
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 30, 2008 10:09:56 PM

Minimum Spanning Trees

References:
 Algorithms in Java, Chapter 20
 http://www.cs.princeton.edu/algs4/54mst

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

2

Given. Undirected graph G with positive edge weights (connected).
Goal. Find a min weight set of edges that connects all of the vertices.

MST Origin

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

G

3

Given. Undirected graph G with positive edge weights (connected).
Goal. Find a min weight set of edges that connects all of the vertices.

Brute force. Try all possible spanning trees.

• Problem 1: not so easy to implement.

• Problem 2: far too many of them.

MST Origin

weight(T) = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

4

Otakar Boruvka (1926).

• Electrical Power Company of Western Moravia in Brno.

• Most economical construction of electrical power network.

• Concrete engineering problem is now a cornerstone
problem-solving model in combinatorial optimization.

Otakar Boruvka

MST origin

5

MST is fundamental problem with diverse applications.

• Cluster analysis.

• Max bottleneck paths.

• Real-time face verification.

• LDPC codes for error correction.

• Image registration with Renyi entropy.

• Find road networks in satellite and aerial imagery.

• Reducing data storage in sequencing amino acids in a protein.

• Model locality of particle interactions in turbulent fluid flows.

• Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

• Network design (telephone, electrical, hydraulic, cable, computer, road).

• Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

• . . .

Applications

http://www.ics.uci.edu/~eppstein/gina/mst.html

6

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Medical Image Processing

7http://ginger.indstate.edu/ge/gfx 8

Kruskal's algorithm. Consider edges in ascending order of weight.
Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s.
At each step, add to T the edge of min weight that has exactly
one endpoint in T.

Proposition. Both greedy algorithms compute MST.

Two Greedy Algorithms

“ Greed is good. Greed is right. Greed works. Greed
 clarifies, cuts through, and captures the essence of
 the evolutionary spirit. ” — Gordon Gecko

9

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

10

Edge API

Edge abstraction needed for weighted edges.

 public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

double weight() the weight

String toString() string representation

v weight w

11

Weighted graph API

 public class WeightedGraph graph data type

WeightedGraph(int V) create an empty graph with V vertices

WeightedGraph(In in) create a graph from input stream

void insert(Edge e) add an edge from v to w

Iterable<Edge> adj(int v) return an iterator over edges incident to v

int V() return number of vertices

String toString() return a string representation

iterate through all edges
(once in each direction)

for (int v = 0; v < G.V(); v++)
{
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);
 // process edge v-w
 }
}

12

public class WeightedGraph
{
 private final int V;
 private final SET<Edge>[] adj;

 public WeightedGraph(int V)
 {
 this.V = V;
 adj = (SET<Edge>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }
}

Weighted graph: adjacency-set implementation

13

public class Edge implements Comparable<Edge>
{
 private final int v, w;
 private final double weight;

 public Edge(int v, int w, double weight)
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either()
 { return v; }

 public int other(int vertex)
 {
 if (vertex == v) return w;
 else return v;
 }

 public int weight()
 { return weight; }

 // See next slide for compare methods.
}

Weighted edge: Java implementation

14

Weighted edge: Java implementation (cont)

 public static class ByWeight implements Comparator<Edge>
 {
 public int compare(Edge e, Edge f)
 {
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 return 0;
 }
 }

 public int compareTo(Edge that)
 {
 if (this.v < that.v) return -1;
 if (this.v > that.v) return +1;
 if (this.w < that.w) return -1;
 if (this.w > that.w) return +1;
 return 0;
 }

natural order
(for use in a symbol table)

order edges by weight
(for sorting in Kruskal)

15

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

16

MST. Given connected graph G with positive edge weights,
find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is
connected and acyclic.

Property. MST of G is always a spanning tree.

Spanning tree

17

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST contains e.

f

cycle C

cut S

e is in the MST

e

f is not in the MST

Cycle and cut properties

18

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

• Suppose f belongs to T*. Let's see what happens.

• Deleting f from T* disconnects T*. Let S be one side of the cut.

• Some other edge in C, say e, has exactly one endpoint in S.

• T = T* ∪ { e } − { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. ▪
f

e

S

Cycle property

 MST T*

cycle C

19

Simplifying assumption. All edge weights we are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

• Suppose e does not belong to T*. Let's see what happens.

• Adding e to T* creates a cycle C in T*.

• Some other edge in C, say f, has exactly one endpoint in S.

• T = T* ∪ { e } − { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. ▪

Cut property

f

e

S

 MST T*

cycle C

20

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

21

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order of
weight. Add the next edge to T unless doing so would create a cycle.

