
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 20, 2008 12:17:14 AM

Advanced Topics in Sorting

‣ selection
‣ duplicate keys
‣ system sorts
‣ comparators

2

Selection

Goal. Find the kth largest element.
Ex. Min (k = 0), max (k = N-1), median (k = N/2).

Applications.

• Order statistics.

• Find the “top k.”

Use theory as a guide.

• Easy O(N log N) upper bound.

• Easy O(N) upper bound for k = 1, 2, 3.

• Easy Ω(N) lower bound.

Which is true?

• Ω(N log N) lower bound?

• O(N) upper bound?
is selection as hard as sorting?

is there a linear-time algorithm for all k?

Partition array so that:

• Element a[i] is in place.

• No larger element to the left of i.

• No smaller element to the right of i.

Repeat in one subarray, depending on i; finished when i equals k.

3

Quick-select

public static Comparable select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo)
 {
 int i = partition(a, lo, hi);
 if (i < k) lo = i + 1;
 else if (i > k) hi = i - 1;
 else return a[k];
 }
 return a[k];
}

v

v

lo hi

lo hi

 v v

i

before

after

if a[k] is here,

set hi to i-1

if a[k] is here,

set lo to i+1

4

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.
Pf sketch.

• Intuitively, each partitioning step roughly splits array in half:
N + N/2 + N/4 + … + 1 ~ 2N compares.

• Formal analysis similar to quicksort analysis yields:

Ex. (2 + 2 ln 2) N compares to find the median.

Remark. Quick-select might use ~ N2/2 compares, but as with quicksort,
the random shuffle provides a probabilistic guarantee.

CN = 2 N + k ln (N / k) + (N - k) ln (N / (N - k))

5

Theoretical context for selection

Challenge. Design a selection algorithm whose running time is linear in the
worst-case.

Theorem. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a compare-
based selection algorithm that takes linear time in the worst case.

Remark. Algorithm is too complicated to be useful in practice.

Use theory as a guide.

• Still worthwhile to seek practical linear-time (worst-case) algorithm.

• Until one is discovered, use quick-select if you don’t need a full sort.

6

Generic methods

In our select() implementation, client needs a cast.

The compiler is also unhappy.

Q. How to fix?

 % javac Quick.java
 Note: Quick.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Double median = (Double) Quick.select(a, N/2);

hazardous cast
required

7

Generic methods

Safe version. Compiles cleanly, no cast needed in client.

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

public class Quick
{
 public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
 { /* as before */ }

 public static <Key extends Comparable<Key>> void sort(Key[] a)
 { /* as before */ }

 private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
 { /* as before */ }

 private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
 { /* as before */ }

 private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
 { Key swap = a[i]; a[i] = a[j]; a[j] = swap; }

}

generic type variable
(value inferred from argument a[])

return type matches array type

can declare variables of generic type

‣ selection
‣ duplicate keys
‣ comparators
‣ applications

8

9

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

• Sort population by age.

• Find collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge file.

• Small number of key values.

see Assignment 3

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

10

Duplicate keys

Mergesort with duplicate keys. Always ~ N lg N compares.

Quicksort with duplicate keys.

• Algorithm goes quadratic unless partitioning stops on equal keys!

• 1990s C user found this defect in qsort().

several textbook and system implementations
also have this defect

Duplicate keys: the problem

Assume all keys are equal. Recursive code guarantees this case predominates!

Mistake. Put all keys equal to the partitioning element on one side.
Consequence. ~ N2 / 2 compares when all keys equal.

Recommended. Stop scans on keys equal to the partitioning element.
Consequence. ~ N lg N compares when all keys equal.

Desirable. Put all keys equal to the partitioning element in place.

11

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into 3 parts so that:

• Elements between lt and gt equal to partition element v.

• No larger elements to left of lt.

• No smaller elements to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

• Convention wisdom until mid 1990s: not worth doing.

• New approach discovered when fixing mistake in C library qsort().

• Now incorporated into qsort() and Java system sort.
12

3-way partitioning

v

>v<v =v

lo hi

lt gtlo hi

3-way partitioning

before

after

13

3-way partitioning: Dijkstra's solution

3-way partitioning.

• Let v be partitioning element a[lo].

