Linear Programming

Linear programming. Optimize a linear function subject to linear inequalities.

(P) max
$$\sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $1 \le i \le m$
 $x_j \ge 0$ $1 \le j \le n$
(P) max $c^T x$
s.t. $Ax = b$
 $x \ge 0$

Linear Programming

Linear Programming Lecture 1

> Kevin Wayne Computer Science Department Princeton University COS 523 Fall 2007

Linear programming. Optimize a linear function subject to linear inequalities.

Generalizes: Ax = b, 2-person zero-sum games, shortest path, max flow, assignment problem, matching, multicommodity flow, MST, min weighted arborescence, ...

Why significant?

- Design poly-time algorithms.
- Design approximation algorithms.
- Solve NP-hard problems using branch-and-cut.

Linear Programming I

> A refreshing example

- > Standard form
- > Fundamental questions
- ➤ Geometry
- Algebra
- > Simplex algorithm

Ranked among most important scientific advances of 20th century.

Brewery Problem

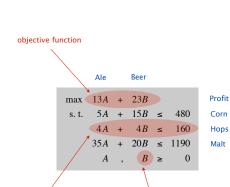
Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

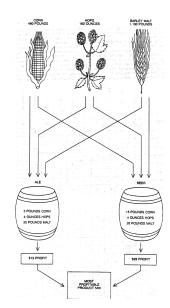
How can brewer maximize profits?

- Devote all resources to ale: 34 barrels of ale ⇒ \$442
- Devote all resources to beer: 32 barrels of beer ⇒ \$736
- 7.5 barrels of ale, 29.5 barrels of beer
- 12 barrels of ale, 28 barrels of beer



Brewery Problem

decision variable



6

8

Standard Form LP

"Standard form" LP.

constraint

- Input: real numbers a_{ii}, c_i, b_i .
- Output: real numbers x_i.
- n = # decision variables, m = # constraints.
- Maximize linear objective function subject to linear inequalities.

(P) max
$$\sum_{j=1}^{n} c_j x_j$$

s. t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$
$$x_j \ge 0 \quad 1 \le j \le n$$

(P) max $c^T x$ s. t. Ax = b $x \ge 0$

Linear. No x^2 , xy, $\arccos(x)$, etc.

Programming. Planning (term predates computer programming).

Linear Programming I

 \succ A refreshing example

⇒ \$776

⇒ \$800

5

> Standard form

- > Fundamental questions
- ➤ Geometry
- > Algebra
- > Simplex algorithm

Original input.

max	13A	+	23B		
s. t.	5A	+	15B	≤	480
	4A	+	4B	≤	160
	35A	+	20B	≤	1190
	Α	,	В	≥	0

Standard form.

- Add slack variable for each inequality.
- Now a 5-dimensional problem.

max $13A + 23B$	
s. t. $5A + 15B + S_C$	= 480
4A + 4B +	$S_{H} = 160$
35A + 20B	$+ S_M = 1190$
$A , B , S_C , $	S_H , $S_M \ge 0$

9

Equivalent Forms

Easy to convert variants to standard form.

(P)	max	$c^T x$			
	s. t.	Ax	=	b	
		x	≥	0	

Less than to equality. $x + 2y - 3z \le 17 \implies x + 2y - 3z + s = 17, s \ge 0$ Greater than to equality. $x + 2y - 3z \ge 17 \implies x + 2y - 3z - s = 17, s \ge 0$ Min to max. min $x + 2y - 3z \implies max -x - 2y + 3z$ Unrestricted to nonnegative. x unrestricted $\implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

Fundamental Questions

LP. For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, $\alpha \in \Re$, does there exist $x \in \Re^n$ such that: Ax = b, $x \ge 0$, $c^T x \ge \alpha$?



Input size.

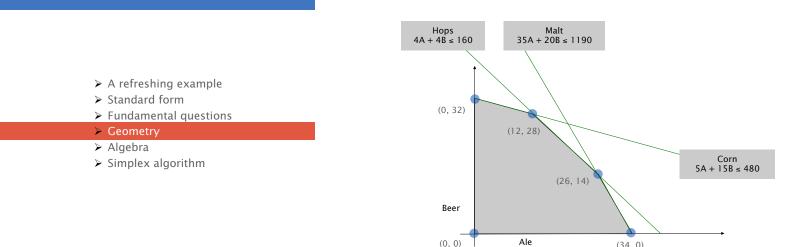
- *n* = number of variables.
- *m* = number of constraints.
- L = number of bits to encode input.

