Two great sorting algorithms.

- Mergesort
 - Divide array into two halves.
 - Recursively sort each half.
 - Merge two halves to make sorted whole.

- Quicksort
 - Java sort for objects.
 - Cqsort, Unix qsort, Visual C++, Perl, Python.
 - Quick sort for primitive types.
 - Cqsort, Unix qsort, Visual C++, Perl, Python.

Full scientific understanding of their properties has enabled us to hammer them into practical system sorts.

Mergesort occupies a prominent place in world's computational infrastructure.

Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort: Example

Mergesort: Java Implementation

```java
public class Merge {
    private static void sort(Comparable[] a, Comparable[] aux, int l, int r) {
        int m = (l + r) / 2;
        sort(a, aux, l, m);
        sort(a, aux, m + 1, r);
        merge(a, aux, l, m, r);
    }

    public static void sort(Comparable[] a) {
        Comparable[] aux = new Comparable[a.length];
        sort(a, aux, 0, a.length);
    }
}
```

Mergesort Analysis: Memory

Q. How much memory does mergesort require?
 - Original input array = N.
 - Auxiliary array for merging = N.
 - Local variables: constant.
 - Function call stack: \log_2 N.
 - Total = 2N + O(\log N).

Q. How much memory do other sorting algorithms require?
 - N + O(1) for insertion sort and selection sort.
 - In-place = N + O(\log N).

Challenge for the bored. In-place merge. [Kronrud, 1969]
Mergesort Analysis: Running Time

Def. \(T(N) \) = number of comparisons to mergesort an input of size \(N \).

Mergesort recurrence.

\[
T(N) = \begin{cases}
0 & \text{if } N = 1 \\
T(\lceil N/2 \rceil) + T(\lfloor N/2 \rfloor) + \frac{N}{2} & \text{if } N > 1
\end{cases}
\]

Solution. \(T(N) = O(N \log_2 N) \).

- Note: same number of comparisons for any input of size \(N \).
- We prove \(T(N) = N \log_2 N \) when \(N \) is a power of 2, and \(= \) instead of \(\leq \).

Proof by Induction

Claim. If \(T(N) \) satisfies this recurrence, then \(T(N) = N \log_2 N \).

\[
T(N) = \begin{cases}
0 & \text{if } N = 1 \\
2T(N/2) + \frac{N}{2} & \text{if } N > 1, \text{ N power of 2}
\end{cases}
\]

Pf. [by induction on \(n \)]

- **Base case:** \(n = 1 \).
- **Inductive hypothesis:** \(T(n) = n \log_2 n \).
- **Goal:** show that \(T(2n) = 2n \log_2 (2n) \).

\[
T(2n) = 2T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n \log_2 (2n) - 2n + 2n \\
= 2n \log_2 (2n)
\]

Proof by Recursion Tree

\[
T(N) = \begin{cases}
0 & \text{if } N = 1 \\
2T(N/2) + \frac{N}{2} & \text{if } N > 1, \text{ N power of 2}
\end{cases}
\]

Mergesort: Practical Improvements

Use sentinel. Two statements in inner loop are array-bounds checking.

Use insertion sort on small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for \(= 7 \) elements.

Stop if already sorted.

- Is biggest element in first half \(\leq \) smallest element in second half?
- Helps for nearly ordered lists.

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.
Running time estimates:
- Home pc executes 10^8 comparisons/second.
- Supercomputer executes 10^{12} comparisons/second.

Lesson 1. Good algorithms are better than supercomputers.

- **Insertion Sort** (N^2):
 - Home: instant, 2.8 hours, 317 years
 - Super: instant, 1 second, 1.6 weeks

- **Mergesort** ($N \log N$):
 - Home: instant, 1 sec, 18 min
 - Super: instant, instant, instant

Quicksort

- **Shuffle the array.**
- **Partition array so that:**
 - element $a[i]$ is in its final place for some i
 - no larger element to the left of i
 - no smaller element to the right of i
- **Sort** each piece recursively.

