Mutual Exclusion:
Some History, Some Problems, and
a Glimmer of Hope

Andrew Birrell
Michael Isard

Microsoft Research, Silicon Valley

Outline

234 April, 2007

* Goal: create concurrent programs that
- Are correct
- Perform well
- Remain that way a few years later

* This talk:
- What is this "concurrency” thing?
- How did we get here?
- What's wrong?
- Where can we go instead?

Mutual Exclusion ... a Glimmer of Hope 2

Not Included

* Creating concurrency
* Proving stuff

+ Concurrency without shared memory
- E.g., functional languages, some hardware designs

What is "Concurrency”?

Mutual Exclusion ... a Glimmer of Hope

* Program doing multiple things at once

+ Two cases:
(A) Fake: waiting for a file read, so do something else
(B) Real: multiple processors sharing resources
* Note: disk with DMA is effectively a processor

* (A) is much easier: no arbitrary inter-leavings
- Sequential events, or non-preemptive threads
- So this talk is mostly about (B) ... but not entirely

Mutual Exclusion ... a Glimmer of Hope 4

Dijkstra (1960's version)

e

+ Abstraction: multi-processor shared memory.
Only considering case (B).

+ Using atomic read/write (CACM 1965)
+ Using ParBegin/Semaphore/P/V (CACM 1968)

- A few provable results but no higher-level
abstractions.

- Requires a Ph.D. from a good university.

Mutual Exclusion ... a Glimmer of Hope 5

Hansen and Hoare (1974 version)

+ Abstraction: sequential processes and monitors

- ("condition variable” for in-process blocking)

* Monitor ties mutual exclusion to data:

- Programmer groups shared data into monitors
- System guarantees mutual exclusion per monitor

* Programmer must say what needs protected

*+ Programmer must maintain monitor invariants
* Programmer must layer program hierarchically
* Requires a Ph.D. (but not such a good one)

Mutual Exclusion ... a Glimmer of Hope 6

Hoare (1978 version)

+ Abstraction: sequential state machines passing
messages (Communicating Sequential
Processes).

+ Digression: duality (Lauer & Needham 1979)
- Mapping between CSP-like and Monitor-like program
- Programming difficulties map across, too.

+ Works well with sequential machines (if DAG)
+ Doesn't help when using shared memory

Mutual Exclusion ... a Glimmer of Hope 7

Modula-2+ (1984)

+ Threads and locks (mutex): not monitors

+ Abandoned link between mutex and its data

- No enforced mutual exclusion at all

* Retained the problems of Hoare monitors

+ SRC wrote 1 million lines of concurrent program

- It mostly worked
- But we (almost) all had Ph.D.s

Mutual Exclusion ... a Glimmer of Hope 8

Remainder of 19xx

+ SRC solution was widely adopted:
- OSF DCE

- Posix

- Windows (somewhat)

- Java

- CH#

+ It's easy: to describe; to use; to get wrong
+ "Introduction to Programming with Threads”
* Mostly uni-processors; programs mostly work

Mutual Exclusion ... a Glimmer of Hope 9

Reprise: "classic” thread/mutex/CV

* VAR t = Fork(method, args)

- "method(args)” executes in new asynchronous thread

- TRY Acquire(m); FINALLY Release(m);

« UNTIL b DO Wait(m, cv);

- UNTIL b DO

TRY Atomically { Release(m); P(cv); }
FINALLY Acquire(m);

Mutual Exclusion ... a Glimmer of Hope 10

Variant: Event-Based Programs

- System invokes a method for incoming "event”
- Event executes to completion

"wait" is replaced by event creation. E.g.:
- Initiate a file read, then exit from event
- Later, file completion event gets handled

* When waiting, the event-handler state machine
replaces state held in thread stacks

 If concurrent, still needs mutual exclusion
- Problems are identical to classic thread/mutex/CV

Mutual Exclusion ... a Glimmer of Hope 1

Variant: NT's "Completion Port” (1996)

+ System maintains a pool of ready threads
* When event arrives, dispatches it to a thread

- Subject to not exceeding desired concurrency level

+ If thread blocks, dispatches another event

- Maintains real-fime concurrency level

* Low-level implementation, tied to scheduler
* Primary mechanism for "event-based"”

programming in Windows

+ Leaves mutual exclusion problems untouched

Mutual Exclusion ... a Glimmer of Hope 12

So, What's Wrong?

