
Copyright © 2007 by Robert Sedgewick and Kevin Wayne.

Directed Graphs

References: Algorithms in Java (Part 5), Chapter 19
Intro to Algs and Data Structures, Section 5.2

• introduction

• digraph search

• transitive closure

• topological sort

• strong components

2

introduction
digraph search
transitive closure
topological sort
strong components

3

Directed Graphs

Digraph. Set of objects with oriented pairwise connections.

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002

 1 .017

 2 .009

 3 .003

 4 .006

 5 .016

 6 .066

 7 .021

 8 .017

 9 .040

 10 .002

 11 .028

 12 .006

 13 .045

 14 .018

 15 .026

 16 .023

 17 .005

 18 .023

 19 .026

 20 .004

 21 .034

 22 .063

 23 .043

 24 .011

 25 .005

 26 .006

 27 .008

 28 .037

 29 .003

 30 .037

 31 .023

 32 .018

 33 .013

 34 .024

 35 .019

 36 .003

 37 .031

 38 .012

 39 .023

 40 .017

 41 .021

 42 .021

 43 .016

 44 .023

 45 .006

 46 .023

 47 .024

 48 .019

 49 .016

6 22

 one-way streets in a map hyperlinks connecting web pages

4

Directed graphs (digraphs)

Set of objects with oriented pairwise connections.

dependencies in software modules prey-predator relationship among species

5

Digraph Applications

Digraph Vertex Edge

financial stock, currency transaction

transportation street intersection, airport highway, airway route

scheduling task precedence constraint

WordNet synset hypernym

Web web page hyperlink

game board position legal move

telephone person placed call

food web species predator-prey relation

infectious disease person infection

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

6

Some Digraph Problems

Transitive closure. Is there a directed path from v to w?

Strong connectivity. Are all vertices mutually reachable?

Topological sort. Can you draw the graph so that all edges point

from left to right?

PERT/CPM. Given a set of tasks with precedence constraints,

what is the earliest that we can complete each task?

Shortest path. Given a weighted digraph, find best route from s to t

PageRank. What is the importance of a web page?

7

Digraph representation

Vertex names.
! This lecture: use integers between 0 and V-1.
! Real world: convert between names and integers with symbol table.

Orientation of edge is significant.

0

6

4

21

5

3

7

12

109

11

8

8

Adjacency Matrix Representation

Maintain a two-dimensional V ! V boolean array.

For each edge v"w in graph: adj[v][w] = true.

 0 0 1 1 0 0 1 1 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 2 0 0 0 0 0 0 0 0 0 0 0 0 0
 3 0 0 0 0 0 0 0 0 0 0 0 0 0
 4 0 0 0 1 0 0 0 0 0 0 0 0 0
 5 0 0 0 1 1 0 0 0 0 0 0 0 0
 6 0 0 0 0 1 0 0 0 0 0 0 0 0
 7 0 0 0 0 0 0 0 0 1 0 0 0 0
 8 0 0 0 0 0 0 0 0 0 0 0 0 0
 9 0 0 0 0 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

from

to

0

6

4

21

5

3

7 12

109

118

9

Adjacency-list digraph representation

Maintain vertex-indexed array of lists.

Note: one representation of each directed edge

0: 5 2 1 6

1:

2:

3:

4: 3

5: 4 3

6: 4

7: 8

8:

9: 10 11 12

10:

11: 12

12:

0

6

4

21

5

3

7 12

109

118

adjacency
lists

create empty
V-vertex graph

add edge from v to w
(parallel edges allowed)

iterable SET for
v’s neighbors

10

Adjacency-list digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph
{
 private int V;
 private SET<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (SET<Integer>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 }

 public Iterable<Integer> adj(int v)
 {
 return adj[v];
 }
}

11

Digraph Representations

Digraphs are abstract mathematical objects.
! ADT implementation requires specific representation.
! Efficiency depends on matching algorithms to representations.

In practice: Use adjacency-list representation
! Bottleneck is iterating over edges leaving v.
! Real world digraphs are sparse.

Representation Space

Adjacency matrix V 2

Adjacency list E + V

Edge from
v to w?

1

outdegree(v)

Iterate over
edges leaving v?

V

outdegree(v)

List of edges E + V E E

E is proportional to V

12

Typical digraph application: Google's PageRank algorithm

Goal. Determine which web pages on Internet are important.

Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.
! Start at random page.
! With probability 0.85, randomly select a hyperlink to visit next;

with probability 0.15, randomly select any page.
! PageRank = proportion of time random surfer spends on each page.

Solution 1: Simulate random surfer for a long time.

Solution 2: Compute ranks directly until they converge

Solution 3: Compute eigenvalues of adjacency matrix!

None feasible without sparse digraph representation

Every square matrix is a weighted digraph

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002

 1 .017

 2 .009

 3 .003

 4 .006

 5 .016

 6 .066

 7 .021

 8 .017

 9 .040

 10 .002

 11 .028

 12 .006

 13 .045

 14 .018

 15 .026

 16 .023

 17 .005

 18 .023

 19 .026

 20 .004

 21 .034

 22 .063

 23 .043

 24 .011

 25 .005

 26 .006

 27 .008

 28 .037

 29 .003

 30 .037

 31 .023

 32 .018

 33 .013

 34 .024

 35 .019

 36 .003

 37 .031

 38 .012

 39 .023

 40 .017

 41 .021

 42 .021

 43 .016

 44 .023

 45 .006

 46 .023

 47 .024

 48 .019

 49 .016

6 22

13

introduction
digraph search
transitive closure
topological sort
strong components
pagerank

14

Digraph application: program control-flow analysis

Every program is a digraph (instructions connected to possible successors)

Dead code elimination.

Find (and remove) unreachable code

Infinite loop detection.

Determine whether exit is unreachable

can arise from compiler optimization (or bad code)

can’t detect all possible infinite loops (halting problem)

15

Digraph application: mark-sweep garbage collector

Every data structure is a digraph (objects connected by references)

Roots. Objects known to be directly

 accessible by program (e.g., stack).

Reachable objects.

 Objects indirectly accessible by

 program (starting at a root and

 following a chain of pointers).

Mark-sweep algorithm. [McCarthy, 1960]
! Mark: run DFS from roots to mark reachable objects.
! Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost: Uses 1 extra mark bit per object, plus DFS stack.

easy to identify pointers in type-safe language

16

Reachability

Goal. Find all vertices reachable from s along a directed path.

s

17

Reachability

Goal. Find all vertices reachable from s along a directed path.

s

Digraph-processing challenge 1:

Problem: Mark all vertices reachable from a given vertex.

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

18

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
3-1

6

4

21

3

0

5

Digraph-processing challenge 1:

Problem: Mark all vertices reachable from a given vertex.

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

19

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
3-1

6

4

21

3

0

5

Use DFS

!

20

Depth-first search in digraphs

Same method as for undirected graphs

Every undirected graph is a digraph
! happens to have edges in both directions
! DFS is a digraph algorithm (never uses that fact)

Mark s as visited.

Visit all unmarked vertices w adjacent to v.

DFS (to visit a vertex s)

recursive

21

Depth-first search (single-source reachability)

Identical to undirected version (substitute Digraph for Graph).

true if
connected to s

constructor
marks vertices
connected to s

recursive DFS
does the work

client can ask whether
any vertex is

connected to s

public class DFSearcher
{
 private boolean[] marked;

 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v)
 {
 return marked[v];
 }
}

22

Digraph application: dependencies among software modules

Every software system is a digraph (modules dependent on others)

Mozilla Internet explorer

Issue: Any cycles?

23

Cycle detection

Goal. Find any cycle in the graph

s

24

Cycle detection

Goal. Find any cycle in the graph

Can’t find a cycle? The digraph is a DAG (directed acyclic graph)

s

Digraph-processing challenge 2:

Problem: Does a digraph contain a cycle ?

Equivalent: Is a digraph a DAG?

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

25

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

!

Digraph-processing challenge 2:

Problem: Does a digraph contain a cycle ?

Equivalent: Is a digraph a DAG?

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

26

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

Use DFS

but prove that it works

! proof

implementation

27

Cycle detection in a digraph: Java implementation

public class CycleDetector
{
 private boolean[] marked;
 private boolean[] done;
 private boolean dagflag;

 public CycleDetector(Digraph G)
 {
 marked = new boolean[G.V()];
 done = new boolean[G.V()];
 count = G.V();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v])
 dagflag = search(G, v);
 }

 private boolean search(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) return search(G, w);
 else if (!done[w]) return false;
 done[v] = true;
 return true;
 }
}

