
Copyright © 2007 by Robert Sedgewick and Kevin Wayne.

Combinatorial Search

• subsets

• permutations

• counting

• paths in a graph

• paths in a lattice

2

Overview

Exhaustive search. Iterate through all elements of a search space.

Backtracking. Systematic method for examining feasible solutions

to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size !

effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to

reasonable size, even for relatively large instances

3

subsets
permutations
counting
paths in a lattice
path in a graph

4

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2n subsets.
! count in binary from 0 to 2n - 1.
! bit i represents item i
! if 0, in subset; if 1, not in subset

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

empty

1

2

2 1

3

3 1

3 2

3 2 1

4

4 1

4 2

4 2 1

4 3

4 3 1

4 3 2

 4 3 2 1

4 3 2 1

4 3 2

4 3 1

4 3

4 2 1

4 2

4 1

4

3 2 1

3 2

3 1

3

2 1

2

1

empty

i binary subset complement

5

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2n subsets.
! count in binary from 0 to 2n - 1.
! bit i represents item i
! if 0, in subset; if 1, not in subset

Note: bitflicking simpler in assembly language

long N = 1 << n;

for (long i = 0; i < N; i++)

{

 for (int bit = 0; bit < n; bit++)

 {

 if (((i >> bit) & 1) == 1)

 System.out.print(bit + " ");

 }

 System.out.println();

}

6

Samuel Beckett

Quad. Starting with empty stage, 4 characters enter and exit

one at a time, such that each subset of actors appears exactly once.

ruler function

7

Enumerating Subsets: Binary Reflected Gray Code

Binary reflected Gray code. The n-bit code is:
! the (n-1) bit code with a 0 prepended to each word, followed by
! the (n-1) bit code in reverse order, with a 1 prepended to each word.

8

Beckett: Java implementation

public static void moves(int n, boolean enter)

{

 if (n == 0) return;

 moves(n-1, true);

 if (enter) System.out.println("enter " + n);

 else System.out.println("exit " + n);

 moves(n-1, false);

}

% java Beckett 4

enter 1

enter 2

exit 1

enter 3

enter 1

exit 2

exit 1

enter 4

enter 1

enter 2

exit 1

exit 3

enter 1

exit 2

exit 1

stage directions
for 3-actor play
moves(3, true)

reverse stage directions
for 3-actor play
moves(3, false)

9

More Applications of Gray Codes

3-bit rotary encoder

Chinese ring puzzle

8-bit rotary encoder

Towers of Hanoi

10

Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide

among two machines to minimize the time the last job finishes.

Remark. NP-hard.

1.41

1.73

2.00

2.23

1

2

3

4

lengthjob

or, equivalently, difference
between finish times

11

Scheduling (using Gray Code)

Beckett's
stage directions

gap = sum
+2.23 if job 4 on machine one
-2.23 if job 4 on machine two

flip job 4
from machine one
to machine two

12

Scheduling: Java implementation

public static void moves(int n, double[] a, double[] b)

{

 if (n == 0) return;

 moves(n-1, a, b);

 a[n] = -a[n];

 a[0] += 2*a[n];

 if (Math.abs(a[0]) < Math.abs(b[0]))

 for (int i = 0; i < a.length; i++)

 b[i] = a[i];

 moves(n-1, a, b);

}

current schedule best schedule so far

flip machine for job n ;
fix total time

check whether schedule
is the best so far

int[] a = { 7.37, 1.41, 1.73, 2.00, 2.23 };

int[] b = { 7.37, 1.41, 1.73, 2.00, 2.23 };

job lengths

best schedule so far

sum

13

Exploiting Symmetry

Exploit symmetry.
! Half of schedules are redundant.

! Fix job n on machine one ! twice as fast.

14

Space-Time Tradeoff

Space-time tradeoff.
! Enumerate all subsets of first n/2 jobs; sort by gap.

! Enumerate all subsets of last n/2 jobs; for each subset, binary

search to find for best matching subset among first n/2 jobs.

Reduces running time from 2n to 2n/2 log n by consuming 2n/2 memory.

