
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · April 14, 2008 9:38:41 AM

Pattern Matching

References:
 Algorithms in C (2nd edition), Chapter 19 (pdf online)
 http://www.cs.princeton.edu/algs4/63long
 http://www.cs.princeton.edu/algs4/72regular

‣ exact pattern matching
‣ Knuth-Morris-Pratt
‣ RE pattern matching
‣ grep

2

‣ exact pattern matching
‣ Knuth-Morris-Pratt
‣ RE pattern matching
‣ grep

3

Exact pattern matching

Goal. Find pattern of length M in a text stream of length N.

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

typically N >> M

pattern

text

n e e d l e

i n a h a y s t a c k a n e e d l e i n a

http://citp.princeton.edu/memory

4

Applications

• Parsers.

• Spam filters.

• Digital libraries.

• Screen scrapers.

• Word processors.

• Web search engines.

• Natural language processing.

• Computational molecular biology.

• Feature detection in digitized images.

5

Spam filtering

Identify patterns indicative of spam.

• PROFITS
• AMAZING

• GUARANTEE
• L0SE WE1GHT

• herbal Viagra

• There is no catch.
• L0W M0RTGAGE RATES

• This is a one-time mailing.
• This message is sent in compliance with spam regulations.

• You're getting this message because you registered with one of our
marketing partners.

6

Screen scraping

Goal. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of
pattern Last Trade:.

http://finance.yahoo.com/q?s=goog

...
<tr>
<td class= "yfnc_tablehead1"
width= "48%">
Last Trade:
</td>
<td class= "yfnc_tabledata1">
<big>452.92</big>
</td></tr>
<td class= "yfnc_tablehead1"
width= "48%">
Trade Time:
</td>
<td class= "yfnc_tabledata1">
...

7

Exact pattern matching in Java

The method s.indexOf(pattern, offset) in Java's String library returns the
index of the first occurrence of pattern in string s, starting at given offset.

public class StockQuote
{
 public static void main(String[] args)
 {
 String name = "http://finance.yahoo.com/q?s=";
 In in = new In(name + args[0]);
 String input = in.readAll();
 int start = input.indexOf("Last Trade:", 0);
 int from = input.indexOf("", start);
 int to = input.indexOf("", from);
 String price = input.substring(from + 3, to);
 StdOut.println(price);
 }
}

% java StockQuote goog
452.92

% java StockQuote msft
28.152

Check for pattern starting at each text position.

8

Brute-force exact pattern match

h a y n e e d s a n n e e d l e x

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

Check for pattern starting at each text position.

public static int search(String pattern, String text)
{
 int M = pattern.length();
 int N = text.length();

 for (int i = 0; i < N - M; i++)
 {
 int j;
 for (j = 0; j < M; j++)
 if (text.charAt(i+j) != pattern.charAt(j))
 break;
 if (j == M) return i;
 }
 return -1;
}

9

Brute-force exact pattern match: Java implementation

index in text where pattern starts

not found

Brute-force algorithm can be slow if text and pattern are repetitive.

Worst case. ~ MN char compares.
10

Brute-force exact pattern match: worst case

a a a a a a a a a a a a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

11

Algorithmic challenges in pattern matching

Brute-force is not good enough for all applications.

Theoretical challenge. Linear-time guarantee.

Practical challenge. Avoid backup in text stream. often no room or time to save text

fundamental algorithmic problem

Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good people to come to the aid
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for many good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

12

‣ exact pattern matching
‣ Knuth-Morris-Pratt
‣ RE pattern matching
‣ grep

Knuth-Morris-Pratt exact pattern-matching algorithm

KMP. Classic algorithm that meets both challenges.

• Linear-time guarantee.

• No backup in text stream.

Basic plan (for binary alphabet).

• Build DFA from pattern.

• Simulate DFA with text as input.

13

Don Knuth Vaughan PrattJim Morris

DFA
for

pattern
a a b a a

accept pattern in text

reject
pattern NOT

in text

text

a a a b a a b a a a b

DFA review.