add method dag()
to return dagflag on

client query

standard DFS
with a few

modifications

28

Cycle detection in a digraph: Example

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

0: 6 1 2
1: 3
2: 1
3: 4 2 5
4:
5: 0 4
6: 4

visit 0: 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 visit 6: 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 visit 4: 1 0 0 0 1 0 1 0 0 0 0 0 0 0

 leave 4: 1 0 0 0 1 0 1 0 0 0 0 1 0 0

 leave 6: 1 0 0 0 1 0 1 0 0 0 0 1 0 1

 visit 1: 1 1 0 0 1 0 1 0 0 0 0 1 0 1

 visit 3: 1 1 0 1 1 0 1 0 0 0 0 1 0 1

 check 4:

 visit 2: 1 1 1 1 1 0 1 0 0 0 0 1 0 1

 check 1:

ignore since marked and done

cycle since marked but not done

marked[] done[]

Trace of marks set at beginning and end of search()

adj lists

29

Cycle detection in a digraph: Correctness proof

marked[v] = true && done[v] = false

we know a directed path from source to v

Case 1: no cycle
! search() will never touch a vertex that

is marked and not done
! therefore will return true

Case 2: cycle
! search() must be called for some vertex on cycle
! that one will be found marked and not done
! return false

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
3-1

6

4

21

3

0

5

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

DFS enables direct solution of simple digraph problems.
! Reachability.
! Cycle detection
! Topological sort
! Transitive closure.
! Is there a path from s to t ?

Basis for solving difficult digraph problems.
! Directed Euler path.
! Strong connected components.

30

Depth First Search

!

!

stay tuned

31

Breadth-first search in digraphs

Same method as for undirected graphs

Every undirected graph is a digraph
! happens to have edges in both directions
! BFS is a digraph algorithm (never uses that fact)

Finds the shortest directed path from s to t

Put s onto a FIFO queue.

Repeat until the queue is empty:

! remove the least recently added vertex v

! add each of v's unvisited neighbors to the

 queue and mark them as visited.

BFS (from source vertex s)

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002

 1 .017

 2 .009

 3 .003

 4 .006

 5 .016

 6 .066

 7 .021

 8 .017

 9 .040

 10 .002

 11 .028

 12 .006

 13 .045

 14 .018

 15 .026

 16 .023

 17 .005

 18 .023

 19 .026

 20 .004

 21 .034

 22 .063

 23 .043

 24 .011

 25 .005

 26 .006

 27 .008

 28 .037

 29 .003

 30 .037

 31 .023

 32 .018

 33 .013

 34 .024

 35 .019

 36 .003

 37 .031

 38 .012

 39 .023

 40 .017

 41 .021

 42 .021

 43 .016

 44 .023

 45 .006

 46 .023

 47 .024

 48 .019

 49 .016

6 22

32

Digraph BFS application: Web Crawler

The internet is a digraph

Goal. Crawl Internet, starting from some root website.

Solution. BFS with implicit graph.

BFS.
! Start at some root website

(say http://www.princeton.edu.).
! Maintain a Queue of websites to explore.
! Maintain a SET of discovered websites.
! Dequeue the next website

and enqueue websites to which it links

(provided you haven't done so before).

Q. Why not use DFS?

A. Internet is not fixed (some pages generate new ones when visited)

Queue<String> q = new Queue<String>();

SET<String> visited = new SET<String>();

String s = "http://www.princeton.edu";

q.enqueue(s);

visited.add(s);

while (!q.isEmpty())

{

 String v = q.dequeue();

 System.out.println(v);

 In in = new In(v);

 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";

 Pattern pattern = Pattern.compile(regexp);

 Matcher matcher = pattern.matcher(input);

 while (matcher.find())

 {

 String w = matcher.group();

 if (!visited.contains(w))

 {

 visited.add(w);

 q.enqueue(w);

 }

 }

}
33

Web crawler: Java implementation

read in raw html for next site in queue

use regular expression
to find all URLs in site

if unvisited, mark as visited
and put on queue

http://xxx.yyy.zzz

start crawling from s

queue of sites to crawl

set of visited sites

34

introduction
digraph search
transitive closure
topological sort
strong components

Graph-processing challenge (revisited)

Problem: Is there a path from s to t ?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

35

0-1
0-6
0-2
4-3
5-3
5-4

6

4

21

3

0

5

Problem: Is there a path from s to t ?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

Graph-processing challenge (revisited)

36

0-1
0-6
0-2
4-3
5-3
5-4

6

4

21

3

0

5

Use DFS

mark vertices with

connected component ID

(see lecture on undirected graphs)

!