1.41

1.73

2.00

2.23

1

2

3

4

lengthjob

3.00

0.35

5

6

5.14

(1 2 3)

2.32

(2 3)

1.68

(1 3)

1.14

(1 2)

-1.14

(3)

-1.68

(2)

-2.32

(1)

-5.14

(empty)

5.58

(4 5 6)

1.12

(5 6)

-0.42

(4 6)

4.48

(4 5)

-4.88

(6)

0.42

(5)

-1.12

(4)

-5.58

(empty)

gap

(subset)

gap

(subset)

-5.14

(empty)

-1.14

(3)

1.14

(2)

-5.14

(empty)

5.14

(1 2 3)

-1.14

(3)

1.14

(1 2)

5.14

(1 2 3)

best

match

0.44

(1 2 3)

0.02

(3 5 6)

0.72

(2 4 6)

-0.26

(4 5)

0.26

(1 2 3 6)
-0.72

(3 5)

0.02

(1 2 4)

-0.44

(1 2 3)
gap

15

subsets
permutations
counting
paths in a lattice
paths in a graph

16

8-Queens Problem

8-queens problem. Place 8 queens on a chessboard so that

no queen can attack any other queen.

Representation. Can represent solution as a permutation:

q[i] = column of queen in row i.

1 2 3 4 5 6 7 8

int[] q = { 5, 7, 1, 3, 8, 6, 4, 2 };

queens i and j can attack each other if |q[i] + i| = |q[j] + j|

17

Enumerating Permutations

Permutations. Given n items, enumerate all n! permutations.

1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1 4 3 2

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

3-element permutations 4-element permutations

2 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

2 4 3 1

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

3 followed by any

permutation of 1 2 4

1 followed by any

permutation of 2 3 4

2 followed by any

permutation of 1 3 4

3 followed by any

permutation of 1 2 4

18

Enumerating all Permutations

To enumerate all permutations of a set of n elements:
! For each element ai

– put ai first, then append

– a permutation of the remaining elements (a0, …, ai-1, ai+1, …, an-1)

1 2 3 4

1 2 3 4 2 1 3 4 3 2 1 4 4 2 3 1

… … …

2 1 3 4 2 3 1 4 2 4 3 1

2 1 3 4 2 1 4 3

2 1 3 4 2 1 4 3

2 3 1 4 2 3 4 1

2 3 1 4 2 3 4 1

2 4 3 1 2 4 1 3

2 4 3 1 2 4 1 3

19

Enumerating all permutations: Java Implementation

private static void enumerate(int[] a, int n)

{

 int N = a.length;

 if (n == N) printPermutations(a);

 for (int i = n; i < N; i++)

 {

 swap(q, i, n);

 enumerate(a, n+1);

 swap(q, n, i);

 }

}

permutations of a[n], …, a[N-1]

int N = 4;

int[] a = { 1, 2, 3, 4 };

enumerate(a, N);

clean up

20

4-Queens Search Tree

21

Backtracking. Iterate through elements of search space.
! for each row, there are N possible choices.
! make one choice and recur.
! if the choice does not work, backtrack to previous choice,

and make next available choice.

Backtracking amounts to pruning the search space.

For N queens: if you find a diagonal conflict, no need to continue

Improvements.
! try to make an “intelligent” choice
! try to reduce cost of choosing/backtracking

N Queens: Backtracking solution

22

4-Queens Search Tree (pruned)

dead end

23

N-Queens: Backtracking solution

private static void enumerate(int[] q, int n)

{

 int N = q.length;

 if (n == N) printQueens(q);

 for (int i = n; i < N; i++)

 {

 swap(q, i, n);

 if (isConsistent(q, n)) enumerate(q, n+1);

 swap(q, n, i);

 }

}

stop enumerating if adding the nth

queen leads to a diagonal violation

int N = 4;

int[] q = { 1, 2, 3, 4 };

enumerate(q, N);

24

subsets
permutations
counting
paths in a lattice
paths in a graph

25

Counting: Java Implementation

private static void count(int[] number, int digit)

{

 if (digit == M)

 { show(number); return; }

 for (int n = 0; n < R; n++)

 {

 count(number, digit + 1);

 }

 number[digit] = 0;

}

Enumerate all M-digit base-R numbers.

0 0 0

0 0 1

0 0 2

0 1 0

0 1 1

0 1 2

0 2 0

0 2 1

0 2 2

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0

1 2 1

1 2 2

2 0 0

2 0 1

2 0 2

2 1 0

2 1 1

2 1 2

2 2 0

2 2 1

2 2 2

26

8

5

2 1

3

4

3 8

1

2 6

9

9 6

7

4

5

7

Fill 9-by-9 grid so that every row, column, and box contains the digits 1

through 9.

Remark. Natural generalization is NP-hard.

Sudoku

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

27

2 1

7 8

5

3

4

3 8

1

2 6

9

9 6

7

4

5

Fill 9-by-9 grid so that every row, column, and box contains the digits 1

through 9.

