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Linear Programming

Reference: The Allocation of Resources by Linear Programming, 
Scientific American, by Bob Bland

• brewer’s problem

• simplex algorithm

• implementation

• solving LPs

• linear programming
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Linear Programming

What is it?
! Quintessential tool for optimal allocation of scarce resources, 

among a number of competing activities.
! Powerful and general problem-solving method that encompasses:

– shortest path, network flow, MST, matching, assignment...
– Ax = b, 2-person zero sum games

Why significant?
! Widely applicable problem-solving model
! Dominates world of industry. 
! Fast commercial solvers available:  CPLEX, OSL.
! Powerful modeling languages available:  AMPL, GAMS.
! Ranked among most important scientific advances of 20th century.

see ORF 307

Ex:  Delta claims that LP
saves $100 million per year.
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Applications

Agriculture.  Diet problem.

Computer science.  Compiler register allocation, data mining.

Electrical engineering.  VLSI design, optimal clocking. 

Energy.  Blending petroleum products.

Economics.  Equilibrium theory, two-person zero-sum games.

Environment.  Water quality management. 

Finance.  Portfolio optimization.

Logistics.  Supply-chain management.

Management.  Hotel yield management.

Marketing.  Direct mail advertising. 

Manufacturing.  Production line balancing, cutting stock.

Medicine.  Radioactive seed placement in cancer treatment.

Operations research.  Airline crew assignment, vehicle routing.

Physics.  Ground states of 3-D Ising spin glasses.

Plasma physics.  Optimal stellarator design.

Telecommunication.  Network design, Internet routing.

Sports.  Scheduling ACC basketball, handicapping horse races.
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Toy LP example: Brewer’s problem

Small brewery produces ale and beer.
! Production limited by scarce resources:  corn, hops, barley malt.
! Recipes for ale and beer require different proportions of resources.

Brewer’s problem: choose product mix to maximize profits.

corn (lbs) hops (oz) malt (lbs) profit ($)

available 480 160 1190

ale (1 barrel) 5 4 35 13

beer (1 barrel) 15 4 20 23

all ale
 (34 barrels)

179 136 1190 442

all beer
(32 barrels)

480 128 640 736

20 barrels ale
20 barrels beer

400 160 1100 720

12 barrels ale
28 barrels beer 

480 160 980 800

more profitable
product mix?

>800 ?
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Brewer’s problem: mathematical formulation    

ale beer

maximize 13A + 23B profit

subject
to the 

constraints

5A + 15B ! 480 corn

4A + 4B ! 160 hops

35A + 20B ! 1190 malt

A " 0

B " 0

Small brewery produces ale and beer.
! Production limited by scarce resources:  

corn, hops, barley malt.
! Recipes for ale and beer require 

different proportions of resources.

Mathematical formulation:
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Brewer’s problem:  Feasible region

Ale

Beer

(34, 0)

(0, 32)

Corn
5A + 15B ! 480

Hops
4A + 4B ! 160

Malt
35A + 20B ! 1190

(12, 28)

(26, 14)

(0, 0)
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Brewer’s problem:  Objective function

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442
(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)

Profit

Ale

Beer
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(34, 0)

(0, 32)

(12, 28)

(0, 0)

(26, 14)

Brewer’s problem:  Geometry

Brewer’s problem observation.   Regardless of objective function 

coefficients, an optimal solution occurs at an extreme point.

extreme point

Ale

Beer
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Standard form linear program

Input:  real numbers  aij, cj, bi.

Output:  real numbers xj.

n = # nonnegative variables, m = # constraints.

Maximize linear objective function subject to linear equations.

“Linear”             No x2,  xy,  arccos(x),  etc.

“Programming”  “ Planning” (term predates computer programming).

maximize c1 x1 + c2 x2 + . . . + cn xn  

subject to the 

constraints

a11 x1 + a12 x2 + . . . + a1n xn  =  b1

a21 x1 + a22 x2 + . . . + a2n xn  =  b2

...

am1 x1 + am2 x2 + . . . + amn xn  =  bm

x1 , x2 ,... , xn  "  0

n variables

m
 e

qu
at

io
ns

maximize cT
 x  

subject to the 

constraints

A x  =  b

x  "  0

matrix version
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Converting the brewer’s problem to the standard form

Original formulation.