3-5 1-7 6-7

0-2 0-7 0-1 3-4 4-5 4-7

3-5 0.18

1-7 0.21

6-7 0.25

0-2 0.29

0-7 0.31

0-1 0.32

3-4 0.34

4-5 0.40

4-7 0.46

0-6 0.51

4-6 0.51

0-5 0.60

Kruskal's algorithm

22

25%

50%

75%

100%

Kruskal's algorithm example

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 1] Suppose that adding e to T creates a cycle C.

• Edge e is the max weight edge in C.

• Edge e is not in the MST (cycle property).

23

C

e

Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 2] Suppose that adding e = (v, w) to T does not create a cycle.

• Let S be the vertices in v’s connected component.

• Vertex w is not in S.

• Edge e is the min weight edge with exactly one endpoint in S.

• Edge e is in the MST (cut property). ▪

24

v

e

Kruskal's algorithm correctness proof

S

w

25

Problem. Check if adding an edge (v, w) to T creates a cycle.

How difficult?

• Intractable.

• O(E + V) time.

• O(V) time.

• O(log V) time.

• O(log* V) time.

• Constant time.

Kruskal implementation challenge

run DFS from v, check if w is reachable
(T has at most V-1 edges)

use the union-find data structure !

26

Problem. Check if adding an edge (v, w) to T creates a cycle.

Efficient solution. Use the union-find data structure.

• Maintain a set for each connected component in T.

• If v and w are in same component, then adding v-w creates a cycle.

• To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge setsCase 1: adding v-w creates a cycle

Kruskal's algorithm implementation

v w

w

v

sort edges by weight

27

Kruskal's algorithm: Java implementation

public class Kruskal
{
 private SET<Edge> mst = new SET<Edge>();

 public Kruskal(WeightedGraph G)
 {
 Edge[] edges = G.edges();
 Arrays.sort(edges, new Edge.ByWeight());

 UnionFind uf = new UnionFind(G.V());
 for (Edge e: edges)
 {
 int v = e.either(), w = e.other(v);
 if (!uf.find(v ,w))
 {
 uf.unite(v, w);
 mst.add(edge);
 }
 }
 }

 public Iterable<Edge> mst()
 { return mst; }

}

greedily add edges to MST

28

Proposition. Kruskal's algorithm computes MST in O(E log V) time.

Pf.

Remark. If edges are already sorted, time is proportional to E log* V.

† amortized bound using weighted quick union with path compression

Kruskal's algorithm running time

recall: log* V ≤ 5 in this universe

operation frequency time per op

sort 1 E log V

union V log* V †

find E log* V †

29

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
Start with vertex 0 and greedily grow tree T. At each step,
add edge of min weight that has exactly one endpoint in T.

30

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-4 0-6 0-5 7-6 7-4 0-6 0-5

7-4 0-5 6-4 4-3 4-5 0-5 3-5 4-5 0-5

edges with exactly one endpoint in T, sorted by weight

31

25%

50%

75%

100%

Prim's algorithm example

Proposition. Prim's algorithm computes the MST.
Pf.

• Let S be the subset of vertices in current tree T.

• Prim adds the min weight edge e with exactly one endpoint in S.

• Edge e is in the MST (cut property). ▪

32

Prim's algorithm correctness proof

S e

33

Problem. Find min weight edge with exactly one endpoint in S.

How difficult?

• Intractable.

• O(E) time.

• O(V) time.

• O(log V) time.

• O(log* V) time.

• Constant time.

Prim implementation challenge

try all edges

use a priority queue !

S e

34

Problem. Find min weight edge with exactly one endpoint in S.

Efficient solution. Maintain a PQ of vertices connected by an edge to S.

• Delete min to determine next vertex v to add to S.

• Disregard v if already in S.

• Add to PQ any vertex brought closer to S by v.

Running time.

• log E steps per edge.

• E log E steps overall.

Prim's algorithm implementation

S e

35

Associate a value with each key in a priority queue.

Implementation.

• Start with same code as standard heap-based PQ.

• Use a parallel array vals[] (value associated with keys[i] is vals[i]).

• Modify exch() to maintain parallel arrays (do exch in vals[]).

• Modify delMin() to return Value.

Key-value priority queue

 public class MinPQplus<Key extends Comparable<Key>, Value>

MinPQplus() create key-value priority queue

void put(Key key, Value val) put key-value pair into the PQ

Value delMin() return value paired with
minimal key and delete it

boolean isEmpty() is the PQ empty?