* Manual selection of mutual exclusion:

- Default is too little (and hence races)

- Easy fix is too much (deadlocks or blank stares)

* Projects don't create hierarchical abstractions
- Can't decide and/or maintain acyclic locking order

+ "Composition” requires entire new abstractions
+ "Clever” optimizations aren't maintainable

- And are often wrong

+ "Stack-ripping” in event-based programs

Mutual Exclusion ... a Glimmer of Hope 13

Locking Order Issues

+ Class "A": + Abstractions and
FUNCTION f1() { call-graph:
LOCK a{ ... b.f4(); } R
FUNCTION f2() { A —_ B
LOCKa{ ..} }

+ Caused by cyclic
dependencies

* Class "B": - Abstractions should
FUNCTION f3() { form a DAG
Fuhgilfobrj ;c--:-fz(); } - Difficult, in general

0 - Hard to maintain
LOCKb{..}.}

Mutual Exclusion ... a Glimmer of Hope 14

Composition Problems with Monitors

+ Consider a hash table class with operations:
h.insert(k,v);

v = h.read(k);

h.delete(k);

+ Consider client layering a "move" operation:
h.move(k, g) = {
VAR v = h.read(k); g.insert(k,v); h.delete(k); }

« How does client make "move" atomic?

Mutual Exclusion ... a Glimmer of Hope 15

Cleverness: Double-Check Locking

+ “Initialize-on-first-use" paradigm:

VAR v = NULL;

FUNCTION ensureInitialized() {
IF (v == NULL) THEN {
LOCK m {
IF (v == NULL) THEN v = NEW Obj():;
I

Mutual Exclusion ... a Glimmer of Hope 16

Stack-Ripping

* Inversion 1.0 of a library:

- "h.read(k)" accesses in-memory data structure

- Non-blocking event code can call “h.read(k)” safely
* Inversion 2.0 of the library:

- "h" has become big, now uses a B-Tree on disk

- Calling pattern is now “h.startRead(k)", followed
later by a completion event delivering the value.

- Propagates to all callers, and their callers, ...

- At best disruptive; often a performance bug

Mutual Exclusion ... a Glimmer of Hope 17

Transactions to the Rescue?

* Mark regions of your program as “"atomic”
+ System promises:

- Concurrent transactions execute as if sequentially
- Transactions really execute in parallel if possible

- Applies equally well to memory as to a database
+ Software implementations today; hardware

tomorrow (or so)

- Appealing simplicity
+ Extremely limited experience with this usage

Mutual Exclusion ... a Glimmer of Hope 18

Mutual Exclusion with atomic blocks

* Thread A: ATOMIC { total = total - debit }
+ Thread A: ATOMIC { total = total + debit }

+ Removes locking order problems (largely)
+ Composability/extension is easy

Programmer still decides to protect things;
simplest code still gets least protection

+ Cleverness still not explicit, so not maintainable
+ Doesn't help stack-ripping in event-based code

Mutual Exclusion ... a Glimmer of Hope 19

Fun: mix ATOMIC with non-atomic code

+ Global: VAR x = O; VAR shared = TRUE;

* Thread A:

ATOMIC { x = O; shared = FALSE };
VAR temp = x;

+ Thread B:

ATOMIC {if (shared){ ..;x=17; ... }}

Mutual Exclusion ... a Glimmer of Hope 20

Instead: Mostly-Sequential Programming

Default to correctly synchronized programs

- System provides the mutual exclusion
Let the system do the optimization

(mostly)

Make programmer optimizations explicit

- And, hopefully, therefore maintainable
Some examples:

- SQL query execution

- The JavaScript part of ATAX

- Map/Reduce or Dryad

- AME (Automatic Mutual Exclusion)

Mutual Exclusion ... a Glimmer of Hope

21

Client-side JavaScript (in ATAX)

Pure event-based programs

Access to the server-side via XMLHttp:
- Initiate async request
- Sometime later response arrives as an event

User interactions via “onclick” (etc.) events
Single event at a time, execute to completion

Screen gets updated only between events
- i.e. UT updates look atomic

Easy, works well, but very limited applicability

Mutual Exclusion ... a Glimmer of Hope 22

Dryad

* Programmer provides:

- Sequential vertex programs (e.g. in C++)
- Dataflow graph instantiating and
connecting them
System provides:

- Scheduling of vertices onto processors
(local or distributed)