Standard form.
! Add slack variable to convert each inequality to an equality.
! Now a 5-dimensional problem.

maximize 13A + 23B

subject
to the 

constraints

5A + 15B ! 480

4A + 4B ! 160

35A + 20B ! 1190

A, B " 0

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0
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A few principles from geometry:
! inequality:  halfplane (2D), hyperplane (kD).
! bounded feasible region:  convex polygon (2D), convex polytope (kD).

Convex set.  If two points a and b are in the set, then so is !(a + b).

Extreme point.  A point in the set that can't be written as !(a + b), 

where a and b are two distinct points in the set.

Geometry

convex not convex

extreme
point
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Geometry (continued)

Extreme point property.  If there exists an optimal solution to (P),

then there exists one that is an extreme point.

Good news.  Only need to consider finitely many possible solutions.

Bad news.  Number of extreme points can be exponential!

Greedy property.  Extreme point is optimal

iff no neighboring extreme point is better.

local optima are global optima

n-dimensional hypercube
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Simplex Algorithm

Simplex algorithm.  [George Dantzig, 1947] 
! Developed shortly after WWII in response to logistical problems, 

including Berlin airlift.
! One of greatest and most successful algorithms of all time.

Generic algorithm.
! Start at some extreme point.
! Pivot from one extreme point to a neighboring one.
! Repeat until optimal.

How to implement?  Linear algebra.

never decreasing objective function
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Simplex Algorithm:  Basis

Basis.  Subset of m of the n variables.

Basic feasible solution (BFS).  Set n - m nonbasic variables to 0,

solve for remaining m variables.
! Solve m equations in m unknowns.
! If unique and feasible solution  $  BFS.
! BFS  %  extreme point.

Ale

Beer

Basis
{A, B, SM }

(12, 28)

{A, B, SC }

(26, 14)

{B, SH, SM }

(0, 32)

{SH, SM, SC }

(0, 0)

{A, SH, SC }

(34, 0)

Infeasible
{A, B, SH }

(19.41, 25.53)

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0
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Simplex Algorithm:  Initialization

Basis = {SC, SH, SM}

A = B = 0
Z = 0
SC = 480 

SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0

Basis = {SC, SH, SM}

A = B = 0
Z = 0
SC = 480 

SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0
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Simplex Algorithm:  Pivot 1

Substitute:  B = (1/15)(480 – 5A – SC )

Basis = {B, SH, SM}

A = SC = 0

Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

(16/3)A + 23B - (23/15) SC # Z = -736

(1/3) A + B + (1/15) SC = 32

(8/3) A   - (4/15) SC + SH = 32

(85/3) A   - (4/3) SC + SM = 550

A,  B,  SC,  SH,  SM " 0
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Simplex Algorithm:  Pivot 1

Why pivot on B?
! Its objective function coefficient is positive

(each unit increase in B from 0 increases objective value by $23)
! Pivoting on column 1 also OK.

Why pivot on row 2?
! Preserves feasibility by ensuring RHS " 0.
! Minimum ratio rule:  min { 480/15,  160/4,  1190/20 }.

Basis = {SC, SH, SM}

A = B = 0
Z = 0
SC = 480 

SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0

Basis = {B, SH, SM}

A = SC = 0

Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

(16/3)A - (23/15) SC # Z = -736

(1/3) A + B + (1/15) SC = 32

(8/3) A   - (4/15) SC + SH = 32

(85/3) A   - (4/3) SC + SM = 550

A,  B,  SC,  SH,  SM " 0
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Simplex Algorithm:  Pivot 2

Substitute:  A = (3/8)(32 + (4/15) SC – SH )

Basis = {B, SH, SM}

SC = SH = 0

Z = 800
B = 28 
A = 12 
SM = 110

maximize Z

subject
to the 

constraints

-  SC -  2SH # Z = #800

 B + (1/10) SC + (1/8) SH = 28

 A   - (1/10) SC + (3/8) SH = 12

   - (25/6) SC - (85/8) SH + SM = 110

A,  B,  SC,  SH,  SM " 0
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Simplex algorithm:  Optimality

Q.  When to stop pivoting?

A.  When all coefficients in top row are non-positive.

Q.  Why is resulting solution optimal?

A.  Any feasible solution satisfies system of equations in tableaux.
! In particular:  Z = 800 – SC – 2 SH

! Thus, optimal objective value Z*  !  800 since SC, SH " 0.
! Current BFS has value 800  $ optimal.