• Finite number of states (including start and accept).

• Exactly one transition for each input symbol.

• Accept if sequence of transitions leads to accept state.

Q. Which bitstrings does this DFA accept?
14

Deterministic finite-state automata

One state for each pattern character.

• Match input character: move from i to i+1.

• Mismatch: move to previous state.

Knuth-Morris-Pratt DFA example

15

DFA for pattern aabaaa

0
b

a
b

a 2
a

b
b

a
b

a

b

a1 3 4 5

Knuth-Morris-Pratt DFA simulation

16

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

0

1

2

2

3

0 21 3 4 5

0 21 3 4 5

0 21 3 4 5

0 21 3 4 5

0 21 3 4 5

Knuth-Morris-Pratt DFA simulation

17

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

a a a b a a b a a a b

b

a
b

a

a

b
b

a
b

a

b

a

4

5

3

4

5

accept!

0 21 3 4 5

0 21 3 4 5

0 21 3 4 5

0 21 3 4 5

0 21 3 4 5

0 21 3 4 5

18

Knuth-Morris-Pratt DFA simulation

When in state i. Matches in i previous input chars (and is longest such match).

Ex. End in state 4 iff text ends in aaba.
Ex. End in state 2 iff text ends in aa (but not aabaa or aabaaa).

0 a a a b a a b a a a b
1 a a a b a a b a a a b
2 a a a b a a b a a a b
2 a a a b a a b a a a b
3 a a a b a a b a a a b
4 a a a b a a b a a a b
5 a a a b a a b a a a b
3 a a a b a a b a a a b
4 a a a b a a b a a a b
5 a a a b a a b a a a b
 a a a b a a b a a a b

0
b

a
b

a 2
a

b
b

a
b

a

b

a1 3 4 5

19

Knuth-Morris-Pratt implementation

DFA representation. A single state-indexed array next[].

• Upon character match in state j, go forward to state j+1.

• Upon character mismatch in state j, go back to state next[j].

only need to
store mismatches

0 1 2 3 4 5

a 1 2 2 4 5 6

b 0 0 3 0 0 3

0 1 2 3 4 5

next 0 0 2 0 0 3

0
b

a
b

a 2
a

b
b

a
b

a

b

a1 3 4 5

DFA for pattern aabaaa

20

Knuth-Morris-Pratt: Java implementation

Two key differences from brute-force implementation.

• Text pointer i never decrements.

• Need to precompute next[] table (DFA) from pattern.

int j = 0;
for (int i = 0; i < N; i++)
{
 if (text.charAt(i) == pattern.charAt(j))
 j++; // char matches
 else
 j = next[j]; // char mismatch
 if (j == M) return i - M + 1; // found pattern
}
return -1; // not found

Simulation of KMP DFA

21

Knuth-Morris-Pratt: incremental DFA construction

Key idea. DFA for first i states contains info needed to build state i+1.

Ex. Given DFA for pattern aabaaa, to compute DFA for pattern aabaaab:

• On mismatch at 7th char, need to simulate 6-char backup.

• Previous 6 chars are known (abaaaa in example).

• 6-state DFA (known) determines next state!

Q. How to do efficiently?
A. Keep track of DFA state for pattern, starting at 2nd char.

0 a b a a a a
1 a b a a a a
0 a b a a a a
1 a b a a a a
2 a b a a a a
2 a b a a a a
2 a b a a a a

0
b

a
b

a 2
a

b
b

a
b

a

b

a1 3 4 5

DFA for pattern aabaaa

6-char backup

Knuth-Morris-Pratt DFA construction: two cases

Let X be the next state in the simulation and j the next state to build.

Case 1. If p[X] and p[j] match, copy and increment.

• next[j] = next[X]
• X = X + 1

22

 0 1 2 3 4 5 6
 p[] a a b a a a b
next[] 0 0 2 0 0 3 2

X j

state for aabaaab

0
b

a
b

a 2
a

b
b

a
b

a

b

a1 3 4 5 b6

a

DFA for pattern aabaaab

X

state for aabaaa

Knuth-Morris-Pratt DFA construction: two cases

Let X be the next state in the simulation and j the next state to build.

