COS 522: Complexity Theory : Boaz Barak Handout 8: PCP Theorem I: Outline and Alphabet Reduction

Reading: Chapter 18

Two views of the PCP Theorem:

Approximation Algorithms	Probabilistically Checkable Proofs
Def: A ρ -approximates 3SAT if for every 3CNF φ ,	Def: $L \in \mathbf{PCP}(r,q)$ if there's a random-access veri-
$A(\varphi)$ is an assignment satisfying a $\rho val(\varphi)$ fraction of	fier with r random bits and q queries satisfying Com -
φ 's clauses.	pleteness: $x \in L \implies \exists \pi \Pr[V^{\pi}(x) = 1] = 1$ and
	Soundness: $x \notin L \implies \forall \pi \Pr[V^{\pi}(x) = 1] \leq 1/2.$
Thm 1: If \exists ptime 0.999 approx alg for 3SAT	Thm 2: NP \subseteq PCP $(O(\log n), 100)$
then $\mathbf{P} = \mathbf{NP}$. In fact, \exists ptime R such that (1)	
$\varphi \in 3SAT \implies val(R(\varphi)) = 1 \ \mathbf{(2)} \ \varphi \notin 3SAT \implies$	
$val(R(\varphi)) < 0.999.$	

Can change 0.999 to $7/8 + \epsilon$ and 100 to 3 by a slight relaxation of completeness (1 changes to $1 - \epsilon$) and soundness $(1/2 \text{ changes to } 1/2 + \epsilon)$.

Equivalence of two views: Definition of CSP, ρ -GAP qCSP.

Thm 3: $\exists q \ \rho$ -GAP qCSP is **NP**-hard.

Thm 1 \implies Thm 2 \implies Thm 3 \implies Thm 1.

Summary of notations:

Approx view		PCP view
$CSP \text{ instance } (\varphi)$	\longleftrightarrow	PCP verifier (V)
Assignment to variables (\mathbf{u})	\longleftrightarrow	PCP proof (π)
Number of variables (n)	\longleftrightarrow	Length of proof
Arity of constraints (q)	\longleftrightarrow	Number of queries (q)
Logarithm of number of constraints $(\log m)$	\longleftrightarrow	Number of random bits (r)
Maximum of $val(\varphi)$ for a NO instance	\longleftrightarrow	Soundness parameter
Thms 2,3 (ρ -GAP q CSP is NP -hard)	\longleftrightarrow	Thm 1 $(\mathbf{NP} \subseteq \mathbf{PCP}(\log n, O(1)))$

Hardness of approximation for independent set

 $\mathbf{NP} \subseteq \mathbf{PCP}(poly(n), 1)$ Exponential-sized PCP for quadratic equations.

Outline of proof of PCP Theorem

CSP problems with larger alphabet

Main Lemma: Def of CL Reductions.

	Arity	Alphabet	Constraints	Value
Original	q_0	binary	m	$1-\epsilon$
	↓↓	↓	$ \downarrow$	\Downarrow
Main Lemma	q_0	binary	Cm	$1-2\epsilon$

Gap amplification and Alphabet Reduction Lemmas

	Arity	Alphabet	Constraints	Value
Original	q_0	binary	m	$1-\epsilon$
	↓	↓	\downarrow	↓
Gap Amplification	2	W	Cm	$1-6\epsilon$
	↓	↓	↓	↓
Alphabet Reduction	q_0	binary	C'Cm	$1-2\epsilon$

Proof of Alphabet Reduction

Homework Assignments

- §1 (30 points) Using the PCP Theorem as a black-box, show that for every constant $\rho > 0$, the independent set problem is hard to approximate within a factor of ρ without using expander graphs.
- §2 (30 points) Exercise 18.15 (10 ϵ there should be changed to 10 δ)
- $\S3$ (50 points) Exercise 18.16