Remark. Natural generalization is NP-hard.

Sudoku

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

28

Sudoku

Linearize. Treat 9-by-9 array as an array of length 81.

Enumerate all assignments. Count from 0 to 981 - 1 in base 9.

8 67 1 3 4 5 3 8 … 80

2 60 1 3 4 5 7 8 80

8

5

2 1

3

4

3 8

1

2 6

9

9 6

7

4

5

7 2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

using digits 1 to 9

29

Backtracking. Iterate through elements of search space.
! For each empty cell, there are 9 possible choices.
! Make one choice and recur.
! If you reach a contradiction, backtrack to previous choice,

and make next available choice.

Backtracking amounts to pruning the search space.

For Sudoko:

if you find a conflict in row, column or box, no need to continue

Improvements.
! try to make an “intelligent” choice
! try to reduce cost of choosing/backtracking

Sudoku: Backtracking solution

30

Sudoku: Java implementation

private static void solve(int[] board, int cell)

{

 if (cell == 81)

 { show(board); return; }

 if (board[cell] != 0)

 { solve(board, cell + 1); return; }

 for (int n = 1; n <= 9; n++)

 {

 if (isConsistent(board, cell, n))

 {

 board[cell] = n;

 solve(board, cell + 1);

 }

 }

 board[cell] = 0;

}
cleans up after itself

int[] board = { 7, 0, 8, 0, 0, 0, 3, … };

solve(board, 0);

found the solution

skip cell n since
value set at
initialize

try all 9
possibilities

unless a Sudoku
constraint is
violated

31

subsets
permutations
counting
paths in a lattice
paths in a graph

32

All Paths on a Grid

All paths. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.

no atoms can occupy same position at same time

33

Boggle

Boggle. Find all words that can be formed by tracing a simple path of

adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of

letters on current path as a prefix ! use a trie.

B A X X X

X C A C K

X K R X X

X T X X X

X X X X X

B

BA

BAX

34

Boggle: Java Implementation

private void dfs(String prefix, int i, int j)

{

 if (i < 0 || i >= N) ||

 (j < 0 || j >= N) ||

 (visited[i][j]) ||

 !dictionary.containsAsPrefix(prefix))

 return;

 visited[i][j] = true;

 prefix = prefix + board[i][j];

 if (dictionary.contains(prefix))

 found.add(prefix);

 for (int ii = -1; ii <= 1; ii++)

 for (int jj = -1; jj <= 1; jj++)

 dfs(prefix, i + ii, j + jj);

 visited[i][j] = false;

}

backtrack

add to set of found words

clean up

35

subsets
permutations
counting
paths in a lattice
paths in a graph

36

Hamilton Path

Hamilton path. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.

visit every edge exactly once

37

Knight's Tour

Knight's tour. Find a sequence of moves for a knight so that, starting

from any square, it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.

legal knight moves a knight's tour

38

Hamilton Path: Backtracking Solution

Backtracking solution. To find Hamilton path starting at v:
! Add v to current path.
! For each vertex w adjacent to v

– find a simple path starting at w using all remaining vertices
! Remove v from current path.

How to implement?
! add cleanup to DFS (!)

39

Hamilton Path: Java implementation

public class HamiltonPath

{

 private boolean[] marked;

 private int[] pred;

 public HamiltonPath(Graph G)

 {

 marked = new boolean[G.V()];

 for (int v = 0; v < G.V(); v++)

 dfs(G, v, 1);

 }

 private void dfs(Graph G, int v, int depth)

 {

 marked[v] = true;

 if (depth == G.V()) StdOut.println(“Path found!”);

 for (int w : G.adj(v))

 if (!marked[w])

 { pred[w] = v; dfs(G, w); }

 marked[v] = false;

 }

}

40

The Longest Path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

41

Have a good summer!

Course evaluation info

Course. COS 226

Term. Spring '07.

Lecturer. Robert Sedgewick

Precept instructor. Jimin Song (01)

 or David Walker (01A or 02)

 or Mohammad Ghidary (03)

Please use a #2 pencil (provided).

Final exam info

Saturday, May 19 at 7:30 PM.

Review sessions:
! Prepare and e-mail questions in advance.
! All questions answered.
! No questions? No session.
! Any student may attend any or all sessions.

mohammad: 1PM Wed 16 May

 dave: 1PM Thu 17 May

 jimin: 1PM Fri 18 May