Use PQ: key = edge weight, value = vertex.
(lazy version leaves some obsolete entries on the PQ)

36

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example: lazy implementation

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1
7-4 0-6 0-5

7-6 0-1 7-4
0-6 0-5

0-1 7-4 0-6 0-5 4-3 4-5 0-6 0-5 3-5 4-5 0-6 0-5

blue = PQ value (vertex)
gray = obsolete entry (multiple entries with same value)

public class LazyPrim
{
 private boolean[] marked; // vertices in MST
 private double[] dist; // distance to MST
 private Edge[] pred; // pred[v] is edge attach v to MST

 public LazyPrim(WeightedGraph G)
 {
 marked = new boolean[G.V()];
 pred = new Edge[G.V()];
 dist = new double[G.V()];
 for (int v = 0; v < G.V(); v++)
 dist[v] = Double.POSITIVE_INFINITY;
 prim(G, 0);
 }

 // See next slide for prim() implementation.
}

37

Lazy implementation of Prim's algorithm

38

Lazy implementation of Prim's algorithm

private void prim(WeightedGraph G, int s)
{
 dist[s] = 0.0;
 marked[s] = true;

 MinPQplus<Double, Integer> pq;
 pq = new MinPQplus<Double, Integer>();
 pq.put(dist[s], s);

 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 if (marked[v]) continue;
 marked[v] = true;
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);
 if (!marked[w] && (dist[w] > e.weight()))
 {
 dist[w] = e.weight();
 pred[w] = e;
 pq.insert(dist[w], w);
 }
 }
 }
}

key-value PQ

ignore if already in MST

add to PQ any vertices
brought closer to S by v

Indexed priority queue.

Implementation. More complicated than MinPQ, see text.

39

Priority queue with decrease-key

 public class MinIndexPQ<Key extends Comparable<Key>, Integer>

MinIndexPQ() create key-value indexed priority queue

void put(Key key, int v) put key-value pair into the PQ

int delMin() return value paired with
minimal key and delete it

boolean isEmpty() is the PQ empty?

boolean contains(int v) is there a key associated with value v?

void decreaseKey(Key key, int v) decrease the key associated with v to key

Use IndexMinPQ: key = edge weight, value = vertex.
(eager version has at most one PQ entry per vertex)

40

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example: eager implementation

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 7-4 0-5 7-6 7-4 0-5

7-4 0-5 4-3 4-5 3-5

blue = PQ value (vertex)

Main benefit. Reduces PQ size guarantee from E to V.

• Not important for the huge sparse graphs found in practice.

• PQ size is far smaller in practice.

• Widely used, but practical utility is debatable.

41

Eager implementation of Prim's algorithm

42

Simplifying assumption. All edge weights we are distinct.

Approach 1. Introduce tie-breaking rule for compare().

Approach 2. Prim and Kruskal still find MST if equal weights!
(only our proof of correctness fails)

public int compare(Edge e, Edge f)
{
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 if (e.v < f.v) return -1;
 if (e.v > f.v) return +1;
 if (e.w < f.w) return -1;
 if (e.w > f.w) return +1;
 return 0;
}

Removing the distinct edge weight assumption

43

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan).
44

deterministic compare-based MST algorithms

Does a linear-time MST algorithm exist?

year worst case discovered by

1975 E log log V Yao

1976 E log log V Cheriton-Tarjan

1984 E log* V, E + V log V Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan

1997 E α(V) log α(V) Chazelle

2000 E α(V) Chazelle

2002 optimal Pettie-Ramachandran

20xx E ???

45

Euclidean MST. Given N points in the plane, find MST connecting them.
(distances between point pairs are Euclidean distances)

Brute force. Compute ~ N2/2 distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in O(N log N).

Euclidean MST

46

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem.
 Divide into clusters so that points in different clusters are far apart.

Applications.

• Routing in mobile ad hoc networks.

• Identify patterns in gene expression.

• Document categorization for web search.

• Similarity searching in medical image databases

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s
Reference: Nina Mishra, HP Labs

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.

k-clustering of maximum spacing.
Given an integer k, find a k-clustering such that spacing is maximized.

47

spacing

k = 4

k-clustering of maximum spacing

48

“Well-known” algorithm for single-link clustering:

• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a different
cluster, and add an edge between them.

• Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm
(stopping when there are k connected components).

Proposition. Kruskal’s algorithm finds a k-clustering of maximum spacing.

Alternate algorithm. Run Prim and delete k-1 edges of largest weight.

Single-link clustering algorithm

49

Dendrogram.
Scientific visualization of hypothetical sequence of evolutionary events.

• Leaves = genes.

• Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

Clustering application: dendrograms

50

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

Dendrogram of cancers in human

