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Reductions

• designing algorithms

• proving limits

• classifying problems

• polynomial-time reductions

• NP-completeness
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Desiderata

Desiderata.  Classify problems according to their computational 

requirements.

Frustrating news.  Huge number of fundamental problems have defied 

classification for decades.
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Desiderata

Desiderata.  Classify problems according to their computational 

requirements.

Desiderata'.  Suppose we could (couldn't) solve problem X efficiently.

What else could (couldn't) we solve efficiently?

Give me a lever long enough and a fulcrum on which to place it,

and I shall move the world.   -Archimedes
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Reduction

Def.  Problem X reduces to problem Y

if you can use an algorithm that solves Y to help solve X

! Cost of solving X  =  cost of solving Y  +  cost of reduction.

Ex.  Euclidean MST reduces to Voronoi.

To solve Euclidean MST on N points
! solve Voronoi
! construct graph with linear number of edges
! use Prim/Kruskal to find MST in time proportional to N log N

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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Reduction

Def.  Problem X reduces to problem Y

if you can use an algorithm that solves Y to help solve X

! Cost of solving X  =  cost of solving Y  +  cost of reduction.

Consequences.
! algorithm design:  given algorithm for Y, can also solve X.
! Establish intractability:  if X is hard, then so is Y.
! Classify problems:  establish relative difficulty between two problems.
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Linear-time reductions

Def.  Problem X linear reduces to problem Y if X can be solved with:  
! Linear number of standard computational steps for reduction
! One call to subroutine for Y.
! Notation:  X ! L Y.

Some familiar examples.
! Median ! L sorting.

! Element distinctness ! L sorting.
! Closest pair ! L Voronoi.
! Euclidean MST ! L Voronoi.

! Arbitrage ! L Negative cycle detection.
! Linear programming  ! L  Linear programming in std form.
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NP-completeness
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Linear-time reductions for algorithm design

Def.  Problem X linear reduces to problem Y if X can be solved with:  
! linear number of standard computational steps for reduction
! one call to subroutine for Y.

Applications.
! designing algorithms:  given algorithm for Y, can also solve X.
! proving limits:  if X is hard, then so is Y.
! classifying problems:  establish relative difficulty of problems.

Mentality: Since I know how to solve Y, can I use that algorithm to solve X?
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Convex Hull

Sorting.  Given N distinct integers, rearrange them in ascending order.

Convex hull.  Given N points in the plane, identify the extreme points

of the convex hull (in counter-clockwise order).

Claim.  Convex hull linear reduces to sorting.

Pf.  Graham scan algorithm.

convex hull

1251432

2861534

3988818

4190745

13546464

89885444

sorting

10

Shortest Paths on Graphs and Digraphs

Claim.        Undirected shortest path (with nonnegative weights)

linearly reduces to

directed shortest path.

Pf.  Replace each undirected edge by two directed edges.

s

2

3

5

6 t 5

 10

 12

15

 9

 12

10 15
 4

s

2

3

5

6 t 5

  10

 12

 15

 9

12

 10

 9

 10

 4

15

 12 12

 10

 15 15
 4

11

Shortest Paths with negative weights

Caveat.  Reduction invalid in networks with negative weights

(even if no negative cycles).

Remark.  Can still solve shortest path problem in undirected graphs if 

no negative cycles, but need more sophisticated techniques.

tvs 7  -4

tvs 7  -4

7  -4

reduce to weighted non-bipartite matching (!)
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Linear-time reductions to prove limits

Def.  Problem X linear reduces to problem Y if X can be solved with:  
! linear number of standard computational steps for reduction
! one call to subroutine for Y.

Applications.
! designing algorithms:  given algorithm for Y, can also solve X.
! proving limits:  if X is hard, then so is Y.
! classifying problems:  establish relative difficulty of problems.

Mentality: 

If I could easily solve Y, then I could easily solve X

I can’t easily solve X.

Therefore, I can’t easily solve Y

14

Proving limits on convex-hull algorithms

Lower bound on sorting: Sorting N integers requires "(N log N) steps. 

Claim.  Sorting linear-reduces to convex hull [see next slide].

Theorem.

Any ccw-based convex hull algorithm requires "(N log N) steps. 

need “quadratic decision tree” model of 
computation that allows tests of the form
 xi < xj or (xj - xi) (yk - yi) - (yj - yi) (xk - xi) < 0

convex hull

1251432

2861534

3988818

4190745

13546464

89885444

sorting

Sorting instance. 

Convex hull instance.

Observation.  Region {x : x2 # x} is convex  $  all points are on hull.

Consequence.  Starting at point with most negative x,

counter-clockwise order of hull points yields items in ascending order.
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Sorting linear-reduces to convex hull

x1, x2, ... , xN

(x1 , x1
2 ), (x2, x2

2 ), ... , (xN , xN
2 )

f(x) = x2

(x1 , x1
2 )

(x2 , x2
2 )
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3-SUM Reduces to 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,

are there 3 that all lie on the same line?

Claim.  3-SUM  ! L 3-COLLINEAR.

Conjecture.  Any algorithm for 3-SUM requires "(N2) time.

