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Reductions

‣ designing algorithms
‣ establishing lower bounds
‣ establishing intractability
‣ classifying problems
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

• Linear:  min/max, median, Burrows-Wheeler transform, ...

• Linearithmic:  sort, convex hull, closest pair, …

• Quadratic:  

• Cubic:

• …

• Exponential:

Frustrating news.
Huge number of fundamental problems have defied classification.
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

Desiderata'.
Suppose we could (couldn't) solve problem X efficiently.
What else could (couldn't) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to 
place it, and I shall move the world.  ”    — Archimedes
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Cost of solving X  =  total cost of solving Y  +  cost of reduction.

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

perhaps many calls to Y
on problems of different sizes
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 1.  [element distinctness reduces to sorting]
To solve element distinctness on N integers:

• Sort N integers.

• Scan through consecutive pairs and check if any are equal.

Cost of solving element distinctness.  N log N + N.

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 2.  [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

• For each point, sort other points by polar angle.

- scan through consecutive triples and check if they are collinear

Cost of solving 3-collinear.  N2 log N + N2.

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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‣ designing algorithms
‣ establishing lower bounds
‣ establishing intractability
‣ classifying problems
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Reduction:  design algorithms

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm.  Given algorithm for Y, can also solve X.

Ex.

• Element distinctness reduces to sorting.

• 3-collinear reduces to sorting.

• PERT reduces to topological sort.  [see digraph lecture]

• h-v line intersection reduces to 1d range searching.  [see geometry lecture]

Mentality.  Since I know how to solve Y, can I use that algorithm to solve X?

programmer’s version:  I have code for Y. Can I use it for X?



Sorting.  Given N distinct integers, rearrange them in ascending order.

Convex hull.  Given N points in the plane, identify the extreme points
of the convex hull (in counter-clockwise order).

Proposition.  Convex hull reduces to sorting.
Pf.  Graham scan algorithm.
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Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 
directed shortest path.
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Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 
directed shortest path.

Pf.  Replace each undirected edge by two directed edges.
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Shortest path with negative weights

Caveat.  Reduction is invalid in networks with negative weights
(even if no negative cycles).

Remark.  Can still solve shortest path problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.

tva 7  -4

tvs 7  -4

7  -4

reduction creates
negative cycles

reduces to weighted
non-bipartite matching (!)



PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Proposition.  PRIME reduces to COMPOSITE.

Primality testing
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147573952589676412927

composite

147573952589676412931

prime

 public static boolean isPrime(BigInteger x)
 {
    if (isComposite(x)) return false;
    else                return true;
 }

COMPOSITE

PRIME

Primality testing

PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Proposition.  COMPOSITE reduces to PRIME.
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 public static boolean isComposite(BigInteger x)
 {
    if (isPrime(x)) return false;
    else            return true;
 }

147573952589676412927

composite

147573952589676412931

prime

COMPOSITE

PRIME

Caveat

PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Proposition.  COMPOSITE reduces to PRIME.
Proposition.  PRIME reduces to COMPOSITE.

A possible real-world scenario.

• System designer specs the APIs for project.

• Programmer A implements isComposite() using isPrime().

• Programmer B implements isPrime() using isComposite().

• Infinite reduction loop!

15

whose fault?

COMPOSITE

PRIME

Some reductions
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LP

element
distinctness

sorting

shortest paths
(nonnegative)

bipartite
matching

 maximum flow 

LP (standard form)

convex hullmedian
finding

arbitrage

shortest paths
(no neg cycles)

Voronoi

closest
pair

Euclidean
MST
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‣ designing algorithms
‣ establishing lower bounds
‣ establishing intractability
‣ classifying problems
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Bird's-eye view

Goal.  Prove that a problem requires a certain number of steps.
Ex.  Ω(N log N) lower bound for sorting.

Bad news.  Very difficult to establish lower bounds from scratch.

Good news.  Can establish Ω(N log N) lower bound for Y
by reducing sorting to Y.

assuming cost of reduction is not too large

argument must apply to
all conceivable algorithms

1251432
2861534
3988818
4190745
13546464
89885444
43434213
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Linear-time reductions

Def.  Problem X linear-time reduces to problem Y if X can be solved with:

• linear number of standard computational steps

• one call to Y

Ex.  Almost all of the reductions we've seen so far.

Q.  Which one was not a linear-time reduction?

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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Linear-time reductions

Def.  Problem X linear-time reduces to problem Y if X can be solved with:

• linear number of standard computational steps

• one call to Y

Establish lower bound:

• If X takes Ω(N log N) steps, then so does Y.

• If X takes Ω(N2) steps, then so does Y.

Mentality.

• If I could easily solve Y, then I could easily solve X.

• I can’t easily solve X.

