Minimum Spanning Trees

» weighted graph API
» cycles and cuts

» Kruskal’s algorithm
» Prim’s algorithm

» advanced topics

References.
Algorithms in Java, Chapter 20
http://www.cs.princeton.edu/algs4/54mst

Algorithms in Java, 4™ Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - March 30, 2008 10:09:56 PM

MST Origin

Given. Undirected graph G with positive edge weights (connected).
Goal. Find a min weight set of edges that connects all of the vertices.

-0 — 24
4
6 23 9
18
’ >l< "
16
8
7
21 A

weight(T) = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

Brute force. Try all possible spanning trees.
* Problem 1: not so easy to implement.
* Problem 2: far too many of them.

MST Origin

Given. Undirected graph G with positive edge weights (connected).
Goal. Find a min weight set of edges that connects all of the vertices.

MST origin

Otakar Boruvka (1926).

* Electrical Power Company of Western Moravia in Brno.

* Most economical construction of electrical power network.

* Concrete engineering problem is how a cornerstone
problem-solving model in combinatorial optimization.

Otakar Boruvka

Applications Medical Image Processing

MST is fundamental problem with diverse applications.
« Cluster analysis. MST describes arrangement of nuclei in the epithelium for cancer research
* Max bottleneck paths.

* Real-time face verification.

* LDPC codes for error correction.

» Image registration with Renyi entropy.

* Find road networks in satellite and aerial imagery.

 Reducing data storage in sequencing amino acids in a protein.

* Model locality of particle interactions in turbulent fluid flows.

* Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

* Network design (telephone, electrical, hydraulic, cable, computer, road).
* Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

.

http://www.ics.uci.edu/~eppstein/gina/mst.html

http://www.bccre.ca/ci/ta0l_archlevel.html

Two Greedy Algorithms

Kruskal's algorithm. Consider edges in ascending order of weight.
Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s.
At each step, add to T the edge of min weight that has exactly
one endpoint in T.

TLE e
“ Greed is good. Greed is right. Greed works. Greed
clarifies, cuts through, and captures the essence of

the evolutionary spirit. ” — Gordon Gecko

Proposition. Both greedy algorithms compute MST.

er.indstate.edu/ge/gfx

» weighted graph API

Weighted graph APT

public class WeightedGraph

graph data type

WeightedGraph (int V)
WeightedGraph (In in)
void insert(Edge e)
Iterable<Edge> adj(int v)
int V()

String toString()

create an empty graph with V vertices
create a graph from input stream
add an edge from v to w
return an iterator over edges incident to v
return number of vertices

return a string representation

for (int v = 0; v < G.V(); v++)

{
for (Edge e : G.adj(v))
{
int w = e.other(v);
// process edge v-w
}
}

iterate through all edges
(once in each direction)

Edge API

Edge abstraction needed for weighted edges.

public class Edge implements Comparable<Edge>

Edge (int v, int w, double weight)
int either()

int other (int v)

double weight()

String toString()

create a weighted edge v-w

either endpoint
the endpoint that's not v
the weight

string representation

°— weight —o

Weighted graph: adjacency-set implementation

public class WeightedGraph

{

private final int V;
private final SET<Edge>[] adj;

public WeightedGraph (int V)

{
this.V = V;
adj = (SET<Edge>[]) new SET[V];
for (int v = 0; v < V; v++)

adj[v] = new SET<Edge>();

}

public void addEdge (Edge e)

{
int v = e.either(), w = e.other(v);
adj[v] .add(e) ;
adj[w] .add(e) ;

}

public Iterable<Edge> adj(int v)
{ return adj[v]; }

Weighted edge: Java implementation Weighted edge: Java implementation (cont)

public class Edge implements Comparable<Edge>
{

pr:!.va:e ::-Lnai :::-b‘;’ ";_ ht public static class ByWeight implements Comparator<Edge>
rivate fina e wei ;
P g’ {
X X i X public int compare (Edge e, Edge f)
public Edge (int v, int w, double weight) { ' order edges by weight
{ ens ~ if (e.weight < f.weight) return -1; (for sorting in Kruskal)
u:s.v =v; if (e.weight > f.weight) return +1;
is.w = w;
return 0;
this.weight = weight; }
by }
I{""hl:": 2ot e:l.tl;er() public int compareTo (Edge that)
return v;
{
X X X if (this.v < that.v) return -1;
public int other(int vertex) if (this.v > that.v) return +1;
{ X . if (this.w < that.w) return -1; natural order
": (vertex == v) return w; if (this.w > that.w) return +1; (for use in a symbol table)
, else return v; return 0;
}

public int weight()
{ return weight; }

// See next slide for compare methods.

