

subsets permutations counting paths in a lattice path in a graph

Overview

Exhaustive search. Iterate through all elements of a search space.

Backtracking. Systematic method for examining feasible solutions to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size \Rightarrow effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to reasonable size, even for relatively large instances

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2ⁿ subsets.

- count in binary from 0 to 2ⁿ 1.
- bit i represents item i
- if 0, in subset; if 1, not in subset

binary	subset	complemen
0 0 0 0	empty	4321
0001	1	432
0010	2	431
0011	2 1	4 3
0100	3	421
0101	31	42
0110	32	4 1
0111	321	4
1000	4	321
1001	4 1	32
1010	42	31
1011	421	3
1100	43	2 1
1 1 0 1	431	2
1 1 1 0	432	1
1 1 1 1	4321	empty
	binary 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1	binary subset 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 4 1 1 4

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2ⁿ subsets.

- count in binary from 0 to 2ⁿ 1.
- bit i represents item i
- if 0, in subset; if 1, not in subset

```
long N = 1 << n;
for (long i = 0; i < N; i++)
{
    for (int bit = 0; bit < n; bit++)
        {
            if (((i >> bit) & 1) == 1)
                System.out.print(bit + " ");
        }
        System.out.println();
}
```

Enumerating Subsets: Binary Reflected Gray Code

Binary reflected Gray code. The n-bit code is:

- the (n-1) bit code with a 0 prepended to each word, followed by
- the (n-1) bit code in reverse order, with a 1 prepended to each word.

	1-bit code		3-	bit a	ode
2-bit	0 0 4-bit	0	0	0	0
	0 1	0	0	0	1
	1 1	0	0	1	1
		0	0	1	0
	1-bit code	0	1	1	0
	(reversed)	0	1	1	1
	2-bit code	0	1	0	1
	ŧ	0	1	0	0
3-bit	0 0 0	1	1	0	0
	0 0 1	1	1	0	1
	0 1 1	1	1	1	1
	0 1 0	1	1	1	0
	1 1 0	1	0	1	0
	1 1 1	1	0	1	1
	1 0 1	1	0	0	1
	1 0 0	1	0	0	0
				t	
	2-bit code (reversed)		3-l (re	bit c vers	ode ied)

Note: bitflicking simpler in assembly language

Samuel Beckett

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

code	subset	move	
0000	empty		
0001	1	enter 1	
0011	2 1	enter 2	
0010	2	exit 1	
0110	32	enter 3	
0111	321	enter 1	
0101	31	exit 2	
0100	3	exit 1	
1100	43	enter 4	
1 1 0 1	431	enter 1	
1111	4321	enter 2	
1110	432	exit 1	
1010	42	exit 3	
1011	421	enter 1	
1001	4 1	exit 2	
1000	4	exit 1	
		1	
		ru	k

Beckett: Java implementation

pul	blic static void moves(int n, boolean enter)
{	if $(n == 0)$ return; moves $(n-1)$ true):
	if (enter) System.out.println("enter " + n)
	<pre>else System.out.println("exit " + n) moves(n-1, false);</pre>
}	· · ·

% java B	eckett 4
enter 1	
enter 2	
exit 1	stage directions
enter 3	for 3-actor play
enter 1	morros (3 truo)
exit 2	moves(3, crue)
exit 1	
enter 4	
enter 1	
enter 2	
exit 1	reverse stope directions
exit 3	for 3-actor play
enter 1	
exit 2	moves(3, false)
exit 1	

Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide among two machines to minimize the time the last job finishes.

job	length
1	1.41
2	1.73
3	2.00
4	2.23

Remark. NP-hard.

machine			
1		4	
machine two	2	3	

Scheduling: Java implementation

Exploiting Symmetry

Exploit symmetry.

Half of schedules are redundant.

machine one	1	3	
machine two	2	4	

machine one	2	4	1
machine two	1	3	

• Fix job n on machine one \Rightarrow twice as fast.