• Scan i from left to right.
- a[i] less than v : exchange a[lt] with a[i] and increment both lt and i
- a[i] greater than v : exchange a[gt] with a[i] and decrement gt
- a[i] equal to v : increment i

All the right properties.

• In-place.

• Not much code.

• Small overhead if no equal keys.

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

3-way partitioning

before

during

after

14

3-way partitioning: trace

 a[]
lt i gt 0 1 2 3 4 5 6 7 8 9 10 11
 0 0 11 R B W W R W B R R W B R
 0 1 11 R B W W R W B R R W B R
 1 2 11 B R W W R W B R R W B R
 1 2 10 B R R W R W B R R W B W
 1 3 10 B R R W R W B R R W B W
 1 3 9 B R R B R W B R R W W W
 2 4 9 B B R R R W B R R W W W
 2 5 9 B B R R R W B R R W W W
 2 5 8 B B R R R W B R R W W W
 2 5 7 B B R R R R B R W W W W
 2 6 7 B B R R R R B R W W W W
 3 7 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W

3-way partitioning trace (array contents after each loop iteration)

v

private static void sort(Comparable[] a, int lo, int hi)
{
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt)
 {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

3-way partitioning

before

during

after

15

3-way quicksort: Java implementation

16

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

17

Duplicate keys: lower bound

Proposition. [Sedgewick-Bentley, 1997] Quicksort with 3-way partitioning
is entropy-optimal.

Pf. [beyond scope of course]

• Generalize decision tree.

• Tie cost to Shannon entropy.

Ex. Linear-time when only a constant number of distinct keys.

Bottom line. Randomized quicksort with 3-way partitioning reduces running
time from linearithmic to linear in broad class of applications.

‣ selection
‣ duplicate keys
‣ comparators
‣ applications

18

Comparable interface: sort uses type’s natural order.

19

Natural order

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }
 …
 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

natural order

20

Generalized compare

Comparable interface: sort uses type’s natural order.

Problem 1. May want to use a non-natural order.
Problem 2. Desired data type may not come with a “natural” order.

Ex. Sort strings by:

• Natural order. Now is the time

• Case insensitive. is Now the time

• Spanish. café cafetero cuarto churro nube ñoño

• British phone book. McKinley Mackintosh

String[] a;
...
Arrays.sort(a);
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

pre-1994 order for digraphs
ch and ll and rr

import java.text.Collator;

21

Comparators

Solution. Use Java's Comparator interface.

Remark. The compare() method implements a total order like compareTo().

Advantages. Decouples the definition of the data type from the
definition of what it means to compare two objects of that type.

• Can add any number of new orders to a data type.

• Can add an order to a library data type with no natural order.

public interface Comparator<Key>
{
 public int compare(Key v, Key w);
}

22

Comparator example

Reverse order. Sort an array of strings in reverse order.

public class ReverseOrder implements Comparator<String>
{
 public int compare(String a, String b)
 {
 return b.compareTo(a);
 }
}

 ...
 Arrays.sort(a, new ReverseOrder());
 ...

comparator implementation

client

23

Sort implementation with comparators

To support comparators in our sort implementations:

• Pass Comparator to sort() and less().

• Use it in less().

Ex. Insertion sort.

public static <Key> void sort(Key[] a, Comparator<Key> comparator)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(comparator, a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
}

private static <Key> boolean less(Comparator<Key> c, Key v, Key w)
{ return c.compare(v, w) < 0; }

private static <Key> void exch(Key[] a, int i, int j)
{ Key swap = a[i]; a[i] = a[j]; a[j] = swap; }

type variable
(not necessarily Comparable)

24

Generalized compare

Comparators enable multiple sorts of a single file (by different keys).

Ex. Sort students by name or by section.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name then sort by section

Arrays.sort(students, Student.BY_NAME);
Arrays.sort(students, Student.BY_SECT);

Ex. Enable sorting students by name or by section.

public class Student
{
 public static final Comparator<Student> BY_NAME = new ByName();
 public static final Comparator<Student> BY_SECT = new BySect();

 private final String name;
 private final int section;
 ...
 private static class ByName implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.name.compareTo(b.name); }
 }

 private static class BySect implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.section - b.section; }
 }
}

25

Generalized compare

only use this trick if no danger of overflow

26

Generalized compare problem

A typical application. First, sort by name; then sort by section.

