COS 522: Complexity Theory: Boaz Barak
 Handout 8: PCP Theorem I: Outline and Alphabet Reduction

Reading: Chapter 18
Two views of the PCP Theorem:
Approximation Algorithms \quad Probabilistically Checkable Proofs

Def: A ρ-approximates 3SAT if for every 3CNF φ, \quad Def: $L \in \mathbf{P C P}(r, q)$ if there's a random-access veri$A(\varphi)$ is an assignment satisfying a ρ val (φ) fraction of φ 's clauses.

Thm 1: If \exists ptime 0.999 approx alg for 3SAT then $\mathbf{P}=\mathbf{N P}$. In fact, \exists ptime R such that (1) $\varphi \in$ 3SAT $\Longrightarrow \operatorname{val}(R(\varphi))=1$ (2) $\varphi \notin$ 3SAT \Longrightarrow $\operatorname{val}(R(\varphi))<0.999$.
fier with r random bits and q queries satisfying Completeness: $x \in \mathrm{~L} \Longrightarrow \exists \pi \operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$ and Soundness: $x \notin L \Longrightarrow \forall \pi \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq 1 / 2$.

Thm 2: $\mathbf{N P} \subseteq \mathbf{P C P}(O(\log n), 100)$

Can change 0.999 to $7 / 8+\epsilon$ and 100 to 3 by a slight relaxation of completeness (1 changes to $1-\epsilon$) and soundness ($1 / 2$ changes to $1 / 2+\epsilon$).

Equivalence of two views: Definition of CSP, $\rho-\mathrm{GAP} q$ CSP.
Thm 3: $\exists q \rho$-GAP q CSP is NP-hard.
Thm $1 \Longrightarrow$ Thm $2 \Longrightarrow$ Thm $3 \Longrightarrow$ Thm 1 .
Summary of notations:

Approx view		PCP view
CSP instance (φ)	\longleftrightarrow	PCP verifier (V)
PCP proof (π)		
Assignment to variables (\mathbf{u})	\longleftrightarrow	Length of proof Number of variables (n) Arity of constraints (q)
Number of queries (q)		
Logarithm of number of constraints $(\log m)$	\longleftrightarrow	Number of random bits (r)
Maximum of val (φ) for a NO instance	\longleftrightarrow	Soundness parameter
Thms 2,3 $(\rho$-GAP q CSP is NP-hard)	\longleftrightarrow	Thm 1 (NP $\subseteq \mathbf{P C P}(\log n, O(1)))$

Hardness of approximation for independent set
$\mathbf{N P} \subseteq \mathbf{P C P}(p o l y(n), 1)$ Exponential-sized PCP for quadratic equations.
Outline of proof of PCP Theorem
CSP problems with larger alphabet
Main Lemma: Def of CL Reductions.

	Arity	Alphabet	Constraints	Value
Original	q_{0}	binary	m	$1-\epsilon$
	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Main Lemma	q_{0}	binary	$C m$	$1-2 \epsilon$

Gap amplification and Alphabet Reduction Lemmas

	Arity	Alphabet	Constraints	Value
Original	q_{0}	binary	m	$1-\epsilon$
	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Gap Amplification	2	W	$C m$	$1-6 \epsilon$
	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Alphabet Reduction	q_{0}	binary	$C^{\prime} C m$	$1-2 \epsilon$

Proof of Alphabet Reduction

Homework Assignments

$\S 1$ (30 points) Using the PCP Theorem as a black-box, show that for every constant $\rho>0$, the independent set problem is hard to approximate within a factor of ρ without using expander graphs.
$\S 2$ (30 points) Exercise 18.15 (10ϵ there should be changed to 10δ)
§3 (50 points) Exercise 18.16

