
23rd April, 2007

Mutual Exclusion:
Some History, Some Problems, and

a Glimmer of Hope

Andrew Birrell
Michael Isard

Microsoft Research, Silicon Valley

Mutual Exclusion ... a Glimmer of Hope 2

Outline

• Goal: create concurrent programs that
– Are correct
– Perform well
– Remain that way a few years later

• This talk:
– What is this “concurrency” thing?
– How did we get here?
– What’s wrong?
– Where can we go instead?

Mutual Exclusion ... a Glimmer of Hope 3

Not Included

• Creating concurrency

• Proving stuff

• Concurrency without shared memory
– E.g., functional languages, some hardware designs

Mutual Exclusion ... a Glimmer of Hope 4

What is “Concurrency”?

• Program doing multiple things at once

• Two cases:
(A) Fake: waiting for a file read, so do something else
(B) Real: multiple processors sharing resources

• Note: disk with DMA is effectively a processor

• (A) is much easier: no arbitrary inter-leavings
– Sequential events, or non-preemptive threads
– So this talk is mostly about (B) … but not entirely

Mutual Exclusion ... a Glimmer of Hope 5

Dijkstra (1960’s version)

• Abstraction: multi-processor shared memory.
Only considering case (B).

• Using atomic read/write (CACM 1965)

• Using ParBegin/Semaphore/P/V (CACM 1968)

• A few provable results but no higher-level
abstractions.

• Requires a Ph.D. from a good university.
Mutual Exclusion ... a Glimmer of Hope 6

Hansen and Hoare (1974 version)

• Abstraction: sequential processes and monitors
– (“condition variable” for in-process blocking)

• Monitor ties mutual exclusion to data:
– Programmer groups shared data into monitors
– System guarantees mutual exclusion per monitor

• Programmer must say what needs protected
• Programmer must maintain monitor invariants
• Programmer must layer program hierarchically
• Requires a Ph.D. (but not such a good one)

Mutual Exclusion ... a Glimmer of Hope 7

Hoare (1978 version)

• Abstraction: sequential state machines passing
messages (Communicating Sequential
Processes).

• Digression: duality (Lauer & Needham 1979)
– Mapping between CSP-like and Monitor-like program
– Programming difficulties map across, too.

• Works well with sequential machines (if DAG)
• Doesn’t help when using shared memory

Mutual Exclusion ... a Glimmer of Hope 8

Modula-2+ (1984)

• Threads and locks (mutex): not monitors

• Abandoned link between mutex and its data
– No enforced mutual exclusion at all

• Retained the problems of Hoare monitors

• SRC wrote 1 million lines of concurrent program
– It mostly worked
– But we (almost) all had Ph.D.s

Mutual Exclusion ... a Glimmer of Hope 9

Remainder of 19xx

• SRC solution was widely adopted:
– OSF DCE
– Posix
– Windows (somewhat)
– Java
– C#

• It’s easy: to describe; to use; to get wrong
• “Introduction to Programming with Threads”
• Mostly uni-processors; programs mostly work

Mutual Exclusion ... a Glimmer of Hope 10

Reprise: “classic” thread/mutex/CV

• VAR t = Fork(method, args)
– “method(args)” executes in new asynchronous thread

• LOCK m {…… }
– TRY Acquire(m); …… FINALLY Release(m);

• UNTIL b DO Wait(m, cv);
– UNTIL b DO

TRY Atomically { Release(m); P(cv); }
FINALLY Acquire(m);

Variant: Event-Based Programs

• System invokes a method for incoming “event”
• Event executes to completion
• “wait” is replaced by event creation. E.g.:

– Initiate a file read, then exit from event
– Later, file completion event gets handled

• When waiting, the event-handler state machine
replaces state held in thread stacks

• If concurrent, still needs mutual exclusion
– Problems are identical to classic thread/mutex/CV

Mutual Exclusion ... a Glimmer of Hope 11 Mutual Exclusion ... a Glimmer of Hope 12

Variant: NT’s “Completion Port” (1996)

• System maintains a pool of ready threads
• When event arrives, dispatches it to a thread

– Subject to not exceeding desired concurrency level
• If thread blocks, dispatches another event

– Maintains real-time concurrency level

• Low-level implementation, tied to scheduler
• Primary mechanism for “event-based”

programming in Windows
• Leaves mutual exclusion problems untouched

Mutual Exclusion ... a Glimmer of Hope 13

So, What’s Wrong?

