
Copyright © 2007 by Robert Sedgewick and Kevin Wayne.

Shortest Paths

References: Algorithms in Java (Part 5), Chapter 21
Intro to Algs and Data Structures, Section 5.5

• introduction

• Dijkstra’s algorithm

• implementation

• priority-first search

• negative weights

2

Edsger W. Dijkstra: a few select quotes

The question of whether computers can think is like

the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a

ripple on the surface of our culture. In their

capacity as intellectual challenge, they are without

precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching

should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is

the language of the future for the programming

techniques of the past: it creates a new generation

of coding bums.

Edger Dijkstra
Turing award 1972

3

introduction
Dijkstra’s algorithm
implementation
priority-first search
negative weights

Shortest paths in a weighted digraph

4

3

t

6

5

5

Shortest paths in a weighted digraph

Given a weighted digraph, find the shortest directed path from s to t.

Note: weights are arbitrary numbers (not necessarily distances) that

need not satisfy the triangle inequality
! ex. airline fares
! [stay tuned for others]

Path: s!6!3!5!t

Cost: 14 + 18 + 2 + 16 = 50

cost of path = sum of edge costs in path

s

2

7

4

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Versions

! source-target (s-t)
! single source
! all pairs.
! nonnegative edge weights
! arbitrary weights
! Euclidean weights.

6

7

Early history of shortest paths algorithms

Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).

Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford's algorithm.

8

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Applications

Shortest-paths is a broadly useful problem-solving model

! Maps
! Robot navigation.
! Texture mapping.
! Typesetting in TeX.
! Urban traffic planning.
! Optimal pipelining of VLSI chip.
! Subroutine in advanced algorithms.
! Telemarketer operator scheduling.
! Routing of telecommunications messages.
! Approximating piecewise linear functions.
! Network routing protocols (OSPF, BGP, RIP).
! Exploiting arbitrage opportunities in currency exchange.
! Optimal truck routing through given traffic congestion pattern.

9

introduction
Dijkstra’s algorithm
indexed heaps
priority-first search
negative weights
negative cycles

10

Single-source shortest-paths

Given. Weighted digraph, single source s.

Def. Distance from s to v: length of the shortest path from s to v .

Goal. Find distance (and shortest path) from s to every other vertex.

Shortest paths form a tree

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15
50

34

45

shortest path tree
(parent-link representation)

11

Single-source shortest-paths: basic plan

Given. Weighted digraph, single source s.

Goal. Find distance (and shortest path) from s to every other vertex.

Design pattern:
! ShortestPaths class (WeightedDigraph client)
! instance variables: vertex-indexed arrays dist[] and pred[]
! client query methods return distance and path iterator

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15 50

34

45

shortest path tree
(parent-link representation)

Note: Same as DFS, BFS; BFS works when weights are all 1.

12

 Edge relaxation

For all v, dist[v] is the length of some path from s to v.

Relaxation along edge e from v to w.
! dist[v] is length of some path from s to v
! dist[w] is length of some path from s to w
! if v-w gives a shorter path to w through v, update dist[w] and pred[w]

Relaxation sets dist[w] to the length of a shorter path from s to w (if v-w gives one)

s w

v

47

11

if (dist[w] > dist[v] + e.weight)
{ dist[w] = dist[v] + e.weight); pred[w] = v; }

0

s w

v

33

44

11

0

S: set of vertices for which the shortest path length from s is known.

Invariants
! for all w, dist[w] is the length of shortest known path from s to w.
! for v in S, dist[v] is the length of the shortest path from s to v.

Initialize S to s, dist[s] to 0, dist[v] to " for all other v

Repeat until S contains all vertices connected to s
! find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]
! relax along that edge
! add w to S

13

Dijkstra's algorithm

s

w

v

dist[v]

S

weight[v-w]

S: set of vertices for which the shortest path length from s is known.