Basis = {A, B, SM}

SC = SH = 0

Z = 800
B = 28 
A = 12 
SM = 110

maximize Z

subject
to the 

constraints

-  SC -  2SH # Z = #800

 B + (1/10) SC + (1/8) SH = 28

 A   - (1/10) SC + (3/8) SH = 12

   - (25/6) SC - (85/8) SH + SM = 110

A,  B,  SC,  SH,  SM " 0
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Encode standard form LP in a single Java 2D array

Simplex tableau
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A

c

bI

0 0

m

1

n m 1

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0

5 15 1 0 0 480

4 4 0 1 0 160

35 20 0 0 1 1190

13 23 0 0 0 0

Encode standard form LP in a single Java 2D array (solution)

Simplex algorithm transforms initial array into solution

Simplex tableau
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A

c

bI

0 0

m

1

n m 1

0 1 1/10 1/8 0 28

1 0 1/10 3/8 0 12

0 0 25/6 85/8 1 110

0 0 -1 -2 0 #800

maximize Z

subject
to the 

constraints

-  SC -  2SH # Z = #800

 B + (1/10) SC + (1/8) SH = 28

 A   - (1/10) SC + (3/8) SH = 12

   - (25/6) SC - (85/8) SH + SM = 110

A,  B,  SC,  SH,  SM " 0
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Simplex algorithm:  Bare-bones implementation

Construct the simplex tableau.

A

c

bI

0 0

public class Simplex
{
   private double[][] a;   // simplex tableaux
   private int M, N;

   public Simplex(double[][] A, double[] b, double[] c)
   {
      M = b.length;
      N = c.length;
      a = new double[M+1][M+N+1];
      for (int i = 0; i < M; i++)
         for (int j = 0; j < N; j++)
            a[i][j] = A[i][j];
      for (int j = N; j < M + N; j++) a[j-N][j] = 1.0;
      for (int j = 0; j < N;     j++) a[M][j]   = c[j];
      for (int i = 0; i < M;     i++) a[i][M+N] = b[i];
   }

m

1

n m 1
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Simplex algorithm:  Bare-bones Implementation

Pivot on element (p, q).

public void pivot(int p, int q)
{
   for (int i = 0; i <= M; i++)
      for (int j = 0; j <= M + N; j++)
         if (i != p && j != q)
            a[i][j] -= a[p][j] * a[i][q] / a[p][q];
 
   for (int i = 0; i <= M; i++)
      if (i != p) a[i][q] = 0.0;

   for (int j = 0; j <= M + N; j++) 
      if (j != q) a[p][j] /= a[p][q];
   a[p][q] = 1.0;
}

zero out column q

scale row p

p

q
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Simplex Algorithm:  Bare Bones Implementation

Simplex algorithm.

public void solve()
{
   while (true)
   {
      int p, q;
      for (q = 0; q < M + N; q++)
         if (a[M][q] > 0) break;
      if (q >= M + N) break;

      for (p = 0; p < M; p++)
         if (a[p][q] > 0) break;
      for (int i = p+1; i < M; i++)
         if (a[i][q] > 0)
            if (a[i][M+N] / a[i][q] < a[p][M+N] / a[p][q])
               p = i;
      pivot(p, q);
   }
}

find entering variable q
(positive objective function coefficient)

find row p according to min ratio rule

min ratio test

+p

q

+

+
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Simplex algorithm:  Degeneracy

Degeneracy.  New basis, same extreme point.

Cycling.  Get stuck by cycling through different bases that all 

correspond to same extreme point.
! Doesn't occur in the wild.
! Bland's least index rule guarantees finite # of pivots.

"stalling" is common in practice
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LP Duality:  Economic Interpretation

Brewer's problem.  Find optimal mix of beer and ale to maximize profits.

Entrepreneur's problem.  Buy resources from brewer at min cost.
! C, H, M = unit price for corn, hops, malt.
! Brewer won't agree to sell resources if 5C + 4H + 35M  <  13

                                                          or 15C + 4H + 20M < 23

A* = 12
B* = 28 
OPT = 800

C* = 1
H* = 2 
M* = 0
OPT = 800

maximize 13A + 23B

subject
to the 

constraints

5A + 15B ! 480

4A + 4B ! 160

35A + 20B ! 1190

A, B " 0

minimize 480C + 160H + 1190M

subject
to the 

constraints

5C + 4H + 35M " 13

15C + 4H + 20M " 23

C, H, M " 0

30

Primal and dual LPs.  Given real numbers aij, bi, cj, find real numbers xj, yi 

that solve (P) and (D).

