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Linear Programming

Linear programming.  Optimize a linear function subject to
linear inequalities.

! 

(P) max c j x j
j=1

n

"

s. t. aij x j
j=1

n

" = bi 1# i #m

x j $ 0 1# j # n

! 

(P) max c
T
x

s. t. Ax = b

x " 0
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Linear Programming

Linear programming.  Optimize a linear function subject to
linear inequalities.

Generalizes:  Ax = b, 2-person zero-sum games, shortest path,
max flow, assignment problem, matching, multicommodity flow,
MST, min weighted arborescence, …

Why significant?
! Design poly-time algorithms.
! Design approximation algorithms.
! Solve NP-hard problems using branch-and-cut.

Ranked among most important scientific advances of 20th century.

Reference:  The Allocation of Resources by Linear Programming, Scientific American, by Bob Bland

! A refreshing example
! Standard form
! Fundamental questions
! Geometry
! Algebra
! Simplex algorithm

Linear Programming I
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Brewery Problem

Small brewery produces ale and beer.
! Production limited by scarce resources:  corn, hops, barley malt.
! Recipes for ale and beer require different proportions of resources.

How can brewer maximize profits?
! Devote all resources to ale:  34 barrels of ale !   $442
! Devote all resources to beer:  32 barrels of beer !   $736
! 7.5 barrels of ale, 29.5 barrels of beer !   $776
! 12 barrels of ale, 28 barrels of beer !   $800

Beverage Corn
(pounds)

Malt
(pounds)

Hops
(ounces)

Beer (barrel) 15 204

Ale (barrel) 5 354

Profit
($)

23

13

constraint 480 1190160
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Brewery Problem  

! 

max 13A + 23B

s. t. 5A + 15B " 480

4A + 4B " 160

35A + 20B " 1190

A , B # 0

Ale Beer

Corn

Hops

Malt

Profit

objective function

constraint

decision variable

! A refreshing example
! Standard form
! Fundamental questions
! Geometry
! Algebra
! Simplex algorithm

Linear Programming I
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Standard Form LP

"Standard form" LP.
! Input:  real numbers  aij, cj, bi.

! Output:  real numbers xj.

! n = # decision variables, m = # constraints.
! Maximize linear objective function subject to linear inequalities.

Linear.  No x2,  x y,  arccos(x),  etc.
Programming.  Planning (term predates computer programming).

! 

(P) max c j x j
j=1

n

"

s. t. aij x j
j=1

n

" = bi 1# i #m

x j $ 0 1# j # n

! 

(P) max c
T
x

s. t. Ax = b

x " 0
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Brewery Problem:  Converting to Standard Form

Original input.

Standard form.
! Add slack variable for each inequality.
! Now a 5-dimensional problem.

! 

max 13A + 23B

s. t. 5A + 15B " 480

4A + 4B " 160

35A + 20B " 1190

A , B # 0

! 

max 13A + 23B

s. t. 5A + 15B + S
C

= 480

4A + 4B + S
H

= 160

35A + 20B + S
M

= 1190

A , B , S
C

, S
H

, S
M

" 0
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Equivalent Forms

Easy to convert variants to standard form.

Less than to equality.  x + 2y – 3z  "  17   !  x + 2y – 3z + s = 17, s # 0
Greater than to equality.  x + 2y – 3z  #  17 !  x + 2y – 3z – s = 17, s # 0
Min to max.  min  x + 2y – 3z  !  max  –x – 2y + 3z

Unrestricted to nonnegative.   x  unrestricted   !  x = x+ – x –,  x+ # 0, x – # 0

! 

(P) max c
T
x

s. t. Ax = b

x " 0

! A refreshing example
! Standard form
! Fundamental questions
! Geometry
! Algebra
! Simplex algorithm

Linear Programming I

12

Fundamental Questions

LP.  For A $ %m&n, b $ %m, c $ %n, ! $ %, does there exist x $ %n

such that:  Ax = b,  x # 0,  cT x # ' ?

