visit the descendants of w in the tentative shortest path tree, deleting each such vertex from the tree, and stopping when reaching v or when reaching a vertex that is not a descendant of w. Give a detailed implementation of this idea, using a doubly-linked list of the tree vertices in preorder (with respect to some depth-first traversal of the tree). Prove that the modified algorithm still correctly computes shortest distances and a shortest path tree if there is no negative cycle, stops and reports a negative cycle if there is one, and runs in
[image: image21.wmf]O()

nm

time. (In particular, describe exactly how to update the preorder list and the parent pointers as needed, and how to test whether all descendants of w have been visited.)

(c) The algorithm developed in part (b) always terminates, whether or not there is a negative cycle. Experiments suggest that it runs much faster on many graphs than the unmodified algorithm, even though the worst-case bound is the same. A further improvement is possible: when the label of a vertex w is updated, from
[image: image22.wmf]()

dw

to
[image: image23.wmf]()

dw

¢

say, we can also reduce the label of every vertex that is a descendant of w, by an amount
[image: image24.wmf]()().

dwdw

¢

-

 Modify the algorithm you developed in part (b) so that it does this. Prove that the modified algorithm is correct. (It computes a shortest path tree or finds a negative cycle.) Prove that the time bound is still
[image: image25.wmf]O().

nm

_1269064474.unknown

_1269064736.unknown

_1269064942.unknown

_1269065471.unknown

_1269070081.unknown

_1269070163.unknown

_1269070205.unknown

_1269065484.unknown

_1269065574.unknown

_1269065185.unknown

_1269065327.unknown

_1269065032.unknown

_1269065154.unknown

_1269064867.unknown

_1269064651.unknown

_1269064685.unknown

_1269064719.unknown

_1269064620.unknown

_1269064421.unknown

_1269064222.unknown

_1269064311.unknown