Duality Theorem.  [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947]

If (P) and (D) have feasible solutions, then max = min.

LP Duality

maximize cT
 x  

subject to the 

constraints

A x  #  b

x  "  0

minimize bT
 y  

subject to the 

constraints

AT y  "  c

y  "  0

P: n variables, m equations D: m variables, n equations
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LP Duality:  Sensitivity Analysis

Q.  How much should brewer be willing to pay (marginal price) for 

additional supplies of scarce resources?

A.  Corn $1, hops $2, malt $0.

Q.  How do I compute marginal prices (dual variables)?

A.  Simplex solves primal and dual simultaneously!

Q.  New product "light beer" is proposed.  It requires 2 corn, 5 hops, 

24 malt. How much profit must be obtained from light beer to justify 

diverting resources from production of beer and ale?

A.  Breakeven:  2 ($1) + 5 ($2) + 24 ($0) =  $12 / barrel.

objective row of final simplex tableaux

provides optimal dual solution!

0 1 1/10 1/8 0 28

1 0 1/10 3/8 0 12

0 0 25/6 85/8 1 110

0 0 -1 -2 0 #800
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Simplex Algorithm:  Running Time

Remarkable property.  In practice, simplex algorithm typically 

terminates after at most 2(m+n) pivots.
! No pivot rule that is guaranteed to be polynomial is known.
! Most pivot rules known to be exponential (or worse) in worst-case.

Pivoting rules.  Carefully balance the cost of finding an entering 

variable with  the number of pivots needed.
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To improve the bare-bones implementation
! Avoid stalling.
! Choose the pivot wisely.
! Watch for numerical stability.
! Maintain sparsity.
! Detect infeasiblity
! Detect unboundedness. 
! Preprocess to reduce problem size. 

Commercial solvers routinely solve LPs with millions of variables and 

tens of thousands of constraints.

requires fancy data structures

34

Simplex Algorithm:  Implementation Issues

Use MS Excel or OR-Objects.
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import drasys.or.mp.*; 
import drasys.or.mp.lp.*; 

public class LPDemo { 
   public static void main(String[] args) throws Exception {

      Problem prob = new Problem(3, 2);
      prob.getMetadata().put("lp.isMaximize", "true");
      prob.newVariable("x1").setObjectiveCoefficient(13.0);
      prob.newVariable("x2").setObjectiveCoefficient(23.0);
      prob.newConstraint("corn").setRightHandSide( 480.0);
      prob.newConstraint("hops").setRightHandSide( 160.0);
      prob.newConstraint("malt").setRightHandSide(1190.0);
        
      prob.setCoefficientAt("corn", "x1",  5.0);
      prob.setCoefficientAt("corn", "x2", 15.0);
      prob.setCoefficientAt("hops", "x1",  4.0);
      prob.setCoefficientAt("hops", "x2",  4.0);
      prob.setCoefficientAt("malt", "x1", 35.0);
      prob.setCoefficientAt("malt", "x2", 20.0);
 
      DenseSimplex lp = new DenseSimplex(prob);
      System.out.println(lp.solve());
      System.out.println(lp.getSolution());
   }
}

LP solvers: toy problems
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set PROD := beer ale;
set INGR := corn hops malt;

param: profit :=
ale  13
beer 23;

param: supply :=
corn  480
hops  160
malt 1190;

param amt: ale beer :=
corn         5  15
hops         4   4
malt        35  20;

LP solvers: commercial strength

AMPL.  [Fourer, Gay, Kernighan]  An algebraic modeling language.

CPLEX solver.  Industrial strength solver.

set INGR;
set PROD;
param profit {PROD};
param supply {INGR};
param amt {INGR, PROD};
var x {PROD} >= 0;

maximize total_profit:
   sum {j in PROD} x[j] * profit[j];

subject to constraints {i in INGR}:
   sum {j in PROD} amt[i,j] * x[j] <= supply[i];

beer.dat

beer.mod

[cos226:tucson] ~> ampl
AMPL Version 20010215 (SunOS 5.7)
ampl: model beer.mod;
ampl: data beer.dat;
ampl: solve;
CPLEX 7.1.0: optimal solution; objective 800
ampl: display x;
x [*] :=  ale 12  beer 28;

separate data from model
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History

1939.  Production, planning.  [Kantorovich]

1947.  Simplex algorithm.  [Dantzig]

1950.  Applications in many fields.

1979.  Ellipsoid algorithm.  [Khachian]

1984.  Projective scaling algorithm.  [Karmarkar]

1990.  Interior point methods.
! Interior point faster when polyhedron smooth like disco ball.
! Simplex faster when polyhedron spiky like quartz crystal.