Q. How do we partition in-place efficiently?

![Quicksort Partitioning](image)

```plaintext
input: BRAEMLSUMPQXOCR

1. Shuffle:
   - EXATBELMSORP
2. Partition:
   - EAMELDTPXRS
3. Sort left:
   - AEELMOPRSTX
4. Sort right:
   - AEELMOPRSTX
5. Result:
   - AEELMOPRSTX

Quick sort
```
Quicksort Example

private static int partition(Comparable[] a, int l, int r) {
 int i = l - 1;
 int j = r;
 while (true) {
 while (less(a[++i], a[j])) {
 if (i == r) break;
 }
 while (less(a[i], a[--j])) {
 if (j == l) break;
 }
 if (i >= j) break;
 exch(a, i, j);
 }
 exch(a, i, r);
 return i;
}

Quicksort: Java Implementation

public class Quick {
 public static void sort(Comparable[] a) {
 if (r <= l) return;
 int m = partition(a, l, r);
 sort(a, l, m - 1);
 sort(a, m + 1, r);
 }
}

public static int partition(Comparable[] a, int l, int r) {
 int i = l - 1;
 int j = r;
 while (true) {
 while (less(a[++i], a[j])) {
 if (i == r) break;
 }
 while (less(a[i], a[--j])) {
 if (j == l) break;
 }
 if (i >= j) break;
 exch(a, i, j);
 }
 exch(a, i, r);
 return i;
}

public class Quick {
 public static void sort(Comparable[] a) {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int l, int r) {
 if (r <= l) return;
 int m = partition(a, l, r);
 sort(a, l, m - 1);
 sort(a, m + 1, r);
 }
}

Partitioning in-place. Using a spare array makes partitioning easier, but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The \(i == r\) test is redundant, but the \(j == l\) test is not.

Preserving randomness. Shuffling is key for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best to stop on elements equal to partitioning element.
Quicksort: Performance Characteristics

Worst case. Number of comparisons is quadratic.
- \(N + (N-1) + (N-2) + \ldots + 1 \approx N^2 / 2. \)
- More likely that your computer is struck by lightning.

Caveat. Many textbook implementations go quadratic if input:
- Is sorted.
- Is reverse sorted.
- Has many duplicates.

Quicksort: Average Case

Average case running time.
- Roughly \(2N \ln N \) comparisons. \(\rightarrow \) see next two slides
- Assumption: file is randomly shuffled.

Remarks.
- 39% more comparisons than mergesort.
- Faster than mergesort in practice because of lower cost of other high-frequency instructions.
- Caveat: many textbook implementations have best case \(N^2 \) if duplicates, even if randomized!

Theorem. The average number of comparisons \(C_N \) to quicksort a random file of \(N \) elements is about \(2N \ln N \).

- The precise recurrence satisfies \(C_0 = C_1 = 0 \) and for \(N \geq 2 \):
 \[
 C_N = N + 1 + \frac{1}{N} \sum_{k=1}^{N-1} (C_k + C_{N-k})
 = N + 1 + \frac{1}{N} \sum_{k=1}^{N-1} C_{N-k}

 - Multiply both sides by \(N \) and subtract the same formula for \(N-1 \):
 \[
 NC_N - (N-1)C_{N-1} = N(N+1) - (N-1)N + 2C_{N-1}

 - Simplify to:
 \[
 NC_N = (N+1)C_{N-1} + 2N

 - Divide both sides by \(N(N+1) \) to get a telescoping sum:
 \[
 \frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}
 = \frac{C_{N-1}}{N-1} + \frac{2}{N} + \frac{2}{N+1}
 = \frac{C_{N-1}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1}
 = \ldots
 = \frac{C_3}{3} + \sum_{k=1}^{k} \frac{2}{N-k}

 - Approximate the exact answer by an integral:
 \[
 \frac{C_N}{N+1} = \sum_{k=1}^{N} \frac{2}{k} = \int_{1}^{N} \frac{2}{x} = 2 \ln N

 - Finally, the desired result:
 \[
 C_N = 2(N+1) \ln N = 1.39N \log_2 N. \]

Remarks.
- \(39\% \) more comparisons than mergesort.
- Faster than mergesort in practice because of lower cost of other high-frequency instructions.
- Caveat: many textbook implementations have best case \(N^2 \) if duplicates, even if randomized!
3-Way Quicksort

Sorting Analysis Summary

Running time estimates:
- Home pc executes 10^8 comparisons/second.
- Supercomputer executes 10^{12} comparisons/second.

