Elementary implementations: summary

Binary Search Trees

- basic implementations
- randomized BSTs
- deletion in BSTs

binary search tree

References: Algorithms in Java, Chapter 12 Intro to Programming, Section 4.4 http://www.cs.princeton.edu/algs4/42bst

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 4, 2008 11:40:49 AM

implementation	worst case		average case		ordered	operations
	search	insert	search hit	insert	iteration?	on keys
unordered array	Ν	N	N/2	N	no	equals()
unordered list	Ν	N	N/2	N	no	equals()
ordered array	lg N	Ν	lg N	N/2	yes	<pre>compareTo()</pre>
ordered list	Ν	N	N/2	N/2	yes	compareTo()

Challenge. Efficient implementations of search and insert.

Binary search trees

Def. A BST is a binary tree in symmetric order.

- A binary tree is either:
- Empty.
- A key-value pair and two disjoint binary trees.

Symmetric order. Every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

3

BST representation

BST implementation (skeleton)

BST search

Get. Return value corresponding to given key, or null if no such key.

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

<pre>public Value get(Key key) {</pre>									
Node x = root;									
while (x != null)									
{									
<pre>int cmp = key.compareTo(x.key);</pre>									
if $(cmp < 0) x = x.left;$									
else if (cmp > 0) $x = x.right;$									
<pre>else if (cmp == 0) return x.val;</pre>									
}									
return null;									
}									

Running time. Proportional to depth of node.

BST insert

Put. Associate value with key.

BST insert: Java implementation

Put. Associate value with key.

public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
 if (x == null) return new Node(key, val);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 return x;
}

Running time. Proportional to depth of node.

BST construction example

BST insertion: visualization

Ex. Insert keys in random order.

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if no duplicate keys.

13

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of compares for a search/insert is ~ 2 ln N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order, expected height of tree is $\sim~4.311$ ln N - 1.953 ln ln N.

But... Worst-case for search/insert/height is N (but occurs with exponentially small chance when keys are inserted in random order).

Tree shape

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

ST implementations: summary

implementation	guarantee		averag	e case	ordered	operations
	search	insert	search hit	insert	iteration?	on keys
unordered array	Ν	Ν	N/2	N	no	equals()
unordered list	Ν	Ν	N/2	N	no	equals()
ordered array	lg N	Ν	lg N	N/2	yes	compareTo()
ordered list	N	Ν	N/2	N/2	yes	compareTo()
BST	N	N	1.38 lg N	1.38 lg N	?	compareTo()

16

Next challenge. Ordered iteration.

Traversing the tree inorder yields keys in ascending order.

To implement an iterator: need a non-recursive version.

Non-recursive inorder traversal

To process a node:

- Follow left links until empty (pushing onto stack).
- Pop and process.
- Follow right link (push onto stack).

Inorder iteartor: Java implementation

ST implementations: summary

implementation	guarantee		average case		ordered	operations
	search	insert	search hit	insert	iteration?	on keys
unordered array	Ν	Ν	N/2	Ν	no	equals()
unordered list	Ν	Ν	N/2	N	no	equals()
ordered array	lg N	Ν	lg N	N/2	yes	compareTo()
ordered list	N	N	N/2	N/2	yes	compareTo()
BS⊤	Ν	Ν	1.38 lg N	1.38 lg N	yes	compareTo()

Next challenge. Guaranteed efficiency for search and insert.

Searching challenge 3 (revisited):

Problem. Frequency counts in "Tale of Two Cities" Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?

- 1) Unordered array.
- 2) Unordered linked list
- 3) Ordered array with binary search.
- 4) Need better method, all too slow.
- 5) Doesn't matter much, all fast enough.
- 6) BSTs.

insertion cost < 10000 * 1.38 * lg 10000 < .2 million lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

Rotation in BSTs

Two fundamental operations to rearrange nodes in a tree.

- Maintain symmetric order.
- Local transformations (change just 3 pointers).
- Basis for advanced BST algorithms.

Strategy. Use rotations on insert to adjust tree shape to be more balanced.

Key point. No change to BST search code (!)

Rotation in BSTs

Two fundamental operations to rearrange nodes in a tree.

- Easier done than said.
- Raise some nodes, lowers some others.

23

private Node rotL(Node h)

Node v = h.right; h.right = v.left; v.left = h; return v;

randomized BSTs

private Node rotR(Node h)

Node u = h.left; h.left = u.right; u.right = h; return u;

a.right = rotR(S)

BST root insertion

BST root insertion: construction

Ex. ASERCHINGXMPL

Why bother?