Case 2. If p[X] and p[j] mismatch, do the opposite.

• next[j] = X + 1
• X = next[j]

23

0
b

a
b

a 2
a

b
b

a
b

a

b

a1 3 4 5 a6

b

DFA for pattern aabaaaa

 0 1 2 3 4 5 6
 p[] a a b a a a a
next[] 0 0 2 0 0 3 3

j

state for aabaaaa

X

state for aabaaa

Knuth-Morris-Pratt DFA construction

24

0
b

a
b

a
2

a

b
b

a
b

a

b

a
1 3 4 5

0
b

a
b

a
2

a

b
b

a
b

a
1 3 4 5

0
b

a
b

a
2

a

b
b

a
1 3 4

0
b

a
b

a
2

a

b
1 3

0
b

a
b

a
21

0
b

a
1

0

0
a
0

0 1
a a
0 0

0 1 2
a a b
0 0 2

0 1 2 3
a a b a
0 0 2 0

0 1 2 3 4
a a b a a
0 0 2 0 0

0 1 2 3 4 5
a a b a a a
0 0 2 0 0 3

X: current state in simulation
compare p[j] with p[X]

match: copy and increment
 next[j] = next[X];
 X = X + 1;

mismatch: do the opposite
 next[j] = X + 1;
 X = next[X];

match

match

match

mismatch

mismatch

X j

25

DFA construction for KMP: Java implementation

Analysis. Takes time and space proportional to pattern length.

DFA Construction for KMP (assumes binary alphabet)

int X = 0;
int[] next = new int[M];
for (int j = 1; j < M; j++)
{
 if (pattern.charAt(X) == pattern.charAt(j))
 { // match
 next[j] = next[X];
 X = X + 1;
 }
 else
 { // mismatch
 next[j] = X + 1;
 X = next[X];
 }
}

Ultimate search program for any given pattern.

• One statement comparing each pattern character to next.

• Match: proceed to next statement.

• Mismatch: go back as dictated by DFA.

• Translates to machine language (three instructions per pattern char).

int kmpsearch(char text[])
{
 int i = 0;
 s0: if (text[i++] != 'a') goto s0;
 s1: if (text[i++] != 'a') goto s0;
 s2: if (text[i++] != 'b') goto s2;
 s3: if (text[i++] != 'a') goto s0;
 s4: if (text[i++] != 'a') goto s0;
 s5: if (text[i++] != 'a') goto s3;
 s6: if (text[i++] != 'b') goto s2;
 s7: if (text[i++] != 'b') goto s4;
 return i - 8;
}

26

Optimized KMP implementation

next[]

assumes pattern is in text
(o/w use sentinel)

pattern[]

27

Knuth-Morris-Pratt summary

General alphabet.

• More difficult.

• Easy with next[i][c] indexed by mismatch position i, character c.

• KMP paper has ingenious solution that uses a single 1D next[] array.
[build NFA, then prove that it finishes in 2N steps]

Bottom line. Linear-time pattern matching is possible (and practical).

Short history.

• Inspired by esoteric theorem of Cook.

• Discovered in 1976 independently by two theoreticians and a hacker.

- Knuth: discovered linear time algorithm
- Pratt: made running time independent of alphabet

- Morris: trying to build a text editor

• Theory meets practice.

Exact pattern matching: other approaches

Rabin-Karp: make a digital signature of the pattern.

• Hashing without the table.

• Linear-time probabilistic guarantee.

• Plus: extends to 2D patterns.

• Minus: arithmetic ops slower than char comparisons.

Boyer-Moore: scan from right to left in pattern.

• Main idea: can skip M text chars when finding one not in the pattern.

• Needs additional KMP-like heuristic.

• Plus: possibility of sublinear-time performance (~ N/M).

• Used in Unix, emacs.