Spanning tree

MST. Given connected graph G with positive edge weights,
find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is
connected and acyclic.

iaaion %

Property. MST of G is always a spanning tree.

Cycle and cut properties
Simplifying assumption. All edge weights we. are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST contains e.

cycle €
f
Cl-” ﬁe\./.
f is not in the MST eisinthe MST

Cut property
Simplifying assumption. All edge weights w. are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

* Suppose e does hot belong to T*. Let's see what happens.

* Adding e to T* creates a cycle C in T*.

* Some other edge in C, say f, has exactly one endpoint in S.

o T=T*U{e}-{f}isalsoaspanning tree.

* Since we < wf, weight(T) < weight(T*).

* Contradicts minimality of T*. = cycle €

» Kruskal’s algorithm

Cycle property
Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

* Suppose f belongs to T*. Let's see what happens.

* Deleting f from T* disconnects T*. Let S be one side of the cut.

* Some other edge in C, say e, has exactly one endpoint in S.

e T=T*U{e}-{f}isalsoaspanning tree.

* Since we < wt, weight(T) < weight(T*).

e Contradicts minimality of T*. = 2l

20

Kruskal's algorithm

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order of

weight. Add the next edge to T unless doing so would create a cycle.

Kruskal's algorithm correctness proof
Proposition. Kruskal's algorithm computes the MST.
Pf. [case 1] Suppose that adding e to T creates a cycle C.

* Edge e is the max weight edge in C.
* Edge e is not in the MST (cycle property).

A

7/

|

0.18
0.21
6-7 0.25
0.29
0.31

3-4 0.34

4-7 0.46

23

Kruskal's algorithm example

AN ~ —31(’:2.11'..(

Ky b4 Tret

25% - 0‘ . 1:‘{‘,\ — % 75%
L) o - Q‘
8. "] . o NXO
. ° L] L]
I N ~ . AN
'd
st .ul‘“

A
50% s 100%
~% >

Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 2] Suppose that adding e = (v, w) to T does not create a cycle.
* Let S be the vertices in v's connected component.

* Vertex wis notin S.

» Edge e is the min weight edge with exactly one endpoint in S.
* Edge e is in the MST (cut property). =

o« 7

3

24

Kruskal implementation challenge

Problem. Check if adding an edge (v, w) to T creates a cycle.

How difficult?
¢ Intractable.
e O(E + V) time.

o O(V) TII’\’\C run DFS from v, check if w is reachable
(T has at most V-1 edges)

* O(log V) time.

O O(lOg* V) time. <« use the union-find data structure !

¢ Constant time.

Kruskal's algorithm: Java implementation

public class Kruskal
{
private SET<Edge> mst = new SET<Edge>();

public Kruskal (WeightedGraph G)
{
Edge[] edges = G.edges();
Arrays.sort(edges, new Edge.ByWeight()) ;

UnionFind uf = new UnionFind(G.V());
for (Edge e: edges)
{
int v = e.either(), w = e.other(v);
if ('uf.find(v ,w))
{
uf.unite(v, w);
mst.add (edge) ;

}

public Iterable<Edge> mst()
{ return mst; }

25

<«——F— sort edges by weight

—— greedily add edges to MST

27

Kruskal's algorithm implementation

Problem. Check if adding an edge (v, w) to T creates a cycle.

Efficient solution. Use the union-find data structure.
* Maintain a set for each connected component in T.

* If vand w are in same component, then adding v-w creates a cycle.
* To add v-w to T, merge sets containing v and w.

4

Case 1: adding v-w creates a cycle

Case 2: add v-w to

Kruskal's algorithm running time

T and merge sets

Proposition. Kruskal's algorithm computes MST in O(E log V) time.

Pf.

sort 1
union \%
find E

1 amortized bound using weighted quick union with path compression

Remark. If edges are already sorted, time is proportional to E log* V.