Q.  Is LP in NP?
Q.  Is LP in co-NP?
Q.  Is LP in P?
Q.  Is LP in P%?

Input size.
! n = number of variables.
! m = number of constraints.
! L = number of bits to encode input.

Blum-Shub-Smale model



! A refreshing example
! Standard form
! Fundamental questions
! Geometry
! Algebra
! Simplex algorithm
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Brewery Problem:  Feasible Region

Ale

Beer

(34, 0)

(0, 32)

Corn
5A + 15B " 480

Hops
4A + 4B " 160

Malt
35A + 20B " 1190

(12, 28)

(26, 14)

(0, 0)
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Brewery Problem:  Objective Function

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442
(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)

Profit

Ale

Beer

16

(34, 0)

(0, 32)

(12, 28)

(0, 0)

(26, 14)

Brewery Problem:  Geometry

Brewery problem observation.   Regardless of objective function
coefficients, an optimal solution occurs at a vertex.

vertex

Ale

Beer
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Convex set.  If two points x and y are in the set, then so is
) x + (1- )) y for 0 " ) " 1.

Vertex.  A point x in the set that can't be written as a strict
convex combination of two distinct points in the set.

Observation.  LP feasible region is a convex set.

Convexity

convex not convex

vertex

x

y

convex combination not a vertex iff  , d ( 0 s.t. x ± d in set

18

Purificaiton

Theorem.  If there exists an optimal solution to (P), then there exists
one that is a vertex.

Intuition.  If x is not a vertex, move in a non-decreasing direction until
you reach a boundary. Repeat.

x

x' = x + !* d

! 

(P) max c
T
x

s. t. Ax = b

x " 0

x + d

x - d
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Purificaiton

Theorem.  If there exists an optimal solution to (P), then there exists
one that is a vertex.

Pf.
! Suppose x is an optimal solution that is not a vertex.
! There exist direction d ( 0 such that x ± d $ P.
! A d = 0 because A(x ± d) = b.

! Assume cT d " 0  (by taking either d or –d).
! Consider x + ) d,  ) > 0 :

Case 1.  [ there exists j such that dj < 0 ]
! Increase ) to )* until first new component of x + ) d hits 0.

! x + )*d is feasible since A(x + )*d) = Ax = b and x + )*y  #  0.

! x + )*d has one more zero component than x.

! cTx' = cT (x + )*d) = cT x + )* cT d " cT x. dk = 0 whenever xk = 0 because x ± d $ P
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Purificaiton

Theorem.  If there exists an optimal solution to (P), then there exists
one that is a vertex.

Pf.
! Suppose x is an optimal solution that is not a vertex.
! There exist direction d ( 0 such that x ± d $ P.
! A d = 0 because A(x ± d) = b.

! Assume cT d " 0  (by taking either d or –d).
! Consider x + ) d,  ) > 0 :

Case 2.  [dj # 0 for all j ]
! x + )d is feasible for all ) # 0 since A(x + )d) = b and x + )d # x # 0.

! As ) * +,  cT(x + )d) * + because cT d < 0.    •

if cTd = 0, choose d so that case 1 applies



! A refreshing example
! Standard form
! Fundamental questions
! Geometry
! Algebra
! Simplex algorithm
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Intuition

Intuition.  A vertex in %m is uniquely specified by m linearly
independent equations.

4A + 4B " 160 35A + 20B " 1190

(26, 14)

  4A +   4B  =  160

35A + 20B  = 1190
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Basic Feasible Solution

Theorem.  Let P = { x : Ax = b, x # 0 }. For x  $ P, define B = { j :  xj > 0 }.

Then x is a vertex iff AB has linearly independent columns.

Notation.  Let B = set of column indices. Define AB  to be the subset
of columns of A indexed by B.

Ex.

! 

A  =  

2 1 3 0

7 3 2 1

0 0 0 5

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 ,   b  =  

7

16

0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 

! 

x  =  

2

0

1

0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 ,    B  =  {1,  3},  A
B

 =  

2 3

7 2

0 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
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Basic Feasible Solution

Theorem.  Let P = { x : Ax = b, x # 0 }. For x  $ P, define B = { j :  xj > 0 }.