Invariants
! for all v, dist[v] is the length of shortest known path from s to v.
! for v in S, dist[v] is the length of the shortest path from s to v.

Initialize S to s, dist[s] to 0, dist[v] to " for all other v

Repeat until S contains all vertices connected to s
! find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]
! relax along that edge
! add w to S

14

Dijkstra's algorithm

s

w

vS

dist[w]

S: set of vertices for which the shortest path length from s is known.

Invariants
! for all v, dist[v] is the length of shortest known path from s to v.
! for v in S, dist[v] is the length of the shortest path from s to v.

Pf. (by induction on |S|)
! Let w be next vertex added to S.
! Let P* be the s-w path through v.
! Consider any other s-w path P, and let x be first node on path outside S.
! P is already longer than P* as soon as it reaches x by greedy choice.

15

Dijkstra's algorithm proof of correctness

S

s

x

w

P

v

16

Dijkstra's Algorithm

17

Shortest Path Tree

50%

75% 100%

25%

Initialize S to s, dist[s] to 0, dist[v] to " for all other v

Repeat until S contains all vertices connected to s
! find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]
! relax along that edge
! add w to S

Idea 1 (easy): Try all edges

Total running time proportional to VE

18

Dijkstra's algorithm implementation approach

Initialize S to s, dist[s] to 0, dist[v] to " for all other v

Repeat until S contains all vertices connected to s
! find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]
! relax along that edge
! add w to S

Idea 2 (Dijkstra):
! for all v in S, dist[v] is the length of the shortest path from s to w.
! for all w, dist[w] is the length of the shortest path to w ending in an

edge v-w from a vertex v in S (all other vertices in S).

Two implications
! can find next vertex to add to S in V steps (smallest in dist[])
! can update dist in at most V steps (check neighbors of vertex just added)

Total running time proportional to V2

19

Dijkstra's algorithm implementation approach

Initialize S to s, dist[s] to 0, dist[v] to " for all other v

Repeat until S contains all vertices connected to s
! find v-w with v in S and w in S’ that minimizes dist[v] + weight[v-w]
! relax along that edge
! add w to S

Idea 3 (this lecture):
! for all v in S, dist[v] is the length of the shortest path from s to v.
! use a priority queue to find the edge to relax

Total running time proportional to E lg V

20

Dijkstra's algorithm implementation

sparse dense

easy V3 EV

Dijkstra V2 V2

this lecture E lg V E lg V

Q. What goes onto the priority queue?

A. Fringe vertices connected by a single edge to a vertex in S

Dijkstra's algorithm implementation

21

22

introduction
Dijkstra’s algorithm
implementation
priority-first search
negative weights

23

Weighted digraphs in Java: weighted edge data type

public class Edge
{
 public final int source;
 public final int target;
 public final double weight;

 public Edge(int v, int w, double weight)
 {
 this.source = v;
 this.target = w;
 this.weight = weight;
 }

 public int source()
 { return source; }

 public int target()
 { return target; }

}

24

Weighted digraphs in Java: weighted digraph data type

public class WeightedDigraph
{
 private int V;
 private Sequence<Edge>[] adj;

 public WeightedDigraph(int V)
 {
 this.V = V;
 adj = (Sequence<Edge>[]) new Sequence[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Sequence<Edge>();
 }

 public int V()
 { return V; }

 public void addEdge(Edge e)
 { adj[e.source].add(e); }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }

}

previous edge on
shortest path from s

initialize distances

25

Dijkstra’s algorithm scaffolding

public class ShortestPaths
{
 private double[] dist;
 private Edge[] pred;

 public ShortestPaths(WeightedDigraph G, int s)
 {
 dist = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 dist[v] = INFINITY;
 dist[s] = 0;

