Reductions

- designing algorithms
- establishing lower bounds
- establishing intractability
- classifying problems

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.
- Linear: min/max, median, Burrows-Wheeler transform, ...
- Linearithmic: sort, convex hull, closest pair, ...
- Quadratic:
 - Cubic:
 - ...
 - Exponential:

Frustrating news.
Huge number of fundamental problems have defied classification.

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Cost of solving X = total cost of solving Y + cost of reduction.

“Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.” — Archimedes
Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 1. [element distinctness reduces to sorting]
To solve element distinctness on N integers:
- Sort N integers.
- Scan through consecutive pairs and check if any are equal.

Cost of solving element distinctness. $N \log N + N$.

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:
- For each point, sort other points by polar angle.
 - scan through consecutive triples and check if they are collinear

Cost of solving 3-collinear. $N^2 \log N + N^2$.

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

Ex.
- Element distinctness reduces to sorting.
- 3-collinear reduces to sorting.
- PERT reduces to topological sort. [see digraph lecture]
- h-v line intersection reduces to 1d range searching. [see geometry lecture]

Mentality. Since I know how to solve Y, can I use that algorithm to solve X?
programmer’s version: I have code for Y. Can I use it for X?
Convex hull reduces to sorting

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counter-clockwise order).

Proposition. Convex hull reduces to sorting.

Pf. Graham scan algorithm.

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Shortest path with negative weights

Caveat. Reduction is invalid in networks with negative weights (even if no negative cycles).

Remark. Can still solve shortest path problem in undirected graphs (if no negative cycles), but need more sophisticated techniques.
Primality testing

PRIME. Given an integer x (represented in binary), is x prime?

COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. **PRIME** reduces to **COMPOSITE**.

```java
public static boolean isPrime(BigInteger x) {
    if (isComposite(x)) return false;
    else                return true;
}
```

Caveat

PRIME. Given an integer x (represented in binary), is x prime?

COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. **COMPOSITE** reduces to **PRIME**.

Proposition. **PRIME** reduces to **COMPOSITE**.

A possible real-world scenario.

• System designer specs the APIs for project.
• Programmer A implements `isComposite()` using `isPrime()`.
• Programmer B implements `isPrime()` using `isComposite()`.
• Infinite reduction loop!

Some reductions

LP (standard form)
- maximum flow
- shortest paths (no neg cycles)
- arbitrage
- convex hull
- element distinctness
- sorting
- median finding
- bipartite matching
- shortest paths (nonnegative)
- closest pair
- Euclidean MST
- Voronoi
- LP
Bird’s-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. $\Omega(N \log N)$ lower bound for sorting.

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Can establish $\Omega(N \log N)$ lower bound for Y by reducing sorting to Y, assuming cost of reduction is not too large.

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:
• linear number of standard computational steps
• one call to Y

Ex. Almost all of the reductions we’ve seen so far.

Q. Which one was not a linear-time reduction?

Establish lower bound:
• If X takes $\Omega(N \log N)$ steps, then so does Y.
• If X takes $\Omega(N^2)$ steps, then so does Y.

Mentality.
• If I could easily solve Y, then I could easily solve X.
• I can’t easily solve X.
• Therefore, I can’t easily solve Y.
Lower bound for convex hull

Fact. In quadratic decision tree model, any algorithm for sorting \(N\) integers requires \(\Omega(N \log N)\) steps.

allows quadratic tests of the form:
\[x_i < x_j \text{ or } (x_j - x_i)(x_k - x_j) < 0\]

Proposition. Sorting linear-time reduces to convex hull.
Pf. [see next slide]

Implication. Any ccw-based convex hull algorithm requires \(\Omega(N \log N)\) ccw's.

Sorting linear-time reduces to convex hull

Proposition. Sorting linear-time reduces to convex hull.
- Sorting instance. \(X = \{ x_1, x_2, \ldots, x_N \}\)
- Convex hull instance. \(P = \{ (x_1, x_1^2), (x_2, x_2^2), \ldots, (x_N, x_N^2) \}\)

\[f(x) = x^2\]

Pf.
- Region \(\{ x : x^2 \geq x \}\) is convex \(\Rightarrow\) all points are on hull.
- Starting at point with most negative \(x\), counter-clockwise order of hull points yields integers in ascending order.

Lower bound for 3-COLLINEAR

3-SUM. Given \(N\) distinct integers, are there three that sum to 0?

3-COLLINEAR. Given \(N\) distinct points in the plane, are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [see next 2 slide]

\[\text{in certain restricted model of computation}\]

Fact. Any algorithm for 3-SUM requires \(\Omega(N^2)\) time.