Then x is a vertex iff AB has linearly independent columns.

Pf.   -
! Assume x is not a vertex.
! There exist direction d ( 0 such that x ± d $ P.
! A d = 0 because A(x ± d) = b.

! Define B' = { j :  dj ( 0 }.

! AB' has linearly dependent columns since d ( 0.
! Moreover, dj = 0 whenever xj = 0 because x ± d # 0.

! Thus  B' . B, so AB' is a submatrix of AB.
! Therefore, AB has linearly dependent columns.
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Basic Feasible Solution

Theorem.  Let P = { x : Ax = b, x # 0 }. For x  $ P, define B = { j :  xj > 0 }.

Then x is a vertex iff AB has linearly independent columns.

Pf.   !
! Assume AB has linearly dependent columns.
! There exist d ( 0 such that AB d = 0.

! Extend d to %n by adding 0 components.
! Now, A d = 0 and dj = 0 whenever xj = 0.
! For sufficiently small ),  x ± ) d  $  P  !  x is not a vertex.   •
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Basic Feasible Solution

Theorem.  Given P = { x : Ax = b, x # 0 }, x is a vertex iff there exists
B . { 1, …, n } such | B | = m and:

! AB is nonsingular.
! xB = AB

-1 b # 0.

! xN = 0.

Pf.  Augment AB with linearly independent columns (if needed).   •

Assumption.  A $ %m"n has full row rank.

basic feasible solution

! 

A  =  

2 1 3 0

7 3 2 1

0 0 0 5

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 ,   b  =  

7

16

0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 

! 

x  =  

2

0

1

0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 ,    B  =  { 1,  3,  4 },    A
B

 =  

2 3 0

7 2 1

0 0 5

 

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 

27

Basic Feasible Solution:  Example

Basic feasible solutions.

Ale

Beer

Basis
{A, B, SM }
(12, 28)

{A, B, SC }
(26, 14)

{B, SH, SM }
(0, 32)

{SH, SM, SC }
(0, 0)

{A, SH, SC }
(34, 0)

! 

max 13A + 23B

s. t. 5A + 15B + S
C

= 480

4A + 4B + S
H

= 160

35A + 20B + S
M

= 1190

A , B , S
C

, S
H

, S
M

" 0

Infeasible
{A, B, SH }
(19.41, 25.53)
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Fundamental Questions

LP.  For A $ %m&n, b $ %m, c $ %n, ! $ %, does there exist x $ %n

such that:  Ax = b,  x # 0,  cT x # ' ?

Q.  Is LP in NP?
A.  Yes.

! Number of vertices
! Cramer's rule  !  can check a vertex in poly-time.

Cramer's rule.  For B $ %n&n  invertible,  b $ %n,

the solution to Bx = b is given by:

! 

x
i
 =  

det(B
i
)

det(B) replace ith column of B with b

! 

"  C(n,  m)  =  
n

m( )  "  n
m

.



! A refreshing example
! Standard form
! Fundamental questions
! Geometry
! Algebra
! Simplex algorithm
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Simplex algorithm. [George Dantzig 1947]  Move from BFS to
adjacent BFS, without decreasing objective function.

Greedy property.  BFS optimal iff no adjacent BFS is better.
Challenge.  Number of BFS can be exponential!

Simplex Algorithm:  Intuition

edge

replace one basic variable with another
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Simplex Algorithm:  Initialization

! 

max Z subject to

13A + 23B " Z = 0

5A + 15B + S
C

= 480

4A + 4B + S
H

= 160

35A + 20B + S
M

= 1190

A , B , S
C

, S
H

, S
M

# 0

Basis = {S
C
, S

H
, S

M
}

A = B = 0

Z = 0

S
C
 = 480

S
H
 = 160

S
M

 = 1190
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! 

max Z subject to

16
3
A " 23

15
S
C

" Z = "736

1
3
A + B + 1

15
S
C

= 32

8
3
A " 4

15
S
C

+ S
H

= 32

85
3
A " 4

3
S
C

+ S
M

= 550

A , B , S
C

, S
H

, S
M

# 0

Simplex Algorithm:  Pivot 1

Substitute:  B = 1/15 (480 – 5A – SC)
! 