Corollary.  Sub-quadratic algorithm for 3-COLLINEAR unlikely.

recall Assignment 2

your N2 log N algorithm from Assignment 2 was pretty good

see next two slides
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3-SUM Reduces to 3-COLLINEAR

Claim.  3-SUM  ! L 3-COLLINEAR.
! 3-SUM instance: 
! 3-COLLINEAR instance:

(1, 1)

(2, 8)

(-3, -27)

-3 + 2 + 1 = 0

x1, x2, ... , xN

(x1 , x1
3 ), (x2, x2

3 ), ... , (xN , xN
3 )

f(x) = x3
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3-SUM Reduces to 3-COLLINEAR

Lemma.  If a, b, and c are distinct then a + b + c = 0 if and only if

(a, a3), (b, b3), (c, c3) are collinear.

Pf.   Three points (a, a3), (b, b3), (c, c3) are collinear iff:

                 (a3 - b3) / (a - b)   =  (b3 - c3) / (b - c) 

(a - b)(a2 + ab + b2) / (a - b)   =  (b - c)(b2 + bc + c2) / (b - c) 

                     (a2 + ab + b2)     =  (b2 + bc + c2) 

                   a2 + ab - bc - c2    =  0 

                   (a - c)(a + b + c)    =  0

                              a + b + c     =  0 

slopes are equal

factor numberators

a-b and b-c are nonzero

collect terms

factor

a-c is nonzero
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Linear Time Reductions

Def.  Problem X linear reduces to problem Y if X can be solved with:  
! Linear number of standard computational steps.
! One call to subroutine for Y.

Consequences.
! Design algorithms:  given algorithm for Y, can also solve X.
! Establish intractability:  if X is hard, then so is Y.
! Classify problems:  establish relative difficulty between two problems.
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Primality and Compositeness

PRIME.  Given an integer x (represented in binary), is x prime?

COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Claim.  PRIME ! L COMPOSITE.

public static boolean isPrime(BigInteger x)

{

   if (isComposite(x)) return false;

   else                return true;

}
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Primality and Compositeness

PRIME.  Given an integer x (represented in binary), is x prime?

COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Claim.  COMPOSITE ! L PRIME.

Conclusion.  COMPOSITE and PRIME have same complexity.

public static boolean isComposite(BigInteger x)

{

   if (isPrime(x)) return false;

   else            return true;

}
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Reduction Gone Wrong

Caveat.
! System designer specs the interfaces for project.
! One programmer might implement isComposite() using isPrime().
! Other programmer might implement isPrime() using isComposite().
! Be careful to avoid infinite reduction loops in practice.

public static boolean isComposite(BigInteger x)

{

   if (isPrime(x)) return false;

   else            return true;

}

public static boolean isPrime(BigInteger x)

{

   if (isComposite(x)) return false;

   else                return true;

}
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Poly-Time Reduction

Def.  Problem X polynomial reduces to problem Y if arbitrary instances 

of problem X can be solved using:
! Polynomial number of standard computational steps for reduction
! One call to subroutine for Y.

Notation.  X ! P Y. 

Ex.  Assignment problem  ! P  LP 

Ex.  3-SAT ! P 3-COLOR.

Ex.  Any linear reduction.

last lecture

stay tuned
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Poly-time reductions

Goal.  Classify and separate problems according to relative difficulty.
! Those that can be solved in polynomial time.
! Those that seem to require exponential time.

Establish tractability.  If X ! P Y and Y can be solved in poly-time,

then X can be solved in poly-time.

Establish intractability.  If Y ! P X and Y cannot be solved in poly-time, 

then X cannot be solved in poly-time.

Transitivity.  If X ! P Y and Y ! P Z then X ! P Z.
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Assignment Problem

Assignment problem.  Assign n jobs to n machines to minimize total 

cost, where cij = cost of assigning job j to machine i.

Applications.  Match jobs to machines, match personnel to tasks,

match Princeton students to writing seminars. 

1

2

3

4

5

1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 3 + 10 + 11 + 20 + 9 =53

1

2

3

4

5

1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 8 + 7 + 20 + 8 + 11 = 44
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Assignment problem reduces to LP

N2 variables

one corresponding

to each cell

2N equations

one per row

one per column

Theorem.  [Birkhoff 1946, von Neumann 1953]  All extreme points of 

the above polyhedron are {0-1}-valued.

Corollary.  Can solve assignment problem by solving LP since LP 

algorithms return an optimal solution that is an extreme point.

Interpretation: if xij = 1, then

assign job j to machine i

maximize c11 x11 + c12 x12 + c13 x13 + c14 x14 + c15 x15 + 

c21 x21 + c22 x22 + c23 x23 + c24x24 + c25 x25 + 

c31 x31 + c32 x32 + c33 x33 + c34 x34 + c35 x35 + 

c41 x41 + c42 x42 + c43 x43 + c44 x44 + c45 x45 + 

c51 x51 + c52 x52 + c53 x53 + c54 x54 + c55 x55 

subject
to the constraints

x11 + x12 + x13 + x14 + x15  =  1

...

x51 + x52 + x53 + x54 + x55  =  1

x11 + x21 + x31 + x41 + x51  =  1

...

x51 + x52 + x53 + x54 + x55  =  1

x11 , ... , x55  !  0
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Literal: A Boolean variable or its negation.