!

recall: log* V < 5 in this universe

26

28

» Prim’s algorithm

Prim's algorithm example

25%

50%

29

75%

100%

Prim's algorithm example

Prim's algorithm. [Jarnik 1930, Dijkstra 1957, Prim 1959]
Start with vertex O and greedily grow tree T. At each step,
add edge of min weight that has exactly one endpoint in T.

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-4 0-6 0-5 7-6 7-4 0-6 0-5

edges with exactly one endpoint in T, sorted by weight

0 <2 =
Do Do
S ' S
A o
7-4 0-5 6-4 4-3 4-5 0-5 3-5 4-5 0-5

Prim's algorithm correctness proof

Proposition. Prim's algorithm computes the MST.

Pf.

* Let S be the subset of vertices in current tree T.

* Prim adds the min weight edge e with exactly one endpoint in S.
* Edge e is in the MST (cut property). =

O O O O O ©O O O o o o o

.32
.29
.60
.51
.31
.21
.34
.18
.40
.51
.46
.25

30

32

Prim implementation challenge Prim's algorithm implementation

Problem. Find min weight edge with exactly one endpoint in S. Problem. Find min weight edge with exactly one endpoint in S.

How difficult? Efficient solution. Maintain a PQ of vertices connected by an edge to S.
* Intractable. * Delete min to determine next vertex v to add to S.

* O(E) time. < tryalledges * Disregard v if already in S.

e O(V) time. * Add to PQ any vertex brought closer to S by v.

* O(log V) time. «— useapriority queue!

* O(log* V) time. Running time.

e Constant time. * log E steps per edge.

* E log E steps overall.

33

Key-value priority queue Prim's algorithm example: lazy implementation

Associate a value with each key in a priority queue. Use PQ: key = edge weight, value = vertex.

(lazy version leaves some obsolete entries on the PQ)

public class MinPQplus<Key extends Comparable<Key>, Value>

MinPQplus () create key-value priority queue) O,) (2)) (2)) (2) 0-1
: L - O, I— O, I —() .’ 0-2
void put(Key key, Value val) put key-value pair into the PQ
return value paired with o o o o e
Value delMin() e ¢ parred with © © © G) 0-6
minimal key and delete it
: N N G N 0-7
boolean isEmpty () is the PO empty? ® O © © © © © O,

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 7-6 7-4
\ 7-4 0-5 0-5
blue = PQ value (vertex) 3-5
gray = obsolete entry (multiple entries with same value) 4-5
Implementation. -
* Start with same code as standard heap-based PQ. = 0 =<2 = 0 =<2 4-7 0.
\ \ \ ‘ 6-7 0.
* Use a parallel array vais] (value associated with keys[i] is vals[i]). ‘Q (9 ‘0 (9 ‘0 O ‘0 ()
* Modify exch() to maintain parallel arrays (do exch in vaispi). @ @ S ©
* Modify delMin() to return value. oo‘o eo‘o oe‘ 0 Oo‘ 0
7-4 0-5 4-3 4-5 3-5

B35

O O O O O 0O 0O ©o o o o o

Lazy implementation of Prim's algorithm

public class L
{

private boo

private double[] dist;
private Edge[] pred;

public LazyPrim(WeightedGraph G)

{
marked = new boolean[G.V()];
pred = new Edge[G.V()];
dist = new double[G.V()];
for (int v = 0; v < G.V(); v++)
dist[v] = Double.POSITIVE_INFINITY;
prim(G, 0);
}

// See next slide for prim() implementation.

azyPrim

lean[] marked;

// vertices in MST
// distance to MST
// pred[v] is edge attach v to MST

Priority queue with decrease-key

Indexed priority q

public class

ueue.

MinIndexPQ<Key extends Comparable<Key>, Integer>

void

int

boolean

boolean

void

MinIndexPQ ()

put (Key key, int v)
delMin ()

isEmpty ()

contains (int v)

decreaseKey (Key key,

create key-value indexed priority queue

put key-value pair into the PQ

return value paired with
minimal key and delete it

is the PO empty?
is there a key associated with value v?

int v)

decrease the key associated with v to key

Implementation. More complicated than Minpg, see text.