Implication. No sub-quadratic algorithm for 3-COLLINEAR.
Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance: $X = \{ x_1, x_2, \ldots, x_N \}$
• 3-COLLINEAR instance: $P = \{ (x_1, x_1^3), (x_2, x_2^3), \ldots, (x_N, x_N^3) \}$

Lemma. If a, b, and c are distinct, then $a + b + c = 0$ if and only if (a, a^3), (b, b^3), (c, c^3) are collinear.

Lemma. If a, b, and c are distinct, then $a + b + c = 0$ if and only if $(a, a^3), (b, b^3), (c, c^3)$ are collinear.

Pf. Three points $(a, a^3), (b, b^3), (c, c^3)$ are collinear iff:

\[
\frac{a^3 - b^3}{a - b} = \frac{b^3 - c^3}{b - c} = \frac{(a - b)(a^2 + ab + b^2)}{a - c}(a + b + c) = 0
\]

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool in guiding algorithm design efforts.

Q. How to convince yourself no linear-time convex hull algorithm exists?
Hard way. Long futile search for a linear-time algorithm.
Easy way. Reduction from sorting.

Q. How to convince yourself no subquadratic 3-COLLINEAR algorithm exists.
Hard way. Long futile search for a subquadratic algorithm.
Easy way. Reduction from 3-SUM.
Bird’s-eye view

Desiderata. Prove that a problem can’t be solved in poly-time.

EXPTIME-complete.
• Given a fixed-size program and input, does it halt in at most k steps?
• Given N-by-N checkers board position, can the first player force a win (using forced capture rule)?

Frustrating news. Extremely difficult and few successes.

input size $= \log k$

3-satisfiability

Literal. A boolean variable or its negation. x_i or $\neg x_i$

Clause. An or of 3 distinct literals. $C_j = (x_1 \lor \neg x_2 \lor x_3)$

Conjunctive normal form. An and of clauses. $\Phi = (C_1 \land C_2 \land C_3 \land C_4)$

3-SAT. Given a CNF formula Φ consisting of k clauses over n literals, does it have a satisfying truth assignment?

yes instance

$(\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_4)$

$\begin{array} {cccc}
 x_1 & x_2 & x_3 & x_4 \\
 T & T & F & T \\
\end{array}$

no instance

$(\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_4)$

$\begin{array} {cccc}
 x_1 & x_2 & x_3 & x_4 \\
 T & T & F & F \\
\end{array}$

Applications. Circuit design, program correctness, ...

3-satisfiability is intractable

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture ($P \neq NP$). No poly-time algorithm for 3-SAT.

Good news. Can prove problems “intractable” via reduction from 3-SAT.
Polynomial-time reductions

Def. Problem X poly-time reduces to problem Y if X can be solved with:
• Polynomial number of standard computational steps.
• One call to Y.

Ex. All reductions we’ve seen.

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.

Mentality.
• If I could solve Y in poly-time, then I could also solve 3-SAT.
• I can’t solve 3-SAT.
• Therefore, I can’t solve Y.

Integer linear programming

ILP. Minimize a linear objective function, subject to linear inequalities, and integer variables.

Proposition. 3-SAT poly-time reduces to ILP.
Pf. [by example]

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?
3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

Graph 3-colorability

Applications. Register allocation, Potts model in physics, ...

3-satisfiability reduces to graph 3-colorability

Proposition. 3-SAT poly-time reduces to 3-COLOR.
Pf. Given 3-SAT instance Φ, we construct an instance G of 3-COLOR that is 3-colorable if and only if Φ is satisfiable.

Construction.
(i) Create one vertex for each literal and 3 vertices F, T, and \overline{N}.
(ii) Connect F, T, and N in a triangle and connect each literal to N.
(iii) Connect each literal to its negation.
(iv) For each clause, attach a 6-vertex gadget [details to follow].
Claim. If graph G is 3-colorable then Φ is satisfiable.

Pf.

• Consider assignment where F corresponds to false and T to true.

(ii) [triangle] ensures each literal is true or false.

(iii) ensures a literal and its negation are opposites.

(iv) [gadget] ensures at least one literal in each clause is true.

Therefore, Φ is satisfiable.

Claim. If Φ is satisfiable then graph G is 3-colorable.

Pf.

• Color nodes corresponding to false literals \bullet and to true literals \bigcirc.

if all literals in clause are false, then not 3-colorable (contradiction)
Claim. If Φ is satisfiable then graph G is 3-colorable.

Pf.
- Color nodes corresponding to false literals Θ and to true literals Θ.
- Color vertex below one Θ vertex Θ, and vertex below that Θ.
- Color remaining middle row vertices Θ.
- Color remaining bottom vertices Θ or Θ as forced.

