Di S&@'m’\: Ser LVniown

antan o colleckion of disicint sets ondefl
‘ d
find and ownion

Inik‘.a\\\s seti = ¢i3 for 4 &1 En

—(—'\v\a (X) Return the name of the set
ConToining element X

onion (A, B) Replace set A bxj the
onion ot sets A and 6/ de.strobiv\rs
the o\d sets.

Name each set by seme (ar£ H‘mf]) chment in it.

Apv\\ cationsg:

ToRTRAVN EQUIWALENCE awd CommeV statements
com?o‘\:'mg Minivm Y M s?a;nn\v\B trees

many other '%\"a.?\n al %o'("\'\:\r\l\f\'&

-~ vnibcation

Tree Data Structure

1
Represent each set by a tree whose nodes are the elements
of the set.

The root is the set name (can store any info at the root)
Each node points to its parent. (M. Fischer and Galler)

{a,b,c,d,e.f}

AP
§ @ &

find(x): Follow parent pointers from x to root,
~ return root.

cost = # nodes on find path

unite(x,y): Make root x the parent of root y (x is the
name of the new set)

cost=1

Total cost = ® (mn)

Basis for improvement: the structure of each tree is arbitrary;
orﬂy the partition defined by the node sets matters.

Union by size: maintain at each root the tree size (# nodes).
unite (x,y): if size (X) > size (y) make x the parent of y'
1 if size (x) < size (y) make y the parent of x
(Mcllroy)
Union by rank: maintain a rank at each root, initially 0.
unite (x,y): if rank (x) > rank (y) make x the parent of y
‘ if rank (x) < rank (y) make y the parent of x
if rank (x) = rank (y) make x the parent of y and

increase the rank of x by 1

rank = tree height

With either union by size or
union by rank, the heightot a
k-node tree is < Igk

— total cost = (H)m log n)

Path Compression: after a find, make each
node along the find path a child of the root
(Tritter) |

Compressions shorten paths and thus make
later finds cheaper (but cost a constant
factor)

Find with Com pression

History of Bounds (early 70’s)

O(m) (bogus)

O(m log log n) M. Fischer

O(m log*n) Hopcroft and Ullman
Q(nloglogn)(bogus)
Q(noun))Tarjan

O(moyn))Tarjan

How efficient is path compression?

Without union by size or rank, O(mlogn),

tigl

Wi
for

.Wh

1t for m=n

th union by size or rank, O(m o (n)), tight
m=n,

ere o 1S an inverse of Ackerman’s function: -
for k=0, =1
AN =j+LA(N=AT () if k=1

where f (x)=x, f " (x) = £ (f V(%))

a(n) = min {k : A(1) 2 n}

AL (X> s‘t(‘;ci’y inore.a$c.§ In AotA lL\ anﬂ(X

Ai (¥>= 2!"’1 |

A2 (x) > 2*

01 2
1'. Ex"i 23
A > 2

Q(,(n) J"’"”S Very Skwly

Ani on L7 rank

AN

r(x) Stacts “t OJ incregses \v‘;lc X i5sa roo‘ﬁ
$hea ‘fix&‘
r(p(¥) > r(x)

r(p (1)) only incrtases: p (%) Chasges by
[| aompfeu:eﬂ) or r (p (x)) c‘nvCS
57 a hak

"(X) £ h-1 (&du"’ £ {’h, not use,d)

After ccmpr‘usicn) t+he new /:a,rcn‘f. of x

| (m.-k) has rank at least r(p(‘/»

X & non rost W!‘*'/\ F(’() >4

leve] of x =k(x) = maxfk-: r-'[)o (x))z Ak(r(x))f
. - , (i |
index of x = L[¥) = mﬂx{“ '”(P(X))Z AL)(X) ("("»g

0 < k (3) < w(n):

A, (r6) = r(x)+1 < r(pGd

Al A CH)UB zn>n-1%r (p(¥))
1#£1(x)€r(x): |

Ao (F09) = A o)G A kD)
:?) (o) AL(x) g (rG6) afn A
> r(p0) Abs k()

A(x) increases since r(p(x)) inceases
L(x) increases wihile k() is Fixed,

can decease when & (x) increases

ot (n) r(x) i{ x a root or r(x)=0
¢ /X)) v ¢ _ .
(o([n)-' L(x)) r‘[x) - L(xs other wise

$ - fj%(x)

0 £ g(x) £ ex(n)r(x) for all X
Frne i X & reot or £ (x)=0
otherwise !

() *w(n)-2 and c(x)< r()
= g2 r()-1(x) 20
k(x)20 and (24
= gG) € () r(x) -4

while x is o rsk | BR) oaly nceases;

while x is a moret B(3 en// dle cranses

asetized time per operation is O (s (m);
Jink &,,3 with y He new rost o
actual +ime = O(4
Ag ()60 F 2#x,24y
A$() £0
A g (y) $xR) 2 rly) increases 4y at most 4

= amortized time Lu(a)+ 0(1)

W

Find with compression:
actunl cost « #nodes on Find path= £
x on find poth = Ag) <0
At least l'(z‘(‘)*?—) h;a(e,s X on PafA

have Ag(x)<-1

=§ amor'l:fze.o‘ Find cost £ 01(") +2

(= L- (L -@r+2)))

let x de on path with r(x)>O and some
) after x on path has k()<h()
(all but s(n)+2 nades on pakh:
Firt, Just (roed) | last in cach evel)
Let L= k(x) = k(y)
before campress
rly)2 r(p(9) /‘{im)r@)
r(py)2 A, (r()2 A, (r(p()
> A, (6= 4] 9 (o)
S Lx) or k(x) increases due Lo compress

=> 9(3) decreases

P