Space-Time Tradeoff

Spo •	ice-tim Enume	ne trad rate al	eoff. I subse	ets of	first r	n/2 jot	os; sort	t by go	ıp.	
	gap (subset)	-5.14 (empty)	-2.32 (1)	-1.68 (2)	-1.14 (3)	1.14 (1 2)	1.68 (1 3)	2.32 (2.3)	5.14 (1 2 3)	

 Enumerate all subsets of last n/2 jobs; for each subset, binary search to find for best matching subset among first n/2 jobs.

gap	-5.58	-1.12	0.42	-4.88	4.48	-0.42	1.12	5.58
(subset)	(empty)	(4)	(5)	(6)	(4.5)	(4 6)	(5 6)	(4 5 6)
best	5.14	1.14	-1.14	5.14	-5.14	1.14	-1.14	-5.14
match	(1 2 3)	(1 2)	(3)	(1 2 3)	(empty)	(2)	(3)	(empty)
	-0.44	0.02	-0.72	0.26	-0.26	0.72	0.02	0.44
	(1 2 3)	(1 2 4)	(3 5)	(1 2 3 6)	(4.5)	(2 4 6)	(3 5 6)	(1 2 3)

Reduces running time from 2^n to $2^{n/2} \log n$ by consuming $2^{n/2}$ memory.

8-Queens Problem

8-queens problem. Place 8 queens on a chessboard so that no queen can attack any other queen.

	٠		۲	٠		
		۲				
			•			
۰					۰	

Representation. Can represent solution as a permutation: q[i] = column of queen in row i.

int[] $q = \{ 5, 7, 1, 3, 8, 6, 4, 2 \};$

queens i and j can attack each other if |q[i] + i| = |q[j] + j|

length

1.41

1.73

2.00

2.23

3.00

0.35

1

2

3

4

5

6

Enumerating Permutations

Enumerating all Permutations

To enumerate all permutations of a set of n elements:

- For each element a_i
 - put a_i first, then append
 - a permutation of the remaining elements (a₀, ..., a_{i-1}, a_{i+1}, ..., a_{n-1})

Enumerating all permutations: Java Implementation

N Queens: Backtracking solution

Backtracking. Iterate through elements of search space.

- for each row, there are N possible choices.
- make one choice and recur.
- if the choice does not work, backtrack to previous choice, and make next available choice.

Backtracking amounts to pruning the search space.

For N queens: if you find a diagonal conflict, no need to continue

Improvements.

- try to make an "intelligent" choice
- try to reduce cost of choosing/backtracking

N-Queens: Backtracking solution

int N = 4; int[] q = { 1, 2, 3, 4 }; enumerate(q, N);

paths in a lattice paths in a graph

Counting: Java Implementation

Enumerate all M-digit base-R numbers.

```
private static void count(int[] number, int digit)
{
  if (digit == M)
  { show(number); return; }
  for (int n = 0; n < R; n++)
  {
    count(number, digit + 1);
  }
  number[digit] = 0;
}
    000 100 200
    001 101 201
    0 0 2 1 0 2 2 0 2
    0 1 0 1 1 0 2 1 0
    0 1 1 1 1 1 2 1 1
    0 1 2 1 1 2 2 1 2
    0 2 0 1 2 0 2 2 0
    0 2 1 1 2 1 2 2 1
    0 2 2 1 2 2 2 2 2
```

Sudoku

Fill 9-by-9 grid so that every row, column, and box contains the digits 1 through 9.

7	2	8	9	4	6	3	1	5
9	3	4	2	5	1	6	7	8
5	1	6	7	3	8	2	4	9
1	4	7	5	9	3	8	2	6
3	6	9	4	8	2	1	5	7
8	5	2	1	6	7	4	9	3
2	9	3	6	1	5	7	8	4
4	8	1	3	7	9	5	6	2
6	7	5	8	2	4	9	3	1

Remark. Natural generalization is NP-hard.

Sudoku

Fill 9-by-9 grid so that every row, column, and box contains the digits 1 through 9.

7	2	8	9	4	6	3	1	5
9		4	2		1	6		8
5	1	6	7	3	8	2	4	9
1	4	7	5	9	3	8	2	6
3		9	4	8	2	1		7
8	5	2	1	6	7	4	9	3
2	9	3	6	1	5	7	8	4
4		1	3	7	9	5		2
6		5	8		4	9		1

Remark. Natural generalization is NP-hard.

Sudoku

Linearize. Treat 9-by-9 array as an array of length 81.

7		8	9		6	3		
		4	2		1	6		
5	1	6	7	3	8	2	4	9
1	4	7	5	9	3	8	2	6
3		9	4	8	2	1		
8	5	2	1	6	7	4	9	3
2	9	3	6	1	5	7	8	4
		1	3	7	9	5		
6	7	5	8	2	4	9	3	1

 7
 1
 8
 3
 4
 5
 6
 3
 8
 ...
 80

 0
 1
 2
 3
 4
 5
 6
 7
 8
 80

Enumerate all assignments. Count from 0 to 9⁸¹ - 1 in base 9.