Works for all gadgets, so graph is 3-colorable.

Proposition. 3-SAT poly-time reduces to 3-COLOR.

Pf. Given 3-SAT instance Φ, we construct an instance G of 3-COLOR that is 3-colorable if and only if Φ is satisfiable.

Construction.
(i) Create one vertex for each literal and 3 vertices Θ, Θ, and Θ.
(ii) Connect Θ, Θ, and Θ in a triangle and connect each literal to Θ.
(iii) Connect each literal to its negation.
(iv) For each clause, attach a 6-vertex gadget.

Consequence. 3-COLOR is intractable.
More poly-time reductions from 3-satisfiability

- 3-SAT
- 3DM
- VERTEX COVER
- CLIQUE
- HAM-CYCLE
- INDEPENDENT SET
- TSP
- HAM-PATH
- 3-COLOR
- PLANAR-3-COLOR
- EXACT COVER
- SUBSET-SUM
- PARTITION
- INTEGER PROGRAMMING
- KNAPSACK
- BIN-PACKING

Dick Karp
'85 Turing award

Conjecture: no poly-time algorithm for 3-SAT.
(and hence none of these problems)

Establishing intractability: summary

Establishing intractability through poly-time reduction is an important tool in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is intractable?

Hard way. Long futile search for an efficient algorithm (as for 3-SAT).

Easy way. Reduction from a known intractable problem (such as 3-SAT).

hence, intricate reductions are common

3-SAT \rightarrow 3-COLOR

Implications of poly-time reductions

“I can’t find an efficient algorithm, I guess I’m just too dumb.”

“I can’t find an efficient algorithm, because no such algorithm is possible!”
Implications of poly-time reductions

"I can’t find an efficient algorithm, but neither can all these famous people."

Classify problems

Desiderata. Classify problems according to difficulty.
- Linear: can be solved in linear time.
- Linearithmic: can be solved in linearithmic time.
- Quadratic: can be solved in quadratic time.
- ...
- Tractable: can be solved in poly-time.
- Intractable: seem to require exponential time.

Ex. Sorting and convex hull are in same complexity class.
- Sorting linear-time reduces to convex hull.
- Convex hull linear-time reduces to sorting.

Ex. PRIME and COMPOSITE are in same complexity class.
- PRIME linear-time reduces to COMPOSITE.
- COMPOSITE linear-time reduces to PRIME.
Classify problems

Desiderata. Classify problems according to difficulty.

- **Linear**: can be solved in linear time.
- **Linearithmic**: can be solved in linearithmic time.
- **Quadratic**: can be solved in quadratic time.
 ...
- **Tractable**: can be solved in poly-time.
- **Intractable**: seem to require exponential time.

Ex. 3-SAT and 3-COLOR are in the same complexity class.

- 3-SAT poly-time reduces to 3-COLOR.
- 3-COLOR poly-time reduces to 3-SAT.

Cook’s theorem (stay tuned)

Probable intractable

Cook’s theorem

- **P**: Set of problems solvable in poly-time.
 Importance. What scientists and engineers can compute feasibly.

- **NP**: Set of problems checkable in poly-time.
 Importance. What scientists and engineers aspire to compute feasibly.

Cook’s theorem. All problems in NP poly-time reduces to 3-SAT.

“NP-complete”

Implications of Cook’s theorem

- 3-SAT
- 3DM
- VERTEX COVER
- HAM-CYCLE
- CLIQUE
- INDEPENDENT SET
- 3-COLOR
- PLANAR-3-COLOR
- EXACT COVER
- HAM-PATH
- SUBSET-SUM
- PARTITION
- INTEGER PROGRAMMING
- KNAPSACK
- BIN-PACKING

All of these problems (any many more) poly-time reduce to 3-SAT.

Implications of Karp + Cook

- 3-SAT
- 3DM
- VERTEX COVER
- HAM-CYCLE
- CLIQUE
- INDEPENDENT SET
- 3-COLOR
- PLANAR-3-COLOR
- EXACT COVER
- HAM-PATH
- SUBSET-SUM
- PARTITION
- INTEGER PROGRAMMING
- KNAPSACK
- BIN-PACKING

All of these problems are NP-complete; they are manifestations of the same really hard problem.
Summary

Reductions are important in theory to:
- Establish tractability.
- Establish intractability.
- Classify problems according to their computational requirements.

Reductions are important in practice to:
- Design algorithms.
- Design reusable software modules.
 - stack, queue, sorting, priority queue, symbol table, set,
 - graph, shortest path, regular expression
- Determine difficulty of your problem and choose the right tool.
 - use exact algorithm for tractable problems
 - use heuristics for intractable problems