- Communication and synchronization
- Fault tolerance

L O

(% o0 —{z {00 > <
f o= |
(PO F—»{Z » 0 > <)

="
By
el

Works beautifully, for the set of
programs that fit this pattern

Scales extremely well

Mo

AP

4n

P

=]

Mutual Exclusion ... a Glimmer of Hope

~n
w

AME (Automatic Mutual Exclusion)

Everything is in transactions (almost)

Execution = set of “"asynchronous method calls”
- "main” is the initial async method call

- Program creates more by saying "ASYNC x.m(args)"
- Forked calls execute iff this transaction commits

System guarantees that:
- Execution is a serialization of the async calls
- The async calls execute in parallel if possible

Mutual Exclusion ... a Glimmer of Hope 24

AME: BlockUntil

Within an async method can say "BlockUntil(b)"

A ftransaction commits only if all its executed
"BlockUntil" calls have the argument TRUE

Otherwise, the transaction aborts, and retries
later

The system is responsible for wise scheduling
of transaction (expression "b" is a good hint)

Mutual Exclusion ... a Glimmer of Hope 25

AME Example: Concurrent File Reading

void OpenRead(FileName name) {
File f = AsyncOpenFile(name);
async StartRead(f):

}

void StartRead(File f) {
BlockUntil(f.Opened):
g_nextOffset = O;
g_hextOffsetToEnqueue = O;
for (inti=0;i<4; ++i){
ReadBlock block = new ReadBlock;
block.offset = g_nextOffset;
block.file = f;
g_nextOffset += block.size;

void WaitForBlock(ReadBlock block) {
BlockUntil(block.ready &&

g_nextOffsetToEnqueue ==
block.offset);

if (block.EOF) {
g_endOfFile = true;

} else {
g_queuedBlocks.PushBack(block);
block.offset = g_nextOffset;
g_nextOffset += block.size;
block.file.StartAsyncRead(block);
async WaitForBlock(block):

g_hextOffset ToEnqueue +=

f.StartAsyncRead(block); block.size;
async WaitForBlock(block): }
}
}
Mutual Exclusion ... a Glimmer of Hope 26

AME: Yield

A mechanism to allow intermediate commits:

- Within an async method can say "Yield()"

- Commits this transaction and starts a new one
Program is now a set of "atomic fragments”,
and they're what gets serialized
A general mechanism for allowing other
transactions to make progress

- “Yield(); BlockUntil(b)" is like "Wait(...)" in monitors

- But also, solves the stack-ripping problem

Mutual Exclusion ... a Glimmer of Hope 27

Two (Separate) Examples Using "Yield”

void RunZombie() yields {

Zombie z;

z.Initialize();

do {
Yield():
Time now = GetTimeNow();
BlockUntil(now - z.lastUpdate >

z.updateInterval);
z.lastUpdate = now;
MoveAround(z):
if (Distance(z, g_player) <
DeathRadius) {
KillPlayer():

} while (Distance(z, g_player) >=
DeathRadius);
}

void DoQueue(Queue inQ,
Queue outQ) yields {
do {
Yield();
BlockUntil(inQ.Length() > O ||
g_finished);

while (inQ.Length() > 0) {
Item i = inQ.PopFront();
async DoItem(i, outQ):

} while (Ig_finished);
}

void DoItem(Item i,
Queue outQ) yields {
DoSlowProcessing(i);
Yield():

outQ.PushBack(i);
}

Mutual Exclusion ...

a Glimmer of Hope 28

AME: Unprotected

* An async method can say "UNPROTECTED(... }
- Commit current transaction, then

- Execute non-transacted code, then

- Start a new transaction

* Use for code with side-effects (e.g I/0), or
for calling legacy code

+ Transacted state must be marshalled in/out
+ Better default: dangerous code is labelled

Summary

Mutual Exclusion ... a Glimmer of Hope 29

+ Existing mutual exclusion mechanisms are too

difficult to use

* Transactions probably help
+ Atomic blocks don't help enough

- AME:

- Gets it right with little programmer assistance
- High-enough level to allow a lot of optimization

Mutual Exclusion ... a Glimmer of Hope 30

Bibliography

+ Historical papers:
- http://birrell.org/andrew/concurrency/

* Dryad:

- http://research.microsoft.com/research/sv/dryad/

« Automatic Mutual Exclusion:

- http://research.microsoft.com/research/sv/ame/

Mutual Exclusion ... a Glimmer of Hope 31