Digraph-processing challenge 3

Problem: Is there a directed path from s to t ?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

37

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

Problem: Is there a directed path from s to t ?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

Digraph-processing challenge 3

38

V2 possibilities

!

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
3-1

6

4

21

3

0

5

 0 1 2 3 4 5 6
0 1 1 1 0 1 1 0
1 0 1 0 0 0 0 0
2 0 1 1 0 0 0 0
3 0 1 1 1 1 0 0
4 0 0 0 0 1 0 0
5 1 1 1 0 1 1 1
6 0 0 0 0 1 0 1

39

The transitive closure of G has an directed edge from v to w

 if there is a directed path from v to w in G

Transitive Closure

G

Transitive closure
of G

TC is usually dense
so adjacency matrix
representation is OK

graph is usually sparse

Digraph-processing challenge 3 (revised)

Problem: Is there a directed path from s to t ?

Assumptions: V2 preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

40

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

Digraph-processing challenge 3 (revised)

Problem: Is there a directed path from s to t ?

Assumptions: V2 preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

41

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

!

Digraph-processing challenge 3 (revised again)

Problem: Is there a directed path from s to t ?

Assumptions: VE preprocessing time

 V2 space

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

42

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

Digraph-processing challenge 3 (revised again)

Problem: Is there a directed path from s to t ?

Assumptions: VE preprocessing time

 V2 space

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

43

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

Use DFS

once for each

vertex

to compute rows of

transitive closure

!

44

Transitive Closure: Java Implementation

public class TransitiveClosure
{

 private DFSearcher[] tc;

 public TransitiveClosure(Digraph G)
 {
 tc = new DFSearcher[G.V()];
 for (int v = 0; v < G.V(); v++)
 tc[v] = new DFSearcher(G, v);
 }

 public boolean reachable(int v, int w)
 {
 return tc[v].isReachable(w);
 }
}

is there a directed path from v to w ?

Use an array of DFSearcher objects,

one for each row of transitive closure
public class DFSearcher
{
 private boolean[] marked;
 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }
 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }
 public boolean isReachable(int v)
 {
 return marked[v];
 }
}

45

introduction
digraph search
transitive closure
topological sort
strong components

46

Digraph application: Scheduling

Scheduling. Given a set of tasks to be completed with precedence

constraints, in what order should we schedule the tasks?

Graph model.
! Create a vertex v for each task.
! Create an edge v"w if task v must precede task w.
! Schedule tasks in topological order.

0. read programming assignment
1. download files
2. write code
3. attend precept
…
12. sleep

tasks

precedence
constraints

feasible
schedule

47

Topological Sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point left to right.

Observation. Not possible if graph has a directed cycle.

Digraph-processing challenge 4

Problem: Check that the digraph is a DAG.

 If it is a DAG, do a topological sort.

Assumptions: linear (V + E) preprocessing time

 provide client with vertex iterator for topological order

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

48

0-1
0-6
0-2
0-5
2-3
4-9
6-4
6-9
7-6
8-7
9-10
9-11
9-12
11-12

Digraph-processing challenge 4

Problem: Check that the digraph is a DAG.

 If it is a DAG, do a topological sort.

Assumptions: linear (V + E) preprocessing time

 provide client with vertex iterator for topological order

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

49

Use DFS

reverse

postorder

numbering

!

!

implementation

proof
0-1
0-6
0-2
0-5
2-3
4-9
6-4
6-9
7-6
8-7
9-10
9-11
9-12
11-12

50

Topological sort in a DAG: Java implementation

public class TopologicalSorter
{
 private int count;
 private boolean[] marked;
 private int[] ts;

 public TopologicalSorter(Digraph G)
 {
 marked = new boolean[G.V()];
 ts = new int[G.V()];
 count = G.V();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) tsort(G, v);
 }

 private void tsort(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) tsort(G, w);
 ts[--count] = v;
 }
}

standard DFS
with 3

extra lines of code

add iterator that returns
ts[0], ts[1], ts[2]...

51

Topological sort in a DAG: Correctness proof

To topologically sort a DAG.
! Run DFS to compute reverse postorder numbering in ts[].
! Use client iterator to return ts[0], ts[1], ts[2], ...

Key observation. When DFS backtracks from a vertex v,

all vertices reachable from v have already been explored.

Running time. linear

A

D

E

F

H

no back edges in DAG

DFS
tree

52

Topological sort applications.