 // See next slide.
 }

 public double distance(int v)
 { return dist[v]; }

 public Iterable<Edge> path(int v)
 { // As in DFS: eee Lecture 18. }
}

answer client query
for distance from s

compute distances
and paths

distances from s

answer client query
for shortest path

from s

shortest path to v is
known

(vertex not in S
that is closest to s)

relax on edge v-w

distances from s

update fringe

26

Dijkstra’s algorithm (compute shortest-path distances)

 Fringe<Double> fringe;
 fringe = new Fringe<Double>(G.V());

 dist[s] = 0.0;
 fringe.insert(s, dist[s]);

 while (!fringe.isEmpty())
 {
 int v = fringe.delMin();
 for (Edge e : G.adj(v))
 {
 int w = e.target;
 if (dist[w] > dist[v] + e.weight)
 {
 dist[w] = dist[v] + e.weight;
 pred[w] = e;

 if (fringe.contains(w))
 fringe.decrease(w, dist[w]);
 else
 fringe.insert (w, dist[w]);

 }
 }
 }

27

Designing a data type for the fringe

Fringe operations for Dijkstra’s algorithm
! insert
! delete minimum
! contains
! decrease value
! test if empty

Can assume that element keys are integers between 0 and V-1

create an empty fringe on V elementsFringe(int V)

public class Fringe

add item i with given valueinsert(int i, Value val)void

decrease value of item idecrease(int i, Value val)void

delete and return smallest itemdelMin()int

is the fringe empty?isEmpty()boolean

does the fringe contain item i?contains(int i)boolean

like a priority queue

like a symbol table

28

Designing a data type for the fringe

Fringe operations for Dijkstra’s algorithm frequency counts
! insert
! delete minimum
! contains
! decrease value
! test if empty

Challenge: fast implementations of all operations

V
V
V
E
V

29

Implementing a data type for the fringe: array representation

Maintain vertex-indexed arrays vals[] and marked[].
! insert key i with value v: vals[i] = v and marked[i] = true
! delete-min: find smallest vals[] entry
! decrease key i to value v: vals[i] = v.
! contains: marked[i] == true
! is empty: also need count of items on fringe

cost frequency total

insert 1 V V

delete-min V V V2

contains 1 V V

decrease val 1 E E

is empty 1 V V

TOTAL V2

30

Implementing a data type for the fringe: heap representation

Maintain vertex-indexed array vals[] and a heap
! insert key i with value v: vals[i] = v and update heap
! delete-min: find smallest vals[] entry using heap
! decrease key i to value v: vals[i] = v and update heap
! contains: [stay tuned]
! is empty: also need count of items on fringe

cost frequency total

insert lg V V V lg V

delete-min lg V V V lg V

contains 1 V V

decrease val lg V E E lg V

is empty 1 V V

TOTAL E lg V

31

Implementing a data type for the fringe: heap representation

Maintain vertex-indexed arrays pq[] and qp[]
! pq[] is for priority-queue operations (heap code).
! qp[] is for symbol-table operations (use vertex index)

pq[] implements an indirect heap with values in val[pq[]]
! smallest value is at val[pq[]]
! compare children at root with val[pq[2]] < val[pq[3]], etc.
! can reuse heap code for priority queue operations i pq qp val

0 6 47

1 8 5 18

2 4 9 91

3 3 3 42

4 6 2 14

5 1 8 83

6 0 4 78

7 10 11 77

8 5 1 7

9 2 10 81

10 9 7 45

11 7

8(7)

1

2 3

4 4 6 7

8 9 10 11

4(14) 3(42)

6(78) 1(18) 0(47) 10(45)

5(83) 2(91) 9(81) 7(77)

32

Indirect heap for fringe: scaffolding for PQ operations

public class Fringe
{
 private int N;
 private int[] pq;
 private double[] val;

 public Fringe(int MAXN)
 {
 val = new double[MAXN + 1];
 pq = new int[MAXN + 1];
 }

 private boolean greater(int i, int j)
 {
 return val[pq[i]] > val[pq[j]];
 }

 private void exch(int i, int j)
 {
 int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap;
 }