Sudoku: Backtracking solution

Backtracking. Iterate through elements of search space.

- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you reach a contradiction, backtrack to previous choice, and make next available choice.

Backtracking amounts to pruning the search space.

For Sudoko: if you find a conflict in row, column or box, no need to continue

Improvements.

- try to make an "intelligent" choice
- try to reduce cost of choosing/backtracking

Sudoku: Java implementation

```
private static void solve(int[] board, int cell)
{
                                                               found the solution
   if (cell == 81)
   { show(board); return; }
                                                               skip cell n since
   if (board[cell] != 0)
                                                               value set at
   { solve(board, cell + 1); return; }
                                                               initialize
   for (int n = 1; n \le 9; n++)
                                                               try all 9
   ł
                                                               possibilities
       if (isConsistent(board, cell, n))
      ł
          board[cell] = n;
          solve(board, cell + 1);
                                                               unless a Sudoku
       }
                                                               constraint is
   ł
                                                               violated
   board[cell] = 0;
                         cleans up after itself
                 int[] board = { 7, 0, 8, 0, 0, 0, 3, ... };
                  solve(board, 0);
```

permutations counting paths in a lattice paths in a graph

All Paths on a Grid

Application. Self-avoiding lattice walk to model polymer chains.

Boggle

Boggle. Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal).

в	A	х	х	х
х	С	A	с	ĸ
x	к	R	x	x
x	т	x	x	x
х	x	x	x	x

Pruning. Stop as soon as no word in dictionary contains string of letters on current path as a prefix \Rightarrow use a trie.

B BA BAX

Boggle: Java Implementation

private void dfs(String prefix, int i, int j) if (i < 0 || i >= N) || (j < 0 || j >= N) || (visited[i][j]) || backtrack !dictionary.containsAsPrefix(prefix)) return; visited[i][j] = true; prefix = prefix + board[i][j]; if (dictionary.contains(prefix)) add to set of found words found.add(prefix); for (int ii = -1; ii <= 1; ii++) for (int jj = -1; jj <= 1; jj++)</pre> dfs(prefix, i + ii, j + jj); visited[i][j] = false; clean up }

subsets permutations counting paths in a lattice paths in a graph

Hamilton Path

Knight's Tour

Knight's tour. Find a sequence of moves for a knight so that, starting from any square, it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.

Hamilton Path: Java implementation

```
public class HamiltonPath
   private boolean[] marked;
  private int[] pred;
  public HamiltonPath(Graph G)
     marked = new boolean[G.V()];
     for (int v = 0; v < G.V(); v++)
        dfs(G, v, 1);
   3
   private void dfs(Graph G, int v, int depth)
      marked[v] = true;
      if (depth == G.V()) StdOut.println("Path found!");
      for (int w : G.adj(v))
        if (!marked[w])
            { pred[w] = v; dfs(G, w); }
      marked[v] = false;
 }
ı
```

Hamilton Path: Backtracking Solution

Backtracking solution. To find Hamilton path starting at v:

- Add v to current path.
- For each vertex w adjacent to v
 - find a simple path starting at w using all remaining vertices
- Remove v from current path.

How to implement?

add cleanup to DFS (!)

The Longest Path

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path!

If you said P is NP tonight, There would still be papers left to write, I have a weakness, I'm addicted to completeness, And I keep searching for the longest path.

The algorithm I would like to see Is of polynomial degree, But it's elusive: Nobody has found conclusive Evidence that we can find a longest path. I have been hard working for so long. I swear it's right, and he marks it wrong. Some how I'll feel sorry when it's done: GPA 2.1 Is more than I hope for.

Garey, Johnson, Karp and other men (and women) Tried to make it order N log N. Am I a mad fool Jf I spend my life in grad school, Forever following the longest path?

Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path.

Have a good summer!

Course evaluation info

Course. COS 226 Term. Spring '07. Lecturer. Robert Sedgewick Precept instructor. Jimin Song (01) or David Walker (01A or 02) or Mohammad Ghidary (03)

Please use a #2 pencil (provided).

Final exam info

Saturday, May 19 at 7:30 PM.					
Review sessions:	mohammad:	1PM	Wed	16	May May
 Prepare and e-mail questions in advance. 	jimin:	1PM	Fri	18	May
 All questions answered. 					
 No questions? No session. 					
 Any student may attend any or all sessions. 					41