• Therefore, I can’t easily solve Y.
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Lower bound for convex hull

Fact.  In quadratic decision tree model, any algorithm for sorting
N integers requires Ω(N log N) steps.

Proposition.  Sorting linear-time reduces to convex hull.
Pf.  [see next slide]

Implication.  Any ccw-based convex hull algorithm requires Ω(N log N) ccw's. 

allows quadratic tests of the form:
 xi < xj or (xj - xi) (xk - xi) - (xj ) (xj - xi) < 0

a quadratic test
convex hullsorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213

Proposition.  Sorting linear-time reduces to convex hull.

• Sorting instance. X = { x1, x2, ... , xN }

• Convex hull instance. P = { (x1 , x12 ), (x2, x22 ), ... , (xN , xN2 ) }

Pf.

• Region {x : x2 ≥ x} is convex  ⇒  all points are on hull.

• Starting at point with most negative x, counter-clockwise order of hull 
points yields integers in ascending order.
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Sorting linear-time reduces to convex hull

f(x) = x2

(x1 , x12 )

(x2 , x22 )
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

3-collinear

recall Assignment 3

3-sum

1251432
-2861534
3988818
-4190745
13546464
89885444
-43434213
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.
Pf.  [see next 2 slide]

Fact.  Any algorithm for 3-SUM requires Ω(N2) time.
Implication.  No sub-quadratic algorithm for 3-COLLINEAR.

your N2 log N algorithm was pretty good

in certain restricted model of computation
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  X = { x1, x2, ... , xN }

• 3-COLLINEAR instance:  P = { (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ) }

Lemma.  If a, b, and c are distinct, then a + b + c = 0
if and only if (a, a3), (b, b3), (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f(x) = x3
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  X = { x1, x2, ... , xN }

• 3-COLLINEAR instance:  P = { (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ) }

Lemma.  If a, b, and c are distinct, then a + b + c = 0
if and only if (a, a3), (b, b3), (c, c3) are collinear.

Pf.   Three points (a, a3), (b, b3), (c, c3) are collinear iff:

                 (a3 - b3) / (a - b)   =  (b3 - c3) / (b - c) 
(a - b)(a2 + ab + b2) / (a - b)   =  (b - c)(b2 + bc + c2) / (b - c) 
                     (a2 + ab + b2)     =  (b2 + bc + c2) 
                   a2 + ab - bc - c2    =  0 
                   (a - c)(a + b + c)    =  0
                              a + b + c     =  0 

slopes are equal

factor numerators

a-b and b-c are nonzero

collect terms

factor

a-c is nonzero

More lower bounds
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Voronoi

 3-sum
(N2 lower bound) 

convex hull

sorting 3-collinear

element distinctness
(N log N lower bound)

Euclidean MST

closest pair

min area triangle

dihedral
rotation

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself no linear-time convex hull algorithm exists?
Hard way.  Long futile search for a linear-time algorithm.
Easy way.  Reduction from sorting.

Q.  How to convince yourself no subquadratic 3-COLLINEAR algorithm exists.
Hard way.  Long futile search for a subquadratic algorithm.
Easy way.  Reduction from 3-SUM.

Establishing lower bounds:  summary

28

sorting

convex hull

3-SUM

3-COLLINEAR
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‣ designing algorithms
‣ establishing lower bounds
‣ establishing intractability
‣ classifying problems
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Bird's-eye view

Desiderata.  Prove that a problem can't be solved in poly-time.

EXPTIME-complete.

• Given a fixed-size program and input, does it halt in at most k steps?

• Given N-by-N checkers board position, can the first player force a win
(using forced capture rule)?

Frustrating news.  Extremely difficult and few successes.

input size = lg k
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Literal. A boolean variable or its negation.

Clause. An or of 3 distinct literals.

Conjunctive normal form.  An and of clauses.

3-SAT.  Given a CNF formula Φ consisting of k clauses over n literals,
does it have a satisfying truth assignment?

Applications.  Circuit design, program correctness, ...

3-satisfiability

(¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨¬ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4)

(¬T  ∨ T  ∨ F ) ∧ (T  ∨ ¬T  ∨ F ) ∧ (¬T  ∨ ¬T  ∨ ¬F ) ∧ (¬T  ∨ ¬T ∨  T) ∧ ( ¬T ∨  F ∨ T)
x1   x2   x3   x4

T    T    F    T

xi   or   ¬xi

Cj = (x1 ∨ ¬x2 ∨ x3)

Φ = (C1 ∧ C2 ∧ C3 ∧ C4)

yes instance

(¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨¬ x2 ∨ ¬ x4) ∧ (¬x2 ∨ x3 ∨ x4)
no instance

3-satisfiability is intractable

Q.  How to solve an instance of 3-SAT with n variables?
A.  Exhaustive search:  try all 2n truth assignments.

Q.  Can we do anything substantially more clever?

Conjecture (P ≠ NP).  No poly-time algorithm for 3-SAT.