Linear Programming I

- > A refreshing example
- ➤ Standard form
- > Fundamental questions
- Geometry
- ➤ Algebra
- > Simplex algorithm

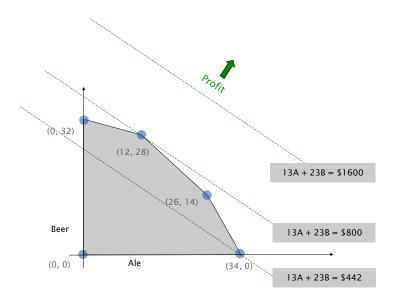
Brewery Problem: Feasible Region

Linear Programming I



15

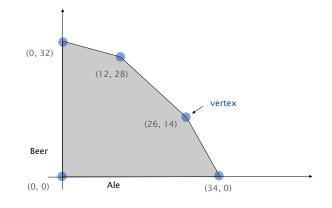
Brewery Problem: Objective Function



Brewery Problem: Geometry

(34, 0)

Brewery problem observation. Regardless of objective function coefficients, an optimal solution occurs at a vertex.



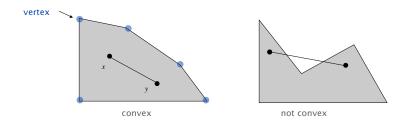
Convexity

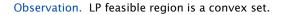
Convex set. If two points *x* and *y* are in the set, then so is $\lambda x + (1 - \lambda) y$ for $0 \le \lambda \le 1$.

convex combination

not a vertex iff $\exists d \neq 0$ s.t. $x \pm d$ in set

Vertex. A point *x* in the set that can't be written as a strict convex combination of two distinct points in the set.





Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

Purificaiton

Pf.

- Suppose *x* is an optimal solution that is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- A d = 0 because $A(x \pm d) = b$.
- Assume $c^{T} d \le 0$ (by taking either d or -d).
- Consider $x + \lambda d$, $\lambda > 0$:

Case 1. [there exists j such that $d_j < 0$]

- Increase λ to λ^* until first new component of $x + \lambda d$ hits 0.
- $x + \lambda^* d$ is feasible since $A(x + \lambda^* d) = Ax = b$ and $x + \lambda^* y \ge 0$.
- $x + \lambda^* d$ has one more zero component than x.
- $c^{\mathrm{T}}x' = c^{\mathrm{T}}(x + \lambda^* d) = c^{\mathrm{T}}x + \lambda^* c^{\mathrm{T}}d \le c^{\mathrm{T}}x.$

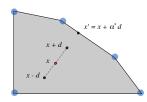
 $d_k = 0$ whenever $x_k = 0$ because $x \pm d \in P$

Purificaiton

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

(P) max $c^T x$ s.t. Ax = b*x* ≥

Intuition. If *x* is not a vertex, move in a non-decreasing direction until you reach a boundary. Repeat.



Purificaiton

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

- Pf.
- Suppose *x* is an optimal solution that is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- A d = 0 because $A(x \pm d) = b$.
- Assume $c^{\mathrm{T}} d \leq 0$ (by taking either *d* or *-d*).
- Consider $x + \lambda d$, $\lambda > 0$:

Case 2. $[d_i \ge 0 \text{ for all } j]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$.
- As $\lambda \to \infty$, $c^{\mathrm{T}}(x + \lambda d) \to \infty$ because $c^{\mathrm{T}} d < 0$.

if $c^{\mathrm{T}}d = 0$, choose d so that case 1 applies

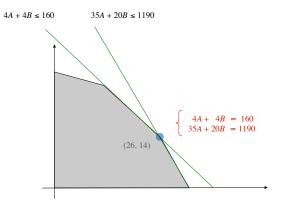
17

Intuition

Linear Programming I

\succ	A refreshing example
≻	Standard form
≻	Fundamental questions
\succ	Geometry
*	Algebra
>	Simplex algorithm

Intuition. A vertex in \Re^m is uniquely specified by *m* linearly independent equations.



Basic Feasible Solution

Theorem. Let $P = \{ x : Ax = b, x \ge 0 \}$. For $x \in P$, define $B = \{ j : x_j > 0 \}$. Then *x* is a vertex iff A_B has linearly independent columns.

Notation. Let B = set of column indices. Define A_B to be the subset of columns of A indexed by B.