28

pattern

text a a a b b a a b a b a a a b b a a a

s y z y g y

s y z y g y

s y z y g y

s y z y g y

Cost of searching for an M-character pattern in an N-character text.

29

Exact pattern match cost summary

† assumes appropriate model
‡ randomized

algorithm operations typical worst-case

brute-force char compares 1.1 N † M N

KMP char compares 1.1 N † 2N

Karp-Rabin arithmetic ops 3N 3N ‡

Boyer-Moore char compares N/M † 3N

30

‣ exact pattern matching
‣ Knuth-Morris-Pratt
‣ RE pattern matching
‣ grep

31

Regular-expression pattern matching

Exact pattern matching. Find occurrences of a single pattern in text.
RE pattern matching. Find occurrences of one of multiple patterns in text.

Ex. (genomics)

• Fragile X syndrome is a common cause of mental retardation.

• Human genome contains triplet repeats of cgg or agg,
bracketed by gcg at the beginning and ctg at the end.

• Number of repeats is variable, and correlated with syndrome.

• Use RE to specify pattern: gcg(cgg|agg)*ctg.
Do RE pattern match on person’s genome to detect Fragile X.

pattern (RE)

text

gcg(cgg|agg)*ctg

gcggcgtgtgtgcgagagagtgggtttaaagctggcgcggaggcggctggcgcggaggctg

32

RE pattern matching: applications

Test if a string matches some pattern.

• Process natural language.

• Scan for virus signatures.

• Search for information using Google.

• Access information in digital libraries.

• Retrieve information from Lexis/Nexis.

• Search-and-replace in a word processors.

• Filter text (spam, NetNanny, Carnivore, malware).

• Validate data-entry fields (dates, email, URL, credit card).

• Search for markers in human genome using PROSITE patterns.

Parse text files.

• Compile a Java program.

• Crawl and index the Web.

• Read in data stored in ad hoc input file format.

• Automatically create Java documentation from Javadoc comments.

33

Regular expression examples

A regular expression is a notation to specify a set of strings.

operation example RE in set not in set

concatenation aabaab aabaab every other string

wildcard .u.u.u. cumulus
jugulum

succubus
tumultuous

union aa | baab aa
baab every other string

closure ab*a aa
abbbbbbba

ab
ababa

parentheses

a(a|b)aab aaaab
abaab every other string

(ab)*a a
ababababa

aa
abba

34

Regular expression examples (continued)

Notation is surprisingly expressive

and plays a well-understood role in the theory of computation.

regular expression in set not in set

.*spb.*

(contains the trigraph spb)
raspberry
crispbread

subspace
subspecies

a* | (a*ba*ba*ba*)*

(number of b's is a multiple of 3)

bbb
aaa

bbbaababbaa

b
bb

baabbbaa

.*0....

(fifth to last digit is 0)
1000234
98701234

111111111
403982772

gcg(cgg|agg)*ctg

(fragile X syndrome)

gcgctg
gcgcggctg

gcgcggaggctg

gcgcgg
cggcggcggctg
gcgcaggctg

35

Generalized regular expressions

Additional operations are often added for convenience.

Ex. [a-e]+ is shorthand for (a|b|c|d|e)(a|b|c|d|e)*

Caveat. Need to be alert for non-regular additions, e.g., back reference.

operation example RE in set not in set

one or more a(bc)+de abcde
abcbcde

ade
bcde

character classes [A-Za-z][a-z]* word
Capitalized

camelCase
4illegal

exactly k [0-9]{5}-[0-9]{4} 08540-1321
19072-5541

111111111
166-54-111

negations [^aeiou]{6} rhythm decade

Validity checking. Is input in the set described by the re?
Java string library. Use input.matches(re) for basic RE matching.

% java Validate "..oo..oo." bloodroot
true

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu
true

% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433
true

36

Regular expressions in Java

legal Java identifier

valid email address
(simplified)

Social Security number

need help solving
crosswords?

public class Validate
{
 public static void main(String[] args)
 {
 String re = args[0];
 String input = args[1];
 boolean isValid = input.matches(re);
 StdOut.println(isValid);
 }
}

37

Regular expressions in other languages

Broadly applicable programmer's tool.