• Manual selection of mutual exclusion:
– Default is too little (and hence races)
– Easy fix is too much (deadlocks or blank stares)

• Projects don’t create hierarchical abstractions
– Can’t decide and/or maintain acyclic locking order

• “Composition” requires entire new abstractions
• “Clever” optimizations aren’t maintainable

– And are often wrong
• “Stack-ripping” in event-based programs

Locking Order Issues

• Class “A”:
FUNCTION f1() {

LOCK a { … b.f4(); }
FUNCTION f2() {

LOCK a { … }; }

• Class “B”:
FUNCTION f3() {

LOCK b { … a.f2(); }
FUNCTION f4() {

LOCK b { … }; }

• Abstractions and
call-graph:

• Caused by cyclic
dependencies

• Abstractions should
form a DAG
– Difficult, in general
– Hard to maintain

Mutual Exclusion ... a Glimmer of Hope 14

A B

Mutual Exclusion ... a Glimmer of Hope 15

Composition Problems with Monitors

• Consider a hash table class with operations:
h.insert(k,v);
v = h.read(k);
h.delete(k);

• Consider client layering a “move” operation:
h.move(k, g) = {

VAR v = h.read(k); g.insert(k,v); h.delete(k); }

• How does client make “move” atomic?

Mutual Exclusion ... a Glimmer of Hope 16

Cleverness: Double-Check Locking

• “Initialize-on-first-use” paradigm:

VAR v = NULL;

FUNCTION ensureInitialized() {
IF (v == NULL) THEN {

LOCK m {
IF (v == NULL) THEN v = NEW Obj();

};
};

}

Mutual Exclusion ... a Glimmer of Hope 17

Stack-Ripping

• In version 1.0 of a library:
– “h.read(k)” accesses in-memory data structure
– Non-blocking event code can call “h.read(k)” safely

• In version 2.0 of the library:
– “h” has become big, now uses a B-Tree on disk
– Calling pattern is now “h.startRead(k)”, followed

later by a completion event delivering the value.
– Propagates to all callers, and their callers, …

• At best disruptive; often a performance bug

Mutual Exclusion ... a Glimmer of Hope 18

Transactions to the Rescue?

• Mark regions of your program as “atomic”
• System promises:

– Concurrent transactions execute as if sequentially
– Transactions really execute in parallel if possible

• Applies equally well to memory as to a database
• Software implementations today; hardware

tomorrow (or so)

• Appealing simplicity
• Extremely limited experience with this usage

Mutual Exclusion with atomic blocks

• Thread A: ATOMIC { total = total – debit }
• Thread A: ATOMIC { total = total + debit }

• Removes locking order problems (largely)
• Composability/extension is easy

• Programmer still decides to protect things;
simplest code still gets least protection

• Cleverness still not explicit, so not maintainable
• Doesn’t help stack-ripping in event-based code

Mutual Exclusion ... a Glimmer of Hope 19 Mutual Exclusion ... a Glimmer of Hope 20

Fun: mix ATOMIC with non-atomic code

• Global: VAR x = 0; VAR shared = TRUE;

• Thread A:
ATOMIC { x = 0; shared = FALSE };
VAR temp = x;

• Thread B:
ATOMIC { if (shared) { … ; x = 17; …… } }

Mutual Exclusion ... a Glimmer of Hope 21

Instead: Mostly-Sequential Programming

• Default to correctly synchronized programs
– System provides the mutual exclusion

• Let the system do the optimization (mostly)
• Make programmer optimizations explicit

– And, hopefully, therefore maintainable
• Some examples:

– SQL query execution
– The JavaScript part of AJAX
– Map/Reduce or Dryad
– AME (Automatic Mutual Exclusion)

Mutual Exclusion ... a Glimmer of Hope 22

Client-side JavaScript (in AJAX)

• Pure event-based programs
• Access to the server-side via XMLHttp:

– Initiate async request
– Sometime later response arrives as an event

• User interactions via “onclick” (etc.) events
• Single event at a time, execute to completion
• Screen gets updated only between events

– i.e. UI updates look atomic

• Easy, works well, but very limited applicability

Mutual Exclusion ... a Glimmer of Hope 23

Dryad

• Programmer provides:
– Sequential vertex programs (e.g. in C++)
– Dataflow graph instantiating and

connecting them
• System provides:

– Scheduling of vertices onto processors
(local or distributed)