Clause. A disjunction of 3 distinct literals.

Conjunctive normal form.  A propositional

formula % that is the conjunction of clauses.

3-SAT.  Given a CNF formula % consisting of k clauses over n literals,

does it have a satisfying truth assignment?

Key application.  Electronic design automation (EDA).

3-Satisfiability

(¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨¬ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4)

(¬T  ∨ T  ∨ F ) ∧ (T  ∨ ¬T  ∨ F ) ∧ (¬T  ∨ ¬T  ∨ ¬F ) ∧ (¬T  ∨ ¬T ∨  T) ∧ ( ¬T ∨  F ∨ T)

x1   x2   x3   x4

T    T    F    T
solution

Ex:

xi   or   ¬xi

Cj = (x1 ∨ ¬x2 ∨ x3)

CNF = (C1 ∧ C2 ∧ C3 ∧ C4)
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Graph 3-Colorability

3-COLOR.  Given a graph, is there a way to color the vertices

red, green, and blue so that no adjacent vertices have the same color?

yes instance

3-COLOR.  Given a graph, is there a way to color the vertices

red, green, and blue so that no adjacent vertices have the same color?

31

Graph 3-Colorability
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Graph 3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf. Given 3-SAT instance %, we construct an instance of 3-COLOR

that is 3-colorable iff % is satisfiable.

Construction.

(i) Create one vertex for each literal.

(ii) Create 3 new vertices T, F, and B; connect them in a triangle,

and connect each literal to B.

(iii) Connect each literal to its negation.

(iv) For each clause, attach a gadget of 6 vertices and 13 edges.

to be described next
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Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  $  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) [triangle] ensures each literal is T or F.

T

B

F

true false

base

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn. . .
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Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  $  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.

T

B

F

true false

base

x1 ¬x1 x2 ¬x2 x3 ¬x3 xn ¬xn. . .
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Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  $  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) [gadget] ensures at least one literal in each clause is T.

T F

B

6-node gadget

true false

(x1 ∨ ¬x2 ∨ x3)

x1 ¬x2 x3
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Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  $  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) [gadget] ensures at least one literal in each clause is T.

Therefore, % is satisfiable.

T F

B

6-node gadget

true false

(x1 ∨ ¬x2 ∨ x3)

x1 ¬x2 x3

??
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Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  &   Suppose 3-SAT formula % is satisfiable.
! Color all true literals T and false literals F.
! Color vertex below one green vertex F, and vertex below that B.
! Color remaining middle row vertices B.
! Color remaining bottom vertices T or F as forced. 

Therefore, graph is 3-colorable. !

T F

B

6-node gadget

true false

(x1 ∨ ¬x2 ∨ x3)

x1 ¬x2 x3

38

Graph 3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf. Given 3-SAT instance %, we construct an instance of 3-COLOR

that is 3-colorable iff % is satisfiable.

Construction.

(i) Create one vertex for each literal.

(ii) Create 3 new vertices T, F, and B; connect them in a triangle,

and connect each literal to B.

(iii) Connect each literal to its negation.

(iv) For each clause, attach a gadget of 6 vertices and 13 edges

Conjecture: No polynomial-time algorithm for 3-SAT

Implication: No polynomial-time algorithm for 3-COLOR.

Note: Construction is not intended for use, just for proof.
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More Poly-Time Reductions

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-

PATH

SUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

Dick Karp
'85 Turing award

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
Conjecture:  no poly-time algorithm for 3-SAT.

(and hence none of these problems)
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Cook’s Theorem

NP: set of problems solvable in polynomial time

 by a nondeterministic Turing machine

THM.  Any problem in NP ! P 3-SAT.

Pf sketch. 

Each problem P in NP corresponds to a TM M that accepts or rejects

any input in time polynomial in its size

Given M and a problem instance I, construct an instance of 3-SAT

that is satisfiable iff the machine accepts I.

Construction.

• Variables for every tape cell, head position, and state at every step.

• Clauses corresponding to each transition.

• [many details omitted]
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Implications of Cook’s theorem

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-

PATH

SUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems (any many more)
polynomial reduce to 3-SAT.

Stephen Cook
'82 Turing award
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Implications of Karp + Cook

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-

PATH

SUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
Conjecture:  no poly-time algorithm for 3-SAT.

(and hence none of these problems)

3-COLOR

reduces to 3-SAT

All of these problems poly-reduce to one another!
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Poly-Time Reductions:  Implications
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Poly-Time Reductions:  Implications
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Poly-Time Reductions:  Implications

47

Summary

Reductions are important in theory to:
! Establish tractability.
! Establish intractability.
! Classify problems according to their computational requirements.

Reductions are important in practice to:
! Design algorithms.
! Design reusable software modules.

– stack, queue, sorting, priority queue, symbol table, set, graph

shortest path, regular expressions, linear programming
! Determine difficulty of your problem and choose the right tool.

– use exact algorithm for tractable problems
– use heuristics for intractable problems