33

Indirect heap for fringe: Java code for PQ operations

public void insert(int i, Key key)
{
 pq[++N] = i;
 vals[i] = key;
 swim(N);
}

public int delMin()
{
 int min = pq[1];
 exch(1, N--);
 sink(1);
 return min;
}

public boolean isEmpty()
{ return N == 0; }

34

Implementing a data type for the fringe: ST representation

Maintain vertex-indexed arrays pq[] and qp[]
! pq[] is for priority-queue operations (heap code).
! qp[] is for symbol-table operations (use vertex index)

qp[] implements a vertex-indexed ST giving access to heap positions
! qp[i] is heap index of i (qp[pq[i]] = pq[qp[i]] = i)
! qp[i] = -1 iff vertex not in fringe
! decrease key by directly accessing val[i]
! then reuse heap code to bubble qp[i] up in the heap

i pq qp val

0 6 47

1 8 5 18

2 4 9 91

3 3 3 42

4 6 2 14

5 1 8 83

6 0 4 78

7 10 11 77

8 5 1 7

9 2 10 81

10 9 7 45

11 7

8(7)

1

2 3

4 4 6 7

8 9 10 11

4(14) 3(42)

6(78) 1(18) 0(47) 10(45)

5(83) 2(91) 9(81) 7(77)

35

Indirect heap for fringe: Java code for ST operations

public void insert(int i, Key key)
{
 qp[i] = ++N;
 pq[N] = i;
 vals[i] = key;
 swim(N);
}

public int delMin()
{
 int min = pq[1];
 qp[min] = -1;
 exch(1, N--);
 sink(1);
 return min;
}

public void decrease(int i, Key key)
{
 keys[i] = key;
 swim(qp[i]);
}

public boolean contains(int i)
{ return qp[i] != -1; }

public boolean isEmpty()
{ return N == 0; }

36

Indirect heap for fringe: additions to scaffolding for ST operations

public class Fringe
{
 private int N;
 private int[] pq, qp;
 private double[] val;

 public Fringe(int MAXN)
 {
 val = new double[MAXN + 1];
 pq = new int[MAXN + 1];
 qp = new int[MAXN + 1];
 for (int i = 0; i <= MAXN; i++) qp[i] = -1;
 }

 private boolean greater(int i, int j)
 {
 return val[pq[i]] > val[pq[j]];
 }

 private void exch(int i, int j)
 {
 int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap;
 qp[pq[i]] = i; qp[pq[j]] = j;
 }

37

Dijkstra's algorithm: performance

Fringe implementation directly impacts performance

array implementation indirect heap implementation

frequency each op total each op total

insert V 1 V lg V V lg V

delete-min V V V2 lg V V lg V

contains V 1 V 1 V

decrease val E 1 E lg V E lg V

is empty V 1 V 1 V

TOTAL V2 TOTAL E lg V

best for dense graphs best for sparse graphs

38

Dijkstra's algorithm: advanced implementations

Johnson (1970s): use d-way heap (easy)

Sleator-Tarjan (1980s): use Fibonacci heap (very complicated)

Linear worst-case guarantee? Open.

d-way Fibonacci

frequency each op total each op total

insert V d lgd V V d lgd V lg V V lg V

delete-min V d lgd V V d lgd V lg V V lg V

contains V 1 V V V

decrease val E lgd V E lgd V lg V E lg V

is empty V 1 V V V

TOTAL E lgd V TOTAL E + V lg V

indistinguishable
from linear in practice

amortized bound

39

Dijkstra's Algorithm: performance summary

Fringe implementation directly impacts performance

Best choice depends on sparsity of graph.
! 2,000 vertices, 1 million edges. heap 2-3x slower than array
! 100,000 vertices, 1 million edges. heap gives 500x speedup.
! 1 million vertices, 2 million edges. heap gives 10,000x speedup.