Good news.  Can prove problems "intractable" via reduction from 3-SAT.
32

"intractable"



33

Polynomial-time reductions

Def.  Problem X poly-time reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• One call to Y.

Ex.  All reductions we've seen.

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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Polynomial-time reductions

Def.  Problem X poly-time reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• One call to Y.

Establish intractability.  If 3-SAT poly-time reduces to Y,
then Y is intractable.

Mentality.

• If I could solve Y in poly-time, then I could also solve 3-SAT.

• I can’t solve 3-SAT.

• Therefore, I can’t solve Y.

ILP.  Minimize a linear objective function, subject to linear inequalities,
and integer variables.

Proposition.  3-SAT poly-time reduces to ILP.
Pf.  [by example]

Interpretation.  Boolean variable xi is true iff integer variable xi = 1.
35

Integer linear programming

(¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨¬ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4)

minimize C1 +  C2 + C3 + C4 + C5 

subject
to the 

constraints

(1 - x1)  ≤  C1

x2  ≤  C1

x3  ≤  C1

...

all xi  and Cj  =  { 0, 1 }

CNF formula satisfiable iff min = 5

C1 = 1 iff clause 1 is satisfied

add 3 inequalities for each clause

3-COLOR.  Given a graph, is there a way to color the vertices
red, green, and blue so that no adjacent vertices have the same color?

36

Graph 3-colorability

yes instance



3-COLOR.  Given a graph, is there a way to color the vertices
red, green, and blue so that no adjacent vertices have the same color?
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Graph 3-colorability

yes instance

3-COLOR.  Given a graph, is there a way to color the vertices
red, green, and blue so that no adjacent vertices have the same color?

Applications.  Register allocation, Potts model in physics, …
38

Graph 3-colorability

no instance

Proposition.  3-SAT poly-time reduces to 3-COLOR.
Pf.  Given 3-SAT instance Φ, we construct an instance G of 3-COLOR
that is 3-colorable if and only if Φ is satisfiable.

Construction.
(i) Create one vertex for each literal and 3 vertices       ,       , and       .
(ii) Connect      ,       , and       in a triangle and connect each literal to       .
(iii) Connect each literal to its negation.
(iv) For each clause, attach a 6-vertex gadget [details to follow].

39

3-satisfiability reduces to graph 3-colorability

. . .

F

N

truefalse

neither

T

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn

F T N

NF T N
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3-satisfiability reduces to graph 3-colorability

Claim.  If graph G is 3-colorable then Φ is satisfiable.
Pf.

• Consider assignment where        corresponds to false and       to true.

• (ii) [triangle] ensures each literal is true or false.

F T

. . .

F

N

truefalse

neither

T

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn
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3-satisfiability reduces to graph 3-colorability

Claim.  If graph G is 3-colorable then Φ is satisfiable.
Pf.

• Consider assignment where        corresponds to false and       to true.

• (ii) [triangle] ensures each literal is true or false.

• (iii) ensures a literal and its negation are opposites.

. . .

F

N

truefalse

neither

T

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn

F T
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3-satisfiability reduces to graph 3-colorability

Claim.  If graph G is 3-colorable then Φ is satisfiable.
Pf.

• Consider assignment where        corresponds to false and       to true.

• (ii) [triangle] ensures each literal is true or false.

• (iii) ensures a literal and its negation are opposites.

• (iv) [gadget] ensures at least one literal in each clause is true.

F T

next slide

T F

B

6-node gadget

true false

x1 ¬x2 x3

(x1 ∨ ¬x2 ∨ x3)
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3-satisfiability reduces to graph 3-colorability

Claim.  If graph G is 3-colorable then Φ is satisfiable.
Pf.

• Consider assignment where        corresponds to false and       to true.

• (ii) [triangle] ensures each literal is true or false.

• (iii) ensures a literal and its negation are opposites.

• (iv) [gadget] ensures at least one literal in each clause is true.

Therefore, Φ is satisfiable.  ▪

F T

next slide

T F

B

true false

if all literals in clause are false,
then not 3-colorable (contradiction)

x1 ¬x2 x3

6-node gadget

(x1 ∨ ¬x2 ∨ x3)
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3-satisfiability reduces to graph 3-colorability

Claim.  If Φ is satisfiable then graph G is 3-colorable. 
Pf. 

• Color nodes corresponding to false literals       and to true literals       .

 

at least one in each clause

x1 ¬x2 x3

T F

B
(x1 ∨ ¬x2 ∨ x3)
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3-satisfiability reduces to graph 3-colorability

Claim.  If Φ is satisfiable then graph G is 3-colorable. 
Pf. 

• Color nodes corresponding to false literals       and to true literals       .

• Color vertex below one       vertex       , and vertex below that       .

