The Minimum Spanning Tree Problem

Given a connected graph, find a spanning
tree of minimum total edge cost.

where,
n = the number of vertices

m = the number of edges
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Applications

Network Construction

Clustering

Minimum Tour Relaxation (Held-Karp 1-trees)




A Simple Solution From the 80’s

(with apologies to Oliver Stone)

Gorden Gecko: "Greed is Good"

Repeatedly select the cheapest unselected edge

and add it to the tree under construction if it

connects two previously disconnected pieces.

Kruskal, 1956




The greedy method generalizes to matroids.

We shall generalize the method rather than

the domain of application.




Generalized Greedy Method

Beginning with all edges uncolored,
sequentially color edges

blue (accepted) or red (rejected).

Blue Rule:

Color blue any minimum-cost uncolored”
edge crossing a cut with no blue edges
- crossing.

Red Rule:

Color red any maximum-cost uncolored
edge on a cycle with no red edges.
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Jarnik’s Algorithm

Grow a tree from a single start vertex.
At each step add a cheapest edge with

exactly one end in the tree.




Boruvka’s Algorithm

| Repeat the following step until

all vertices are connected:

For each blue component, select a
cheapest edge connecting to another

component; color all selected edges blue. .

For correctness, a tie-breaking rule is needed.
Henceforth, assume all edge costs are distinct.

Then there is a unique spanning tree.




"Classical" Algorithms

(before algorithm analysis)

Kruskal’s algorithm, 1956

O(m log n) time

Jarnik’s algorithm, 1930
O(n?) time
also Prim, Dijkstra
Boruvka’s algorithm, 1926

O(min{m log n, n?}) time

and many others
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Selected History

Boruvka, 1926 O(min {mlogn,n?})
Jarnik, 1930 O(n?)

Prim, 1957

Dijkstra, 1959
Kruskal, 1956 O(mlogn)
Williams, Floyd, 1964 O(mlogn)

heaps
Yao, 1975 - O(mloglogn)

packets in Boruvka’s algorithm

Fredman, Tarjan, 1984
F-heaps in: ,
Jarnik’s algorithm O(nlogn +m)

a hybrid Jarnik-Boruvka algorithm O(mlog’n)

Gabow, Galil, Spencer, 1984 O(mloglog™n)
Packets in F-T algorithm |

log™ n =min {i | logloglog...logn<1}

where the logarithm is iterated i times




Models of Computation

We assume comparison of the two edge costs .
takes unit time, and no other manipulation of

edge costs is allowed.

Another model:
bit manipulation of the binary

representations of edge costs is allowed.

In this model,
Fredman-Willard, 1990, achieved O(m) time.

(fast small heaps by bit manipulation) |