• Originated in Unix in the 1970s

• Many languages support extended regular expressions.

• Built into grep, awk, emacs, Perl, PHP, Python, JavaScript.

PERL. Practical Extraction and Report Language.

print all lines containing NEWLINE which occurs in
any file with a .java extension

% grep NEWLINE */*.java

% egrep '^[qwertyuiop]*[zxcvbnm]*$' dict.txt | egrep '...........'

replace all occurrences of from
with to in the file input.txt

% perl -p -i -e 's|from|to|g' input.txt

% perl -n -e 'print if /^[A-Za-z][a-z]*$/' dict.txt

do for each line

print all uppercase words

38

Regular expression caveat

Writing a RE is like writing a program.

• Need to understand programming model.

• Can be easier to write than read.

• Can be difficult to debug.

“ Sometimes you have a programming problem and it seems
 like the best solution is to use regular expressions; now you
 have two problems. ”

39

Can the average web surfer learn to use REs?

Google. Supports * for full word wildcard and | for union.

40

Can the average TV viewer learn to use REs?

TiVo. WishList has very limited pattern matching.

Reference: page 76, Hughes DirectTV TiVo manual

41

Can the average programmer learn to use REs?

Perl RE for valid RFC822 email addresses

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
 \t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*
)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*))*)?;\s*)

http http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

42

‣ exact pattern matching
‣ Knuth-Morris-Pratt
‣ RE pattern matching
‣ grep

GREP implementation: basic plan

Overview is the same as for KMP !

• Linear-time guarantee.

• No backup in text stream.

Basic plan for grep (generalized regular expression print).

• Build DFA from RE.

• Simulate DFA with text as input.

43

Ken Thompson

DFA for pattern

gcg(cgg|agg)*ctg

accept pattern in text

reject
pattern NOT

in text

input

actgtgcaggaggcggcgcggcggaggaggctggcga

44

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given set.

Kleene's theorem.

• For any DFA, there exists a RE that describes the same set of strings.

• For any RE, there exists a DFA that recognizes the same set of strings.

Good news. Basic plan works.
Bad news. The DFA can be exponentially large.
Consequence. Need better abstract machine.

Duality

0* | (0*10*10*10*)*

number of 1's is a multiple of 3

RE DFA

number of 1's is a multiple of 3

45

Nondeterministic finite-state automata

NFA.

• May have 0, 1, or more transitions for each input symbol.

• May have ε-transitions (move to another state without reading input).

• Accept if any sequence of transitions leads to accept state.

Proof of Kleene’s theorem. RE ⇒ NFA ⇒ DFA ⇒ RE.

in set: 111, 00011, 101001011

not in set: 110, 00011011, 00110

convention:
unlabeled arrows
are ε-transitions

bitstrings that do not contain 110

exponential
blowup possiblepolynomial

GREP implementation: basic plan (revised)

Basic plan for GREP.

• build NFA from RE.

• Simulate NFA with text as input.

• Give up on linear-time guarantee
(but not poly-time guarantee).

46

Ken Thompson

NFA for pattern

gcg(cgg|agg)*ctg

accept pattern in text

reject
pattern NOT

in text

input

actgtgcaggaggcggcgcggcggaggaggctggcga

47

Simulating an NFA

Q. How to efficiently simulate an NFA?
A. Maintain SET of all possible states that NFA could be in
 after reading in the first i symbols.

Q. How to perform reachability?
A. Graph reachability in a Digraph (!)

48

NFA simulation

Use generalized NFA with full RE on transitions.

• Start with one transition having given RE.

• Remove operators with transformations given below.

• Goal: standard NFA (all single-character or ε-transitions).