– Communication and synchronization
– Fault tolerance

• Works beautifully, for the set of
programs that fit this pattern

• Scales extremely well
Mutual Exclusion ... a Glimmer of Hope 24

AME (Automatic Mutual Exclusion)

• Everything is in transactions (almost)

• Execution = set of “asynchronous method calls”
– “main” is the initial async method call
– Program creates more by saying “ASYNC x.m(args)”
– Forked calls execute iff this transaction commits

• System guarantees that:
– Execution is a serialization of the async calls
– The async calls execute in parallel if possible

AME: BlockUntil

• Within an async method can say “BlockUntil(b)”

• A transaction commits only if all its executed
“BlockUntil” calls have the argument TRUE

• Otherwise, the transaction aborts, and retries
later

• The system is responsible for wise scheduling
of transaction (expression “b” is a good hint)

Mutual Exclusion ... a Glimmer of Hope 25

AME Example: Concurrent File Reading

• void OpenRead(FileName name) {
• File f = AsyncOpenFile(name);
• async StartRead(f);
• }
•
• void StartRead(File f) {
• BlockUntil(f.Opened);
• g_nextOffset = 0;
• g_nextOffsetToEnqueue = 0;
• for (int i = 0; i < 4; ++i) {
• ReadBlock block = new ReadBlock;
• block.offset = g_nextOffset;
• block.file = f;
• g_nextOffset += block.size;
• f.StartAsyncRead(block);
• async WaitForBlock(block);
• }
• }

• void WaitForBlock(ReadBlock block) {
• BlockUntil(block.ready &&
• g_nextOffsetToEnqueue ==
• block.offset);
• if (block.EOF) {
• g_endOfFile = true;
• } else {
• g_queuedBlocks.PushBack(block);
• block.offset = g_nextOffset;
• g_nextOffset += block.size;
• block.file.StartAsyncRead(block);
• async WaitForBlock(block);
• }
• g_nextOffsetToEnqueue +=
• block.size;
• }

Mutual Exclusion ... a Glimmer of Hope 26

AME: Yield

• A mechanism to allow intermediate commits:
– Within an async method can say “Yield()”
– Commits this transaction and starts a new one

• Program is now a set of “atomic fragments”,
and they’re what gets serialized

• A general mechanism for allowing other
transactions to make progress
– “Yield(); BlockUntil(b)” is like “Wait(…)” in monitors
– But also, solves the stack-ripping problem

Mutual Exclusion ... a Glimmer of Hope 27

Two (Separate) Examples Using “Yield”

• void RunZombie() yields {
• Zombie z;
• z.Initialize();
• do {
• Yield();
• Time now = GetTimeNow();
• BlockUntil(now - z.lastUpdate >
• z.updateInterval);
• z.lastUpdate = now;
• MoveAround(z);
• if (Distance(z, g_player) <
• DeathRadius) {
• KillPlayer();
• }
• } while (Distance(z, g_player) >=
• DeathRadius);
• }

• void DoQueue(Queue inQ,
• Queue outQ) yields {
• do {
• Yield();
• BlockUntil(inQ.Length() > 0 ||
• g_finished);
• while (inQ.Length() > 0) {
• Item i = inQ.PopFront();
• async DoItem(i, outQ);
• }
• } while (!g_finished);
• }
•
• void DoItem(Item i,
• Queue outQ) yields {
• DoSlowProcessing(i);
• Yield();
• outQ.PushBack(i);
• }

Mutual Exclusion ... a Glimmer of Hope 28

AME: Unprotected

• An async method can say “UNPROTECTED{ … }
– Commit current transaction, then
– Execute non-transacted code, then
– Start a new transaction

• Use for code with side-effects (e.g I/O), or
for calling legacy code

• Transacted state must be marshalled in/out
• Better default: dangerous code is labelled

Mutual Exclusion ... a Glimmer of Hope 29

Summary

• Existing mutual exclusion mechanisms are too
difficult to use

• Transactions probably help

• Atomic blocks don’t help enough

• AME:
– Gets it right with little programmer assistance
– High-enough level to allow a lot of optimization

Mutual Exclusion ... a Glimmer of Hope 30

Mutual Exclusion ... a Glimmer of Hope 31

Bibliography

• Historical papers:
– http://birrell.org/andrew/concurrency/

• Dryad:
– http://research.microsoft.com/research/sv/dryad/

• Automatic Mutual Exclusion:
– http://research.microsoft.com/research/sv/ame/