! Causalities.
! Compilation units.
! Class inheritance.
! Course prerequisites.
! Deadlocking detection.
! Temporal dependencies.
! Pipeline of computing jobs.
! Check for symbolic link loop.
! Evaluate formula in spreadsheet.
! Program Evaluation and Review Technique / Critical Path Method

53

Topological sort application (weighted DAG): PERT/CPM

Program Evaluation and Review Technique / Critical Path Method
! Task v takes time[v] units of time.
! Can work on jobs in parallel.
! Precedence constraints: must finish

task v before beginning task w.
! What's earliest we can finish each task?

index time prereq

A 0 -

task

begin

B 4 Aframing

C 2 Broofing

D 6 Bsiding

E 5 Dwindows

F 3 Dplumbing

G 4 C, Eelectricity

H 6 C, Epaint

I 0 F, Hfinish

A B C G H

D

E

F

I

4

6

2

5

3

4 60 0time[v]

F

PERT/CPM algorithm.
! Compute topological order of vertices.
! Initialize fin[v] = 0 for all vertices v.
! Consider vertices v in topological order.

– for each edge v"w, set fin[w]= max(fin[w], fin[v] + time[w])

54

Program Evaluation and Review Technique / Critical Path Method

A B C G H

D

E

I

4

6

2

5

3

4 60 0time[v]

4 6 19 250 25

13

10

15

critical path

fin[v]

55

introduction
digraph search
transitive closure
topological sort
strong components

Graph-processing challenge (revisited again)

Problem: Is there a path from s to t ?

Equivalent: Are s and t connected?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

56

0-1
0-6
0-2
4-3
5-3
5-4

6

4

21

3

0

5

Problem: Is there a path from s to t ?

Equivalent: Are s and t connected?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

Graph-processing challenge (revisited again)

57

0-1
0-6
0-2
4-3
5-3
5-4

6

4

21

3

0

5

Use DFS

mark vertices with

connected component ID

(see lecture on undirected graphs)

!

Digraph-processing challenge 5

Problem: Is there a directed cycle containing s and t ?

Equivalent: Are there directed paths from s to t and from t to s?

Equivalent: Are s and t strongly connected?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

58

Def. Vertices v and w are strongly connected if there is a path

from v to w and a path from w to v.

Strong component. Maximal subset of strongly connected vertices.

Kernel DAG.
! vertex: set of vertices in same strong component
! edge: any edge from original graph connecting two vertices

59

Strong components: terminology

0 2 3

4 5 6

1
 9 10

11 12

7 8

kernel DAG

sink

symmetric, transitive, reflexive.

60

Typical strong components application: Ecological food web

Strong component is subset of species with common energy flow
! source in kernel DAG: heading to extinction?
! sink in kernel DAG: heading for growth?

Digraph changes over time

61

Typical strong components application: Packaging software

Strong component is subset of mutually interacting modules

Approach: Package together modules in same strong component

Strong components algorithms: brief history

1960s: Core OR problem
! widely studied
! some practical algorithms
! complexity not understood

1972: Linear-time DFS algorithm (Tarjan)
! classic algorithm
! level of difficulty: CS226++
! demonstrated broad applicability and importance of DFS

1980s: Easy two-pass linear-time algorithm (Kosaraju)
! forgot notes for teaching algorithms class
! developed algorithm in order to teach it!
! later found in Russian scientific literature (1972)

1990s: More easy linear-time algorithms (Gabow, Mehlhorn)
! Gabow: fixed old OR algorithm
! Mehlhorn: needed one-pass algorithm for LEDA

62

63

Simple (but mysterious) algorithm for computing strong components
! Run DFS on GR and compute postorder.
! Run DFS on G, considering vertices in reverse postorder.

Theorem. Trees in second DFS are strong components. (!)

Kosaraju's Algorithm

Digraph-processing challenge 5

Problem: Is there a directed cycle containing s and t ?

Equivalent: Are there directed paths from s to t and from t to s?

Equivalent: Are s and t strongly connected?

Assumptions: linear (V + E) preprocessing time

 constant query time

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert (well, maybe a CS341 student)

4) intractable

5) no one knows

6) impossible

64

Use DFS

(twice)

!

!

implementation

proof

Digraph-processing summary: Algorithms of the day

65

Single-source

reachability
DFS

cycle detection DFS

transitive closure DFS from each vertex

topological sort

(DAG)
DFS

strong components
Kosaraju

DFS (twice)