[7]

7 2 0 0

Ex.

$$A = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 7 & 3 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 7 \\ 16 \\ 0 \end{bmatrix}$$
$$x = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad B = \{1, 3\}, \quad A_B = \begin{bmatrix} 2 & 3 \\ 7 & 2 \end{bmatrix}$$

0

Theorem. Let $P = \{x : Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j : x_j > 0\}$. Then x is a vertex iff A_B has linearly independent columns.

Pf. ⇐

- Assume *x* is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- A d = 0 because $A(x \pm d) = b$.
- Define $B' = \{ j : d_i \neq 0 \}.$
- A_{B} has linearly dependent columns since $d \neq 0$.
- Moreover, $d_j = 0$ whenever $x_j = 0$ because $x \pm d \ge 0$.
- Thus $B' \subseteq B$, so $A_{B'}$ is a submatrix of A_{B} .
- Therefore, A_{R} has linearly dependent columns.

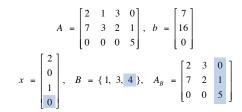
Theorem. Let $P = \{x : Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j : x_j > 0\}$. Then x is a vertex iff A_B has linearly independent columns.

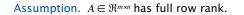
Pf. ⇒

- Assume A_{R} has linearly dependent columns.
- There exist $d \neq 0$ such that $A_B d = 0$.
- Extend d to \Re^n by adding 0 components.
- Now, A d = 0 and $d_i = 0$ whenever $x_i = 0$.
- For sufficiently small λ , $x \pm \lambda d \in P \Rightarrow x$ is not a vertex. •

Theorem. Given $P = \{x : Ax = b, x \ge 0\}$, *x* is a vertex iff there exists $B \subseteq \{1, ..., n\}$ such |B| = m and:

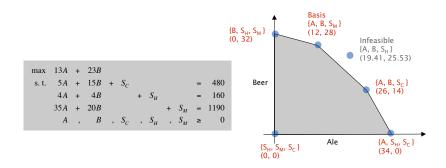
- A_B is nonsingular.
- $x_B = A_B^{-1} b \ge 0.$ basic feasible solution
- $x_N = 0$.
- Pf. Augment A_B with linearly independent columns (if needed).





Basic Feasible Solution: Example

Basic feasible solutions.



Fundamental Questions

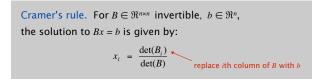
LP. For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, $\alpha \in \Re$, does there exist $x \in \Re^n$ such that: Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

- Q. Is LP in NP?
- A. Yes.

25

27

- Number of vertices $\leq C(n, m) = {n \choose m} \leq n^m$.
- Cramer's rule \Rightarrow can check a vertex in poly-time.



Simplex Algorithm: Intuition

Linear Programming I

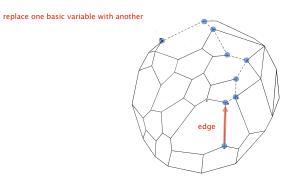
A refreshing exampleStandard form

> Fundamental questions

> Simplex algorithm

GeometryAlgebra

Simplex algorithm. [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.



Greedy property. BFS optimal iff no adjacent BFS is better. Challenge. Number of BFS can be exponential!

Simplex Algorithm: Initialization

max 2	Z su	bject t	0								
13A	+	23 <i>B</i>						-	Ζ	=	0
5A	+	15 <i>B</i>	+	S_C						=	480
4A	+	4B			+	S_H				=	160
35A	+	20B					+	S_M		=	1190
Α	,	В	,	S_C	,	S_H	,	S_M		≥	0

 $\begin{array}{l} \text{Basis} = \{S_{C}, S_{H}, S_{M}\} \\ A = B = 0 \\ Z = 0 \\ S_{C} = 480 \\ S_{H} = 160 \\ S_{M} = 1190 \end{array}$

31

Simplex Algorithm: Pivot 1

max 2	Z su	bject to	o								
13A	+	23B						-	Ζ	=	0
5 <i>A</i>	+	15 <i>B</i>	+	S_C						=	480
4A	+	4B			+	S_H				=	160
35A	+	20 <i>B</i>					+	S_M		=	1190
Α	,	В	,	S_C	,	S_H	,	S_M		≥	0

 $\begin{array}{l} \text{Basis} = \{S_C, \, S_H, \, S_M\} \\ A = B = 0 \\ Z = 0 \\ S_C = 480 \\ S_H = 160 \\ S_M = 1190 \end{array}$