Bottom line.
! array implementation optimal for dense graphs
! binary heap far better for sparse graphs
! d-way heap worth the trouble in performance-critical situations
! Fibonacci heap best in theory, but not worth implementing

40

introduction
Dijkstra’s algorithm
implementation
priority-first search
negative weights

41

Priority-first search

Insight: All of our graph-search methods are the same algorithm!

Maintain a set of explored vertices S

Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.

BFS. Take from vertex which was discovered least recently.

Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to s.

... Gives simple algorithm for many graph-processing problems

Challenge: express this insight in usable Java code

w

vS

42

Priority-first search: application example

Shortest s-t paths in Euclidean graphs (maps)
! Vertices are points in the plane.
! Edge weights are Euclidean distances.

Sublinear algorithm.
! Assume graph is already in memory.
! Start Dijkstra at s.
! Stop when you reach t.

Even better: exploit geometry (A* algorithm)
! For edge v-w, use weight d(v, w) + d(w, t) – d(v, t).
! Proof of correctness for Dijkstra still applies.
! In practice only O(V 1/2) vertices examined.

[Practical map-processing programs precompute many of the paths.]

Euclidean distance

43

introduction
Dijkstra’s algorithm
implementation
priority-first search
negative weights

Currency conversion. Given currencies and exchange rates, what is

best way to convert one ounce of gold to US dollars?
! 1 oz. gold # $327.25.
! 1 oz. gold # £208.10 # # $327.00.
! 1 oz. gold # 455.2 Francs # 304.39 Euros # $327.28.

44

Currency

UK Pound

Euro

Japanese Yen

Swiss Franc

£

1.0000

1.4599

189.050

2.1904

US Dollar

Gold (oz.)

1.5714

0.004816

Euro

0.6853

1.0000

129.520

1.4978

1.0752

0.003295

¥

0.005290

0.007721

1.0000

0.011574

0.008309

0.0000255

Franc

0.4569

0.6677

85.4694

1.0000

0.7182

0.002201

$

0.6368

0.9303

120.400

1.3929

1.0000

0.003065

Gold

208.100

304.028

39346.7

455.200

327.250

1.0000

Shortest paths application: Currency conversion

[208.10 $ 1.5714]

[455.2 $.6677 $ 1.0752]

Graph formulation.
! Vertex = currency.
! Edge = transaction, with weight equal to exchange rate.
! Find path that maximizes product of weights.

45

Shortest paths application: Currency conversion

$G

£ EF

0.003065

0.7182
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Reduce to shortest path problem by taking logs
! Let weight(v-w) = - lg (exchange rate from currency v to w)
! multiplication turns to addition
! Shortest path with costs c corresponds to best exchange sequence.

Challenge. Solve shortest path problem with negative weights.

46

Shortest paths application: Currency conversion

-lg(455.2) = -8.8304

0.5827

-0.1046

$G

£ EF

0.003065

0.7182
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

47

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Adding a constant to every edge weight also doesn’t work.

Bad news: need a different algorithm.

0

3

1

2

4

2-9

6

0

3

1

11

13

20

15

Dijkstra selects vertex 3 immediately after 0.

But shortest path from 0 to 3 is 0!1!2!3.

Adding 9 to each edge changes the shortest path

because it adds 9 to each segment, wrong thing to do

for paths with many segments.

48

Shortest paths with negative weights: negative cycles

Negative cycle. Directed cycle whose sum of edge weights is negative.

Observations.
! If negative cycle C on path from s to t, then shortest path can be

made arbitrarily negative by spinning around cycle
! There exists a shortest s-t path that is simple.

Worse news: need a different problem

s t

C
cost(C) < 0

-6

7

 -4

49

 Edge relaxation

For all v, dist[v] is the length of some path from s to v.