 

(x1 ∨ ¬x2 ∨ x3)

T F

B

x1 ¬x2 x3

Claim.  If Φ is satisfiable then graph G is 3-colorable. 
Pf. 

• Color nodes corresponding to false literals       and to true literals       .

• Color vertex below one       vertex       , and vertex below that       .

• Color remaining middle row vertices       .
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3-satisfiability reduces to graph 3-colorability

T F

B

x1 ¬x2 x3

(x1 ∨ ¬x2 ∨ x3)
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3-satisfiability reduces to graph 3-colorability

Claim.  If Φ is satisfiable then graph G is 3-colorable. 
Pf. 

• Color nodes corresponding to false literals       and to true literals       .

• Color vertex below one       vertex       , and vertex below that       .

• Color remaining middle row vertices       .

• Color remaining bottom vertices       or         as forced. 

Works for all gadgets, so graph is 3-colorable. ▪

 

T F

B

x1 ¬x2 x3

(x1 ∨ ¬x2 ∨ x3)
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3-satisfiability reduces to graph 3-colorability

Proposition.  3-SAT poly-time reduces to 3-COLOR.

Pf.  Given 3-SAT instance Φ, we construct an instance G of 3-COLOR
that is 3-colorable if and only if Φ is satisfiable.

Construction.
(i) Create one vertex for each literal and 3 vertices       ,       , and       .
(ii) Connect      ,       , and       in a triangle and connect each literal to       .
(iii) Connect each literal to its negation.
(iv) For each clause, attach a 6-vertex gadget.

Consequence.  3-COLOR is intractable.

F T N

NF T N
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More poly-time reductions from 3-satisfiability

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

Dick Karp
'85 Turing award

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
Conjecture:  no poly-time algorithm for 3-SAT.

(and hence none of these problems)

Establishing intractability:  summary

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself that a new problem is intractable?
Hard way.  Long futile search for an efficient algorithm (as for 3-SAT).
Easy way.  Reduction from a know intractable problem (such as 3-SAT).

50

hence, intricate reductions are common

3-SAT
3-COLOR

51

Implications of poly-time reductions

52

Implications of poly-time reductions
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Implications of poly-time reductions
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‣ designing algorithms
‣ establishing lower bounds
‣ establishing intractability
‣ classifying problems
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Classify problems

Desiderata.  Classify problems according to difficulty.

• Linear:  can be solved in linear time.

• Linearithmic:  can be solved in linearithmic time.

• Quadratic:  can be solved in quadratic time.
…

• Tractable:  can be solved in poly-time.

• Intractable:  seem to require exponential time.

Ex.  Sorting and convex hull are in same complexity class.

• Sorting linear-time reduces to convex hull.

• Convex hull linear-time reduces to sorting. linearithmic
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Classify problems

Desiderata.  Classify problems according to difficulty.

• Linear:  can be solved in linear time.

• Linearithmic:  can be solved in linearithmic time.

• Quadratic:  can be solved in quadratic time.
…

• Tractable:  can be solved in poly-time.

• Intractable:  seem to require exponential time.

Ex.  PRIME and COMPOSITE are in same complexity class.

• PRIME linear-time reduces to COMPOSITE.

• COMPOSITE linear-time reduces to PRIME. tractable, but
nobody knows which class
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Classify problems

Desiderata.  Classify problems according to difficulty.

• Linear:  can be solved in linear time.

• Linearithmic:  can be solved in linearithmic time.

• Quadratic:  can be solved in quadratic time.
…

• Tractable:  can be solved in poly-time.

• Intractable:  seem to require exponential time.

Ex.  3-SAT and 3-COLOR are in the same complexity class.

• 3-SAT poly-time reduces to 3-COLOR.

• 3-COLOR poly-time reduces to 3-SAT.

Cook's theorem (stay tuned)

probably intractable
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Cook’s theorem

P.  Set of problems solvable in poly-time.
Importance.  What scientists and engineers can compute feasibly.

NP.  Set of problems checkable in poly-time.
Importance.  What scientists and engineers aspire to compute feasibly.

Cook's theorem.  All problems in NP poly-time reduces to 3-SAT.

"NP-complete"
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Implications of Cook’s theorem

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems (any many more)
poly-time reduce to 3-SAT.

Stephen Cook
'82 Turing award
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Implications of Karp + Cook

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
all of these problems are NP-complete; they are
manifestations of the same really hard problem

3-COLOR

reduces to 3-SAT
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Summary

Reductions are important in theory to:

• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:

• Design algorithms.

• Design reusable software modules.

- stack, queue, sorting, priority queue, symbol table, set,
- graph, shortest path, regular expression

• Determine difficulty of your problem and choose the right tool.

- use exact algorithm for tractable problems
- use heuristics for intractable problems