Substitute: $B = 1/15 (480 - 5A - S_C)$

max Z	subje	ct to									
$\frac{16}{3}A$		-	$\frac{23}{15} S_C$				-	Ζ	=	-736	Basis = $\{B, S_H, S_h\}$
$\frac{1}{3} A$	+ B	+	$\frac{1}{15} S_C$						=	32	$A = S_C = 0$
$\frac{8}{3}$ A		-	$\frac{4}{15} S_C$	+	S_H				=	32	Z = 736 B = 32
$\frac{85}{3}A$		-	$\frac{4}{3}$ S _C			+	S_M		=	550	$S_{H} = 32$
Α	, <i>B</i>	,	S_{C}	,	S_H	,	S_M		≥	0	$S_{M} = 550$

Simplex Algorithm: Pivot 1

 $\begin{array}{l} \text{Basis} = \{S_C, S_H, S_M\} \\ A = B = 0 \\ Z = 0 \\ S_C = 480 \\ S_H = 160 \\ S_M = 1190 \end{array}$

33

35

 $\begin{array}{l} \text{Basis} = \{B,\,S_{H},\,S_{M}\}\\ A = S_{C} = 0\\ Z = 736\\ B = 32\\ S_{H} = 32\\ S_{M} = 550 \end{array}$

Substitute: $A = 3/8 (32 + 4/15 S_C - S_H)$

max Z	subj	ect	to									
			_	S_{C}	_	$2 S_H$		-	Ζ	=	-800	$Basis = \{A, B, S_M\}$
		В	+	$\frac{1}{10} S_C$	+	$\frac{1}{8}$ S_H				=	28	$S_C = S_H = 0$ $Z = 800$
Α			-	$\frac{1}{10} S_C$	+	$\frac{3}{8}$ S_H				=	12	B = 28 $A = 12$
			-	$\frac{25}{6}S_C$	-	$\frac{85}{8}S_H$	+	S_M		=	110	A = 12 $S_M = 110$
Α	,	В	,	S_C	,	S_H	,	S_M		≥	0	

Q. Why pivot on column 2 (or 1)?

A. Each unit increase in *B* increases objective value by \$23.

- Q. Why pivot on row 2?
- A. Preserves feasibility by ensuring RHS \geq 0.

min ratio rule: min { 480/15, 160/4, 1190/20 }

Simplex Algorithm: Optimality

- Q. When to stop pivoting?
- A. When all coefficients in top row are nonpositive.
- Q. Why is resulting solution optimal?
- A. Any feasible solution satisfies system of equations in tableaux.
- In particular: $Z = 800 S_C 2 S_H$, $S_C \ge 0$, $S_H \ge 0$.
- Thus, optimal objective value $Z^* \leq 800$.
- Current BFS has value $800 \Rightarrow$ optimal.

max Z s	sub	ject	to								
			-	S_{C}	-	$2 S_H$		-	Ζ	=	-800
		В	+	$\frac{1}{10} S_C$	+	$\frac{1}{8}$ S_H				=	28
Α			-	$\frac{1}{10} S_C$	+	$\frac{3}{8}$ S_H				=	12
			-	$\frac{25}{6}S_C$	-	$\frac{85}{8}S_H$	+	S_M		=	110
Α	,	В	,	S_C	,	S_H	,	S_M		≥	0

Basis = $\{A, B, S_M\}$ $S_C = S_H = 0$ Z = 800 B = 28 A = 12 $S_M = 110$

Simplex Tableaux: Matrix Form

Initial simplex tableaux.

 $\begin{array}{rcl} c_B^T \, x_B \ + \ c_N^T \, x_N \ = \ Z \\ A_B \, x_B \ + \ A_N \, x_N \ = \ b \\ x_B \ , \ x_N \ \geq \ 0 \end{array}$

Simplex tableaux corresponding to basis *B*.

		$(c_N^T - c_B^T A_B^{-1} A_N) x_N$	=	$Z - c_B^T A_B^{-1} b$ \leftarrow subtract $c_B^T A_B^{-1}$ times constraints
$I x_B$	+	$A_B^{-1} A_N x_N$	=	$A_B^{-1} b \leftarrow \text{multiply by } A_B^{-1}$
x_B	,	x_N	≥	0

$\begin{aligned} x_B &= A_B^{-1}b \ge 0\\ x_N &= 0 \end{aligned}$	$c_N^{\ T} - c_B^{\ T} A_B^{-1} A_N \le 0$
basic feasible solution	optimal basis

Simplex Algorithm: Pivot 2

Simplex Algorithm: Corner Cases

Simplex algorithm. Missing details for corner cases.