- Recently inserted keys are near the top (better for some clients).
- Basis for randomized BST.

Randomized BSTs (Roura, 1996)

Intuition. If tree is random, height is logarithmic. Fact. Each node in a random tree is equally likely to be the root.

Idea. Since new node should be the root with probability 1/(N+1), make it the root (via root insertion) with probability 1/(N+1).

Randomized BST: construction

Ex. Insert 15 keys in ascending order.

Randomized BST construction: visualization

Ex. Insert 500 keys in random order.

Randomized BST: analysis

Proposition. Randomized BSTs have the same distribution as BSTs under random insertion order, no matter in what order keys are inserted.

- Expected height is ~ 4.31107 In N.
- Average search cost is ~ 2 ln N.
- Exponentially small chance of bad balance.

Implementation cost. Need to maintain subtree size in each node.

29

ST implementations: summary

implementation	guarantee		average case		ordered	operations
	search	insert	search hit	insert	iteration?	on keys
unordered array	Ν	Ν	N/2	N	no	equals()
unordered list	Ν	Ν	N/2	Ν	no	equals()
ordered array	lg N	N	lg N	N/2	yes	compareTo()
ordered list	Ν	Ν	N/2	N/2	yes	compareTo()
BST	Ν	Ν	1.38 lg N	1.38 lg N	yes	compareTo()
randomized BST	3 lg N	3 lg N	1.38 lg N	1.38 lg N	yes	compareTo()

Bottom line. Randomized BSTs provide the desired guarantee.

Bonus. Randomized BSTs also support delete (!)

probabilistic, with exponentially small chance of linear time

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. $O(\log N')$ per insert, search, and delete, where N' is the number of elements ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

33

BST deletion: Hibbard deletion

To remove a node from a BST:

- Zero children: just remove it.
- One child: pass the child up.
- Two children: find the next largest node using right-left*, swap with next largest, remove as above.

Randomized BST deletion

To delete a node containing a given key:

- Find the node containing the key.
- Remove the node.
- Join its two subtrees to make a tree.

Ex. Delete S.

BST deletion: Hibbard deletion

To remove a node from a BST:

- Zero children: just remove it.
- One child: pass the child up.
- Two children: find the next largest node using right-left*, swap with next largest, remove as above.

Unsatisfactory solution. Not symmetric, code is clumsy. Surprising consequence. Trees not random (!) \Rightarrow sqrt(N) per op. Longstanding open problem. Simple and efficient delete for BSTs.

Randomized BST deletion

To delete a node containing a given key:

• Find the node containing the key.

- Remove the node.
- Join its two subtrees to make a tree.

н

Ex. Delete S.

private Node remove(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp < 0) x.left = remove(x.left, key); else if (cmp > 0) x.right = remove(x.right, key); else if (cmp == 0) return join(x.left, x.right); return x; }

Randomized BST join

To join two subtrees with all keys in one less than all keys in the other:

- Maintain counts of nodes in subtrees a and b.
- With probability |a|/(|a|+|b|):
 - root = root of a
 - left subtree = left subtree of a
 - right subtree = join b and right subtree of a
- With probability |a|/(|a|+|b|) do the symmetric operations.

Randomized BST join

To join two subtrees with all keys in one less than all keys in the other:

join these two subtrees

- Maintain counts of nodes in subtrees a and b.
- With probability |a|/(|a|+|b|):
 - root = root of a
 - left subtree = left subtree of a
 - right subtree = join b and right subtree of a
- With probability |a|/(|a|+|b|) do the symmetric operations.

Randomized BST deletion

To delete a node containing a given key:

- Find the node containing the key.
- Remove the node.
- Join its two subtrees to make a tree.

Proposition. Tree still random after delete (!). Bottom line. Logarithmic guarantee for search/insert/delete.

ST implementations: summary

implementation search	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	iteration?	on keys
unordered array	N	Ν	N	N/2	N	N/2	no	equals()
unordered list	Ν	Ν	N	N/2	Ν	N/2	no	equals()
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes	compareTo()
ordered list	Ν	Ν	Ν	N/2	N/2	N/2	yes	compareTo()
BST	Ν	Ν	Ν	1.38 lg N	1.38 lg N	2	yes	compareTo()
randomized BST	3 lg N	3 lg N	3 lg N	1.38 lg N	1.38 lg N	1.38 lg N	yes	compareTo()

Bottom line. Randomized BSTs provide the desired guarantee.

Next lecture. Can we do better?

probabilistic, with exponentially small chance of linear time