200x.  Approximation algorithms, large scale optimization.
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Linear programming

Linear “programming” is the process of developing a model to solve

the problem at hand.

Identify variables

Define inequalities and equations

Easy part: convert to standard form

Examples:
! max flow
! assignment
! scheduling
! shortest paths
! ...

39

Max flow

Weighted digraph: edge weights represent capacities
! single source (no edges in)
! single sink (no edges out)

Problem: compute flow through edges
! flow less than capacity in each edge
! inflow equals outflow at each vertex (except source and sink)
! maximize flow from source to sink

Applications:
! distribution of oil through network of pipes
! distribution of goods in trucks through highways

40



Linear programming formulation of maxflow

Got a maxflow problem?

Approach 1: Use a specialized algorithm to solve it
! Algs in Java, Chapter 22
! vast literature
! worst-case performance close to VE
! performance on real problems little understood
! easy linear-time algorithm could exist

Approach 2: LP is a direct mathematical representation of the problem
! one variable for each edge
! inequalities saying that flow does not exceed capacity
! equalities saying that flow is preserved at vertices
! maximize outflow from source

Got an LP solver?

Maybe easier to use it than to implement specialized algorithm

41
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Assignment Problem

Assign N jobs to N machines to minimize total cost

where cij = cost of assignment job j to machine i.

Hungarian algorithm solves in time proportional to N3 

Simplex is fast enough in practice

1

2

3

4

5

1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 3 + 10 + 11 + 20 + 9 =53

1

2

3

4

5

1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 8 + 7 + 20 + 8 + 11 = 44
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Assignment Problem:  Applications

Natural applications.
! Match jobs to machines.
! Match personnel to tasks.
! Match PU students to writing seminars. 

Non-obvious applications.
! Vehicle routing.
! Signal processing.
! Virtual output queueing. 
! Multiple object tracking.
! Approximate string matching.
! Enhance accuracy of solving linear systems of equations.
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Assignment Problem:  LP Formulation

N2 variables

one corresponding

to each cell

2N equations

one per row

one per column

Theorem.  [Birkhoff 1946, von Neumann 1953]  All extreme points of 

the above polyhedron are {0-1}-valued.

Corollary.  Can solve assignment problem by solving LP since LP 

algorithms return an optimal solution that is an extreme point.

Interpretation: if xij = 1, then

assign job j to machine i

maximize c11 x11 + c12 x12 + c13 x13 + c14 x14 + c15 x15 + 

c21 x21 + c22 x22 + c23 x23 + c24x24 + c25 x25 + 

c31 x31 + c32 x32 + c33 x33 + c34 x34 + c35 x35 + 

c41 x41 + c42 x42 + c43 x43 + c44 x44 + c45 x45 + 

c51 x51 + c52 x52 + c53 x53 + c54 x54 + c55 x55 

subject
to the constraints

x11 + x12 + x13 + x14 + x15  =  1

...

x51 + x52 + x53 + x54 + x55  =  1

x11 + x21 + x31 + x41 + x51  =  1

...

x51 + x52 + x53 + x54 + x55  =  1

x11 , ... , x55  "  0



Ultimate problem-solving model (in practice)

1. Many practical problems are easily formulated as LPs

2. Commercial solvers can solve those LPs quickly

More constraints on the problem?
! specialized algorithm may be hard to fix
! can just add more inequalities to LP

New problem?
! may not be difficult to formulate LP
! may be very difficult to develop specialized algorithm

Today’s problem?
! similar to yesterday’s
! edit tableau, run solver 

Too slow?
! could happen
! doesn’t happen
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Ultimate problem-solving model?
! Shortest path.
! Maximum flow.
! Assignment problem.
! Min cost flow.
! Multicommodity flow.
! Linear programming. 
! Semidefinite programming.
! …
! Integer programming (or any NP-complete problem).

Does P = NP?   No universal problem-solving model exists unless P = NP.

tractable

Ultimate problem-solving model (in theory)

intractable (conjectured)
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Perspective

LP is near the deep waters of NP-completeness.
! Solvable in polynomial time.
! Known for & 25 years.

Integer linear programming.
! LP with integrality requirement.
! NP-hard.

An unsuspecting MBA student transitions from tractable LP to 
intractable ILP in a single mouse click.