37

39

Lazy implementation of Prim's algorithm

private void prim(WeightedGraph G, int s)

{

dist[s]

= 0.
marked[s] =

0;
true;

MinPQplus<Double, Integer> pq;
P9 = new MinPQplus<Double, Integer>();
pq.put(dist[s], s);

while ('pg.isEmpty())
{
int v = pg.delMin() ;
if (marked[v]) continue;
marked[v] = true;
for (Edge e : G.adj(v))
{
int w = e.other(v);
if (!'marked[w] && (dist[w] > e.weight()))
{
dist[w] = e.weight();
pred[w] = e;
Pg.insert(dist[w], w);

< key-value PQ

<«—fF—— ignore if already in MST

Prim's algorithm example: eager implementation

Use IndexMinPQ: key = edge weight, value = vertex.

(eager version has at most one PQ entry per vertex)

00‘0 00‘0 9 0

0-2 0-7 0-1 0-6 0-5

0-7 0-1 0-6 0-5 7-1 7-6 7-4 0-5

blue = PQ value (vertex)

o“:’ & o“:’ - ow; 5
J J o
eo‘o oo‘o oe‘o

7-4 0-5

4-3 4-5 I

°'o o!

7-6 7-4 0-5

o{{i

L

O O O O O 0O 0O ©o o o o o

add to PQ any vertices
brought closer to S by v

.32
.29
.60
.51
.31
.21
.34
.18
.40
.51
.46
.25

38

40

Eager implementation of Prim's algorithm Removing the distinct edge weight assumption

Main benefit. Reduces PQ size guarantee from E to V. Simplifying assumption. All edge weights we are distinct.
* Not important for the huge sparse graphs found in practice.

* PQ size is far smaller in practice. Approach 1. Introduce tie-breaking rule for compare ().

» Widely used, but practical utility is debatable.

public int compare (Edge e, Edge f)
{
if (e.weight < f.weight) return -1;
if (e.weight > f.weight) return +1;
if (e.v < £.v) return -1;
if (e.v > f.v) return +1;
if (e.w < f.w) return -1;
if (e.w > f.w) return +1;
return 0;

Approach 2. Prim and Kruskal still find MST if equal weights!
(only our proof of correctness fails)

41 42

Does a linear-time MST algorithm exist?

1975 E log log V Yao

1976 E log log V Cheriton-Tarjan

1984 Elog* V,E + Vlog V Fredman-Tarjan

1986 E log (log* V) Gabow-6alil-Spencer-Tarjan ?
1997 E a(V)log a (V) Chazelle v
2000 E a(V) Chazelle

2002 optimal Pettie-Ramachandran

20xx E ?22?

» advanced topics
deterministic compare-based MST algorithms

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan).

43 44

Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.
(distances between point pairs are Euclidean distances)

Brute force. Compute ~ N2/2 distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in O(N log N).

45

k-clustering of maximum spacing

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.

k-clustering of maximum spacing.
Given an integer k, find a k-clustering such that spacing is maximized.

spacing
. /
LIPS XX k=4
© o 00 ecee
° XY xs

47

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem.
Divide into clusters so that points in different clusters are far apart.

Applications.

<N\

outbreak of cholera deaths in London in 1850s
Reference: Nina Mishra, HP Labs

* Routing in mobile ad hoc networks.

+ Identify patterns in gene expression.

» Document categorization for web search.
* Similarity searching in medical image databases

» Skycat: cluster 10° sky objects into stars, quasars, galaxies.

Single-link clustering algorithm

“Well-known" algorithm for single-link clustering:

* Form V clusters of one object each.

* Find the closest pair of objects such that each object is in a different
cluster, and add an edge between them.

* Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm
(stopping when there are k connected components).

Proposition. Kruskal's algorithm finds a k-clustering of maximum spacing.

Alternate algorithm. Run Prim and delete k-1 edges of largest weight.

46

48

Clustering application: dendrograms

Dendrogram.
Scientific visualization of hypothetical sequence of evolutionary events.

* Leaves = genes.
* Internal nodes = hypothetical ancestors.

height of bar indicates
degree of distance
within cluster

distance scale

1 il

leaves represent instances (e.g. genes)

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecturel3.pdf

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

o

Gene 1

Genen
Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal

' gene expressed

Reference: Botstein & Brown group . B)

49

50