<table>
<thead>
<tr>
<th>Computer</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1.6 weeks</td>
</tr>
</tbody>
</table>

Mergesort ($N \log N$)

<table>
<thead>
<tr>
<th>Computer</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>instant</td>
<td>1 sec</td>
<td>18 min</td>
<td></td>
</tr>
</tbody>
</table>

Quicksort ($N \log N$)

<table>
<thead>
<tr>
<th>Computer</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>instant</td>
<td>0.3 sec</td>
<td>6 min</td>
<td></td>
</tr>
<tr>
<td>instant</td>
<td>instant</td>
<td>instant</td>
<td></td>
</tr>
</tbody>
</table>

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: Practical Improvements

Median of sample.
- Best choice of pivot element = median.
- But how would you compute the median?
- Estimate true median by taking median of sample.

Insertion sort small files.
- Even quicksort has too much overhead for tiny files.
- Can delay insertion sort until end.

Optimize parameters.
- Median-of-3 random elements.
- Cutoff to insertion sort for ≈ 10 elements.

Non-recursive version.
- Use explicit stack.
- Always sort smaller half first.

Duplicate Keys

Equal keys. Omnipresent in applications when purpose of sort is to bring records with equal keys together.
- Sort population by age.
- Finding collinear points.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical application.
- Huge file.
- Small number of key values.
3-Way Partitioning

3-way partitioning. Partition elements into 3 parts:
 - Elements between i and j equal to partition element v.
 - No larger elements to left of i.
 - No smaller elements to right of j.

Dutch national flag problem.
 - Not done in practical sorts before mid-1990s.
 - Incorporated into Java system sort, C qsort.

Duplicate Keys

Theorem. [Sedgewick-Bentley] Quicksort with 3-way partitioning is optimal for random keys with duplicates.
Pf. Ties cost to entropy. Beyond scope of 226.

Practice. Randomized 3-way quicksort is linear time when many duplicates. (Try it!)
Selection

Quick select.
- Partition array so that:
 - element $a[i]$ is in its final place for some i
 - no larger element to the left of i
 - no smaller element to the right of i
- Repeat in one subarray, depending on i.

```java
public static void select(Comparable[] a, int k) {
    StdRandom.shuffle(a);
    int l = 0;
    int r = a.length - 1;
    while (r > l) {
        int i = partition(a, l, r);
        if (i > k) r = i - 1;
        else if (i < k) l = i + 1;
        else return;
    }
    // upon termination, a[k] contains kth smallest element
}
```

Selection

Find the k^{th} largest element.
- Min: $k = 1$.
- Max: $k = N$.
- Median: $k = N/2$.

Application. Order statistics.

Easy. Min or max with $O(N)$ comparisons; median with $O(N \log N)$.

Challenge. $O(N)$ comparisons for any k.

Quick-Select Analysis

Property C. Quick-select takes linear time on average.
- Intuitively, each partitioning step roughly splits array in half.
- $N + N/2 + N/4 + \ldots < 2N$ comparisons.
- Formal analysis similar to quicksort analysis proves the average number of comparisons is
 $$2N + k \ln \left(\frac{N}{k}\right) + (N-k) \ln \left(\frac{N}{N-k}\right)$$

 Ex: $(2 + 2 \ln 2) N$ comparisons to find the median

Worst-case. The worst-case is $\Omega(N^2)$ comparisons, but as with quicksort, the random shuffle makes this case extremely unlikely.