Relaxation along edge e from v to w.
! dist[v] is length of some path from s to v
! dist[w] is length of some path from s to w
! if v-w gives a shorter path to w through v, update dist[w] and pred[w]

Relaxation sets dist[w] to the length of a shorter path from s to w (if v-w gives one)

s w

v

47

11

if (dist[w] > dist[v] + e.weight)
{ dist[w] = dist[v] + e.weight); pred[w] = v; }

0

s w

v

33

44

11

0

50

Shortest paths with negative weights: dynamic programming algorithm

A simple solution that works!
! Initialize dist[v] = ", dist[s]= 0.
! Repeat V times: relax each edge e.

for (int i = 1; i <= G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (Edge e : G.adj(v))
 {
 int w = e.target;
 if (dist[w] > dist[v] + e.weight)
 {
 dist[w] = dist[v] + e.weight)
 pred[w] = v;
 }
 }

phase i

relax v-w

51

Shortest paths with negative weights: dynamic programming algorithm

Running time proportional to E V

Invariant. At end of phase i, dist[v] % length of any path from s to v

using at most i edges.

Theorem. If there are no negative cycles, upon termination dist[v] is

the length of the shortest path from from s to v.

and pred[] gives the shortest paths

52

Observation. If dist[v] doesn't change during phase i, no need to

relax any edge leaving v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distance

changed.

Running time.
! still could be proportional to EV in worst case
! much faster than that in practice

Shortest paths with negative weights: Bellman-Ford-Moore algorithm

be careful to keep at most one copy of each vertex on queue

53

Queue<Integer> q = new Queue<Integer>();
marked[s] = true;
dist[s] = 0;
q.enqueue(s);

while (!q.isEmpty())
{
 int v = q.dequeue();
 marked[v] = false;
 for (Edge e : G.adj(v))
 {
 int w = e.target();
 if (dist[w] > dist[v] + e.weight)
 {
 dist[w] = dist[v] + e.weight;
 pred[w] = v;
 if (!marked[w])
 {
 marked[w] = true;
 q.enqueue(w);
 }
 }
 }
}

Shortest paths with negative weights: Bellman-Ford-Moore algorithm

Initialize dist[v] = " and marked[v]= false for all vertices v.

54

Single Source Shortest Paths Implementation: Cost Summary

Remark 1. Negative weights makes the problem harder.

Remark 2. Negative cycles makes the problem intractable.

algorithm worst case typical case

nonnegative costs

Dijkstra (classic) V2 V2

Dijkstra (heap) E lg V E

no negative cycles

Dynamic programming EV EV

Bellman-Ford-Moore EV E

55

Shortest paths application: arbitrage

Is there an arbitrage opportunity in currency graph?
! Ex: $1 # 1.3941 Francs # 0.9308 Euros # $1.00084.
! Is there a negative cost cycle?
! Fastest algorithm very valuable!

$G

£ EF

0.003065

1.3941
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

 -0.4793 + 0.5827 - 0.1046 < 0

 -0.4793

-lg(0.6677) = 0.5827

-0.1046

56

Negative cycle detection

If there is a negative cycle reachable from s.

Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.

Finding a negative cycle. If any vertex v is updated in phase V,

there exists a negative cycle, and we can trace back pred[v] to find it.

s 3

v

2 6

7

4

5
pred[v]

57

Negative cycle detection

Goal. Identify a negative cycle (reachable from any vertex).

Solution. Add 0-weight edge from artificial source s to each vertex v.

Run Bellman-Ford from vertex s.

 -0.48 -0.11

0.58

s

Shortest paths summary

Dijkstra’s algorithm
! easy and optimal for dense digraphs
! PQ/ST data type gives near optimal for sparse graphs

Priority-first search
! generalization of Dijkstra’s algorithm
! encompasses DFS, BFS, and Prim
! enables easy solution to many graph-processing problems

Negative weights
! arise in applications
! make problem intractable in presence of negative cycles (!)
! easy solution using old algorithms otherwise

Shortest-paths is a broadly useful problem-solving model

58