49

Converting from an RE to an NFA: basic transformations

from toR

start

from

to

c R

from

to

R

c

concatenation

from

to

c* S

to

S

from

c

closure

from

to

R | S

from

to

R S

union

50

Converting from an RE to an NFA example: ab* | ab*

0

1

ab* | a*b

0

1

a*b2

b*

a
0

1

ab* a*b

0

1

a*b

2

3

a

b

0

1

2

3

a

b

5

4

a

b

0

1

2

3

a

b

4

a*

b

51

Grep running time

Input. Text with N characters, RE with M characters.

Claim. The number of edges in the NFA is at most 2M.

• Single character: consumes 1 symbol, creates 1 edge.

• Wildcard character: consumes 1 symbol, creates 2 edges.

• Concatenation: consumes 1 symbols, creates 0 edges.

• Union: consumes 1 symbol, creates 1 edges.

• Closure: consumes one symbol, creates 2 edges.

NFA simulation. O(MN) since NFA has 2M transitions

• Bottleneck: 1 graph reachability per input character.

• Can be substantially faster in practice if few ε-transitions.

NFA construction. Ours is O(M2) but not hard to make O(M).

52

Industrial-strength grep implementation

To complete the implementation,

• Deal with parentheses.

• Extend the alphabet.

• Add character classes.

• Add capturing capabilities.

• Deal with meta characters.

• Extend the closure operator.

• Error checking and recovery.

• Greedy vs. reluctant matching.

53

Harvesting information

Goal. Print all substrings of input that match a RE.

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt
gcgcggcggcggcggcggctg

gcgctg

gcgctg

gcgcggcggcggaggcggaggcggctg

% java Harvester "http://(\\w+\\.)*(\\w+)" http://www.cs.princeton.edu
http://www.princeton.edu

http://www.google.com

http://www.cs.princeton.edu/news

harvest links from website

harvest patterns from DNA

RE pattern matching is implemented in Java’s Pattern and Matcher classes.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester
{
 public static void main(String[] args)
 {
 String re = args[0];
 In in = new In(args[1]);
 String input = in.readAll();
 Pattern pattern = Pattern.compile(re);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 StdOut.println(matcher.group());
 }
}

54

Regular expressions in Java (revisited)

compile() creates a
Pattern (NFA) from RE

matcher() creates a
Matcher (NFA simulator)
from NFA and text

find() looks for
the next match

group() returns
the substring most
recently found by find()

55

Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

SpamAssassin regular expression.

• Takes exponential time.

• Spammer can use a pathological email address to DOS a mail server.

% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 1.6 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 3.7 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 9.7 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 23.2 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 62.2 seconds
% java Validate "(a|aa)*b" aac 161.6 seconds

% java RE "[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x......................

grep, Java, Perl

56

Not-so-regular expressions

Back-references.

• \1 notation matches sub-expression that was matched earlier.

• Supported by typical RE implementations.

Some non-regular languages.

• Set of strings of the form ww for some string w: beriberi.

• Set of bitstrings with an equal number of 0s and 1s: 01110100.

• Set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

% java Harvester "\b(.+)\1\b" dictionary.txt
beriberi
couscous word boundary

57

Context

Abstract machines, languages, and nondeterminism.

• basis of the theory of computation

• intensively studied since the 1930s

• basis of programming languages

Compiler. A program that translates a program to machine code.

• KMP string ⇒ DFA.

• grep RE ⇒ NFA.

• javac Java language ⇒ Java byte code.

KMP grep Java

pattern

parser

compiler output

simulator

string RE program

unnecessary check if legal check if legal

DFA NFA byte code

DFA simulator NFA simulator JVM

58

Summary of pattern-matching algorithms

Programmer.

• Implement exact pattern matching via DFA simulation (KMP).

• Implement RE pattern matching via NFA simulation (grep).

Theoretician.

• RE is a compact description of a set of strings.

• NFA is an abstract machine equivalent in power to RE.

• DFAs and REs have limitations.

You. Practical application of core CS principles.

Example of essential paradigm in computer science.

• Build intermediate abstractions.

• Pick the right ones!

• Solve important practical problems.

