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Tree Data Structure

1
Represent each set by a tree whose nodes are the elements
of the set.

The root is the set name (can store any info at the root)
Each node points to its parent. (M. Fischer and Galler)

{a,b,c,d,e.f}
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find(x): Follow parent pointers from x to root,
~ return root.

cost = # nodes on find path

unite(x,y): Make root x the parent of root y (x is the
name of the new set)

cost=1

Total cost = ® (mn)




Basis for improvement: the structure of each tree is arbitrary;
orﬂy the partition defined by the node sets matters.

Union by size: maintain at each root the tree size (# nodes).
unite (x,y): if size (X) > size (y) make x the parent of y'
1 if size (x) < size (y) make y the parent of x
(Mcllroy)
Union by rank: maintain a rank at each root, initially 0.
unite (x,y): if rank (x) > rank (y) make x the parent of y
‘ if rank (x) < rank (y) make y the parent of x
if rank (x) = rank (y) make x the parent of y and

increase the rank of x by 1

rank = tree height




With either union by size or
union by rank, the heightot a
k-node tree is < Igk

— total cost = (H)m log n)




Path Compression: after a find, make each
node along the find path a child of the root
(Tritter) |

Compressions shorten paths and thus make
later finds cheaper (but cost a constant
factor)




Find with Com pression




History of Bounds (early 70’s)

O(m) (bogus)

O(m log log n) M. Fischer

O(m log*n) Hopcroft and Ullman
Q(nloglogn)(bogus)
Q(noun))Tarjan

O(moyn))Tarjan




How efficient is path compression?

Without union by size or rank, O(mlogn),
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a(n) = min {k : A(1) 2 n}
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Find with compression:
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