Goal: An O(m)-time algorithm

without bit manipulation of edge weights

Boruvka’s algorithm with contraction:
If G contains at least two vertices:
select cheapest edge incident to each vertex;
Contract all selected edges;

Recur on contracted graph.

If contraction preserves sparsity (m = O(n)),
this algorithm runs in O(n) = O(m) time
on sparse graphs.

E.g. planar graphs

How to handle non-sparse graphs?

Thinning: remove all but O(n) edges by finding

edges that can’t be in the minimum spanning tree.

How to thin?

Verification:

Given a spanning tree, is it minimum?

Thinning: Given a spanning tree, delete any
non-tree edge larger than every edge on tree path 0

joining its ends (red rule).

If all non-tree edges can be thinned,

tree is verified.

Verification

each nontree edge:

cost as large as
‘max on tree path

History of Vér}fication Algorithms
Tarjan, 1979 O(m . (m,n)) time |
Komlos, 1984 | | O(m) comparisons
Dixon, Rauch, Tarjan, 1992 O(m)time
King, 1993 B O(m) time (simplified) ;

All these algorithms will thin.

Thinning by Random Sampling (1993)

Select half the edges at random.

Build a minimum spanning forest of the sample.

Thin.

How many edges remain?

Karger: O(nlogn) on average

Klein, Tarjan: < 2n on average

Minimum Spanning Forest Algorithm

If # edges/ # vertices < 5, then

(Boruvka step) Select the cheapest edge
incident to each vertex. |

Contract all selected edges.
Recur on contracted graph.

Else

(Sampling and Thinning Step) Sample the
edges, each with probability 1/2.

Construct a minimum spanning forest of the
sample, recursively.

Thin using this forest.

Recur on Thinned Graph

Analysis

Boruvka step
m < 5n implies m’< 9m/10 since at least

n/2 edges are contracted

T(m) = O(m) + T(9m/10)

Thinning Step
m>5n implies 2n<2m/5
T(m) = O(m) + T(m/2) + T(2m/5)

where T(m/2) and T(2m/5) are expected time

T(m) = O(m) by induction

Bound on Number of Edges Not Thinned

Let e,e,...., €, be the edges, in increasing cost.

Run the following variant of Kruskal’s algorithm.

Inititalize F = O.

Process the edges in order.
- To process e, flip a coin to see if e, is in the
sample.

If ¢, forms a cycle with edges in F, discard it as
thinned.

()therwise, if ¢ is sampled, add ¢ to F.

(Whether or not e is sampled, it is not
thinned.)

F is the minimum spanning forest of the sample.

‘How many edges are not thinned?

The only relevant coin flips are those on unthinned
edges, each of which has a chance of 1/2 of
adding an edge to F (a success).

There can be at most n-1 successes.

For there to be more than k unthinned edges, the
first k reievant coin flips must give at most n-2 |
successes.

The chance of this is at most

n-2

gr):(: (§r§(:) ‘

i

In particular, the average number of unthinned
edges is at most 2n.

Open Problems

Deterministic O(m)?
Simpler verification?

Other applications?
directed spanning trees?

shortest paths?