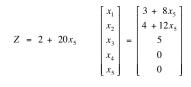
- Q. What if min ratio test fails?
- Q. How to find initial basis?
- Q. How to guarantee termination?

Unboundedness

Q. What happens if min ratio test fails?

					all coefficients in entering column are nonpositive											
ma	nx Ź	Z sub	ject	to												
					+	$2x_4$	+	$20x_{5}$	- Z	=	2					
x_1					-	$4x_4$	-	8 <i>x</i> ₅		=	3					
		x_2			+	$5x_4$	-	$12x_{5}$		=	4					
				<i>x</i> ₃						=	5					
x_1	,	x_2	,	x_3	,	x_4	,	x_5		≥	0					

A. Unbounded objective function.



Phase I Simplex

(P) max $c^T x$ s.t. Ax = b $x \ge 0$

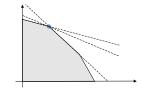
A. Solve (P'), starting from basis consisting of all the z_i variables.

(P') max $\sum_{i=1}^{m} z_i$ s. t. A x + I z = b $x, z \ge 0$

- Case 1: $\min > 0 \Rightarrow$ (P) is infeasible.
- Case 2: min = 0, basis has no z_i variables \Rightarrow OK to start Phase II.
- Case 3a: min = 0, basis has z_i variables. Pivot z_i variables out of basis. If successful, start Phase II; else remove linear dependent rows.

Simplex Algorithm: Degeneracy

Degeneracy. New basis, same vertex.



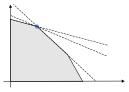
Degenerate pivot. Min ratio = 0.

max Z subject to													
				$\frac{3}{4}x_4$	-	$20x_{5}$	+	$\frac{1}{2}x_{6}$	-	$6x_7$	- Z	=	0
<i>x</i> ₁			+	$\frac{1}{4} x_4$	-	8 <i>x</i> ₅	-	<i>x</i> ₆	+	$9x_{7}$		=	0
	x_2		+	$\frac{1}{2}x_{4}$	-	$12x_{5}$	-	$\frac{1}{2}x_{6}$	+	$3x_7$		=	0
		х	3				+	x_6				=	1
x_1	, x ₂	, <i>x</i>	3,	x_4	,	x_5	,	x_6	,	<i>x</i> ₇		≥	0

37

Simplex Algorithm: Degeneracy

Degeneracy. New basis, same vertex.

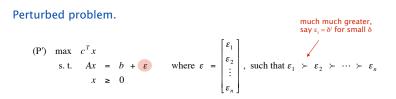


Cycling. Infinite loop by cycling through different bases that all correspond to same vertex.

Anti-cycling rules.

- Bland's rule: choose eligible variable with smallest index.
- Random rule: choose eligible variable uniformly at random.
- Lexicographic rule: perturb constraints so nondegenerate.

Intuition. No degeneracy \Rightarrow no cycling.



Lexicographic rule. Apply perturbation virtually by manipulating ϵ symbolically:

$$17 + 5\varepsilon_1 + 11\varepsilon_2 + 8\varepsilon_3 \leq 17 + 5\varepsilon_1 + 14\varepsilon_2 + 3\varepsilon_3$$

Lexicographic Rule

Intuition. No degeneracy \Rightarrow no cycling.

Perturbed problem.

(P') max
$$c^T x$$

s. t. $Ax = b + \varepsilon$ where $\varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$, such that $\varepsilon_1 \succ \varepsilon_2 \succ \cdots \succ \varepsilon_n$

Claim. In perturbed problem, $x_B = A_B^{-1}(b + \varepsilon)$ is always nonzero. Pf. The *j*th component of x_B is a (nonzero) linear combination of the components of $b + \varepsilon \Rightarrow$ contains at least one of the ε_i terms.

Corollary. No cycling.

which can't cancel

43

41

Remarkable property. In practice, simplex algorithm typically terminates after at most 2(m + n) pivots.

but no polynomial pivot rule known

Issues.

- Avoid stalling.
- . Choose the pivot.
- Maintain sparsity.
- Ensure numerical stability.
- Preprocess to eliminate variables and constraints.

Commercial solvers can solve LPs with millions of variables and tens of thousands of constraints.