max Z subject to

13A + 23B " Z = 0

5A + 15B + S
C

= 480

4A + 4B + S
H

= 160

35A + 20B + S
M

= 1190

A , B , S
C

, S
H

, S
M

# 0

Basis = {S
C
, S

H
, S

M
}

A = B = 0

Z = 0

S
C
 = 480

S
H
 = 160

S
M

 = 1190

Basis = {B, S
H
, S

M
}

A = S
C
 = 0

Z = 736

B = 32

S
H
 = 32

S
M

 = 550
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Simplex Algorithm:  Pivot 1

Q.  Why pivot on column 2 (or 1)?
A.  Each unit increase in B increases objective value by $23.

Q.  Why pivot on row 2?
A.  Preserves feasibility by ensuring RHS # 0.

! 

max Z subject to

13A + 23B " Z = 0

5A + 15B + S
C

= 480

4A + 4B + S
H

= 160

35A + 20B + S
M

= 1190

A , B , S
C

, S
H

, S
M

# 0

min ratio rule:  min { 480/15,  160/4,  1190/20 }

Basis = {S
C
, S

H
, S

M
}

A = B = 0

Z = 0

S
C
 = 480

S
H
 = 160

S
M

 = 1190
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Simplex Algorithm:  Pivot 2

! 

max Z subject to

16
3
A " 23

15
S
C

" Z = "736

1
3
A + B + 1

15
S
C

= 32

8
3
A " 4

15
S
C

+ S
H

= 32

85
3
A " 4

3
S
C

+ S
M

= 550

A , B , S
C

, S
H

, S
M

# 0

! 

max Z subject to

" S
C

" 2 S
H

" Z = "800

B + 1
10
S
C

+ 1
8
S
H

= 28

A " 1
10
S
C

+ 3
8
S
H

= 12

" 25
6
S
C

" 85
8
S
H

+ S
M

= 110

A , B , S
C

, S
H

, S
M

# 0

Substitute:  A = 3/8 (32 + 4/15 SC – SH)

Basis = {B, S
H
, S

M
}

A = S
C
 = 0

Z = 736

B = 32

S
H
 = 32

S
M

 = 550

Basis = {A, B, S
M

}

S
C
 = S

H
 = 0

Z = 800

B = 28

A = 12

S
M

 = 110
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Simplex Algorithm:  Optimality

Q.  When to stop pivoting?
A.  When all coefficients in top row are nonpositive.

Q.  Why is resulting solution optimal?
A.  Any feasible solution satisfies system of equations in tableaux.

! In particular:  Z = 800 – SC – 2 SH  ,  SC # 0,  SH # 0.

! Thus, optimal objective value Z* " 800.

! Current BFS has value 800  !  optimal.

! 

max Z subject to

" S
C

" 2 S
H

" Z = "800

B + 1
10
S
C

+ 1
8
S
H

= 28

A " 1
10
S
C

+ 3
8
S
H

= 12

" 25
6
S
C

" 85
8
S
H

+ S
M

= 110

A , B , S
C

, S
H

, S
M

# 0

Basis = {A, B, S
M

}

S
C
 = S

H
 = 0

Z = 800

B = 28

A = 12

S
M

 = 110
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Simplex Tableaux:  Matrix Form

Initial simplex tableaux.

Simplex tableaux corresponding to basis B.

xB
  =  AB

-1 b  #  0

xN
  =  0

basic feasible solution

! 

(c
N

T
" c

B

T
A
B

"1
A
N

) x
N

 = Z  "  c
B

T
A
B

"1
b

I x
B

   +                   A
B

"1
A
N
x
N

 = A
B

"1
b

x
B

  ,                                 x
N

# 0

! 

c
B

T
x
B

 +  c
N

T
x
N

= Z

A
B
x
B

+  A
N
x
N

= b

x
B

 ,       x
N

" 0

cN
T  – cB

T AB
-1 AN  "  0

optimal basis

multiply by AB
-1

subtract cB
T AB

-1  times constraints
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Simplex Algorithm:  Corner Cases

Simplex algorithm.  Missing details for corner cases.