@#%&@!!. Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Arrays.sort(students, Student.BY_NAME); Arrays.sort(students, Student.BY_SECT);

27

Stability

Q. Which sorts are stable?

• Selection sort?

• Insertion sort?

• Shellsort?

• Quicksort?

• Mergesort?

Open problem. Stable, inplace, N log N, practical sort??

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

‣ selection
‣ duplicate keys
‣ comparators
‣ system sort

28

Sorting algorithms are essential in a broad variety of applications:
• Sort a list of names.

• Organize an MP3 library.

• Display Google PageRank results.

• List RSS news items in reverse chronological order.

• Find the median.

• Find the closest pair.

• Binary search in a database.

• Identify statistical outliers.

• Find duplicates in a mailing list.

• Data compression.

• Computer graphics.

• Computational biology.

• Supply chain management.

• Load balancing on a parallel computer.
. . .

Every system needs (and has) a system sort!
29

obvious applications

problems become easy once items
are in sorted order

non-obvious applications

Sorting applications

30

Java system sorts

Java uses both mergesort and quicksort.

• Arrays.sort() sorts array of Comparable or any primitive type.

• Uses quicksort for primitive types; mergesort for objects.

Q. Why use different algorithms, depending on type?

 import java.util.Arrays;

 public class StringSort
 {
 public static void main(String[] args)
 {
 String[] a = StdIn.readAll().split("\\s+");
 Arrays.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
 }

31

Java system sort for primitive types

Engineering a sort function. [Bentley-McIlroy, 1993]

• Original motivation: improve qsort().

• Basic algorithm = 3-way quicksort with cutoff to insertion sort.

• Partition on Tukey's ninther: median of the medians of 3 samples,
each of 3 elements.

Why use Tukey's ninther?

• Better partitioning than sampling.

• Less costly than random.

approximate median-of-9

LR A P M C AG X JK R BZ E

A MR X KG J EB

K EM

Kninther

medians

groups of 3

nine evenly
spaced elements R J

32

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java’s system sort is solid, right?

A killer input.

• Blows function call stack in Java and crashes program.

• Would take quadratic time if it didn’t crash first.

more disastrous consequences in C

% more 250000.txt
0
218750
222662
11
166672
247070
83339
...

% java IntegerSort < 250000.txt
Exception in thread "main"
java.lang.StackOverflowError
 at java.util.Arrays.sort1(Arrays.java:562)
 at java.util.Arrays.sort1(Arrays.java:606)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 ...

Java's sorting library crashes, even if
you give it as much stack space as Windows allows

250,000 integers
between 0 and 250,000

33

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

• Construct malicious input while running system quicksort,
in response to elements compared.

• If v is partitioning element, commit to (v < a[i]) and (v < a[j]), but don't
commit to (a[i] < a[j]) or (a[j] > a[i]) until a[i] and a[j] are compared.

Consequences.

• Confirms theoretical possibility.

• Algorithmic complexity attack: you enter linear amount of data;
server performs quadratic amount of work.

Remark. Attack is not effective if file is randomly ordered before sort.

Q. Why do you think system sort is deterministic?
34

System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

• Insertion sort, selection sort, bubblesort, shaker sort.

• Quicksort, mergesort, heapsort, samplesort, shellsort.

• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts. Distribution, MSD, LSD, 3-way radix quicksort.

Parallel sorts.

• Bitonic sort, Batcher even-odd sort.

• Smooth sort, cube sort, column sort.

• GPUsort.

35

System sort: Which algorithm to use?

Applications have diverse attributes.

• Stable?

• Multiple keys?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your file randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.
Cannot cover all combinations of attributes.

Q. Is the system sort good enough?
A. Usually.

many more combinations of
attributes than algorithms

36

Sorting summary

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N
N lg N probabilistic guarantee

fastest in practice

x N 2 / 2 2 N ln N N lg N improves quicksort in presence of
duplicate keys

x N lg N N lg N N lg N N lg N guarantee, stable

x x N lg N N lg N N lg N holy sorting grail