Q.  What if min ratio test fails?
Q.  How to find initial basis?
Q.  How to guarantee termination?

38

Unboundedness

Q.   What happens if min ratio test fails?

A.   Unbounded objective function.
! 

max Z subject to

+ 2x4 + 20x5 "  Z = 2

x1 " 4x4 " 8x5 = 3

x2 + 5x4 " 12x5 = 4

x3 = 5

x1 , x2 , x3 , x4 , x5 # 0

all coefficients in entering
column are nonpositive

! 

x
1

x
2

x
3

x
4

x
5

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

 =  

3  +  8x
5

4  + 12x
5

5

0

0

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

! 

Z  =  2  +  20x
5
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Phase I Simplex

Q.  How to find initial basis?

A.  Solve (P'), starting from basis
consisting of all the zi variables.

! Case 1:  min > 0  !  (P) is infeasible.
! Case 2:  min = 0, basis has no zi variables  !  OK to start Phase II.
! Case 3a:  min = 0, basis has zi variables. Pivot zi variables out of basis.

If successful, start Phase II; else remove linear dependent rows.

! 

(P) max c
T
x

s. t. Ax = b

x " 0

! 

( " P ) max z
i

i=1

m

#

s. t. A x + I z = b

x, z $ 0
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Simplex Algorithm:  Degeneracy

Degeneracy.  New basis, same vertex.

Degenerate pivot.  Min ratio = 0.

! 

max Z subject to

3
4
x4 " 20x5 + 1

2
x6 " 6x7 "  Z = 0

x1 + 1
4
x4 " 8x5 " x6 + 9x7 = 0

x2 + 1
2
x4 " 12x5 " 1

2
x6 + 3x7 = 0

x3 + x6 = 1

x1 , x2 , x3 , x4 , x5 , x6 , x7 # 0
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Simplex Algorithm:  Degeneracy

Degeneracy.  New basis, same vertex.

Cycling.  Infinite loop by cycling through different bases that all
correspond to same vertex.

Anti-cycling rules.
! Bland's rule: choose eligible variable with smallest index.
! Random rule:  choose eligible variable uniformly at random.
! Lexicographic rule:  perturb constraints so nondegenerate.

42

Lexicographic Rule

Intuition.  No degeneracy  !  no cycling.

Perturbed problem.

Lexicographic rule.  Apply perturbation virtually by manipulating /
symbolically:

! 

( " P ) max c
T
x

s. t. Ax = b   +   #

x $ 0          

  

! 

where  "  =  

"1

" 2

M

"
n

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 , such that "1  f  " 2  f  L f  "
n

 

! 

17  +  5"
1

 +  11"
2

 +  8"
3

 #   17  +  5"
1

 +  14"
2

 +  3"
3

much much greater,
say /i =!0

i for small 0
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Lexicographic Rule

Intuition.  No degeneracy  !  no cycling.

Perturbed problem.

Claim.  In perturbed problem, xB  = AB
-1 (b + #) is always nonzero.

Pf.  The jth component of xB is a (nonzero) linear combination of the
components of b + #  ! contains at least one of the #i terms.

Corollary.  No cycling.

! 

( " P ) max c
T
x

s. t. Ax = b   +   #

x $ 0          

  

! 

where  "  =  

"1

" 2

M

"
n

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 , such that "1  f  " 2  f  L f  "
n

 

which can't cancel

much much greater,
say /i =!0

i for small 0
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Simplex Algorithm:  Practice

Remarkable property.  In practice, simplex algorithm typically
terminates after at most 2(m + n) pivots.

Issues.
! Avoid stalling.
! Choose the pivot.
! Maintain sparsity.
! Ensure numerical stability.
! Preprocess to eliminate variables and constraints.

Commercial solvers can solve LPs with millions of variables and tens
of thousands of constraints.

but no polynomial pivot rule known


