

Optimize Judiciously

More computing sins are committed in the name of efficiency (without necessarily achieving it) than for any other single reason including blind stupidity. - William A. Wulf

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. - Donald E. Knuth

We follow two rules in the matter of optimization: Rule 1: Don't do it. Rule 2 (for experts only). Don't do it yet - that is, not until you have a perfectly clear and unoptimized solution. - M. A. Jackson

Reference: Effective Java by Joshua Bloch.

Summary of symbol-table implementations

	c	uarantee	2		average casi	2	ordered
implementation	search			search			iteration?
unordered array	N	Ν	N	N/2	N/2	N/2	no
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes
unordered list	Ν	Ν	Ν	N/2	Ν	N/2	no
ordered list	Ν	Ν	Ν	N/2	N/2	N/2	yes
BST	Ν	Ν	Ν	1.39 lg N	1.39 lg N	?	yes
randomized BST	7 lg N	7 lg N	7 lg N	1.39 lg N	1.39 lg N	1.39 lg N	yes
red-black tree	2 lg N	2 lg N	2 lg N	lg N	lg N	lg N	yes

Hashing: basic plan

Save items in a key-indexed table. Index is a function of the key.

Hash function. Method for computing table index from key.

Collision resolution strategy. Algorithm and data structure to handle two keys that hash to the same index.

Equality test. Method for checking whether two keys are equal.

Classic space-time tradeoff.

- No space limitation: trivial hash function with key as address.
- No time limitation: trivial collision resolution with sequential search.
- Limitations on both time and space: hashing (the real world).

hash functions collision resolution applications

Hash Codes and Hash Functions

Java convention: all classes implement hashcode ()

hashcode () returns a 32-bit int (between -2147483648 and 2147483647)

Hash function. An int between 0 and M-1 (for use as an array index)

First try:

Bug. Don't use (code % M) as array index

1-in-a billion bug. Don't use (Math.abs(code) % M) as array index.

OK. Safe to use ((code & 0x7fffffff) % M) as array index.

hex literal

Implementing a good hash function

Idealistic goal: scramble the keys uniformly.

- Efficiently computable.
- Each table position equally likely for each key.

thoroughly researched problem, still problematic in practical applications

573 = California, 574 = Alaska

given geographic region

assigned in chronological order within a

Practical challenge: need different approach for each type of key

Ex: Social Security numbers.

- Bad: first three digits.
- Better: last three digits.
 Ex: date of birth.
- Bad: birth year.
- Better: birthday.

Ex: phone numbers.

- Bad: first three digits.
- Better: last three digits.

Hash Codes and Hash Functions

Java convention: all classes implement hashcode ()

hashcode () returns a 32-bit int (between -2147483648 and 2147483647)

Hash function. An int between 0 and M-1 (for use as an array index)

First try:

Bug. Don't use (code % M) as array index [could be negative].

1-in-a billion bug. Don't use (Math.abs(code) % M) as array index. [code could be 2147483648]

```
OK. Safe to use ((code & 0x7fffffff) % M) as array index.
```

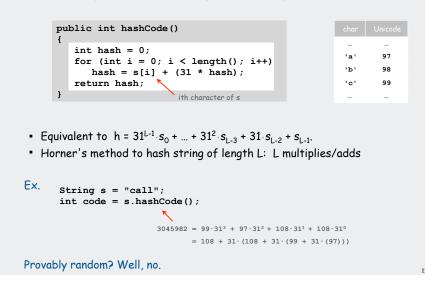
Implementing hashcode () in Java

Theoretical advantages of hashCode() convention

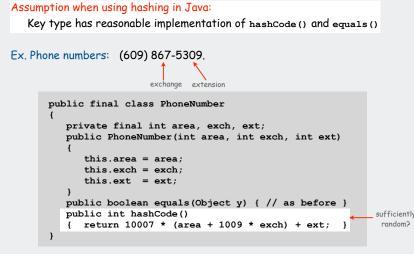
- Ensures hashing can be used for every type of object
- Allows expert implementations suited to each type

API for hashCode().

- Return an int.
- If x.equals(y) then x and y must have the same hash code.
- Repeated calls to x.hashCode() must return the same value.


Practical realities of hashcode () convention

- Cost is an important consideration
- True randomness is hard to achieve


User-defined implementations. Tricky to get right, black art.

A decent hash code design

Java 1.5 string library [see also Program 14.2 in Algs in Java].

A typical type

A poor hash code design

Java 1.1 string library.

- For long strings: only examines 8-9 evenly spaced characters.
- Saves time in performing arithmetic...

```
public int hashCode()
{
    int hash = 0;
    int skip = Math.max(1, length() / 8);
    for (int i = 0; i < length(); i += skip)
        hash = (37 * hash) + s[i];
    return hash;
}</pre>
```

but great potential for bad collision patterns.

http://www.cs.princeton.edu/introcs/13loop/Hello.java http://www.cs.princeton.edu/introcs/13loop/Hello.class http://www.cs.princeton.edu/introcs/13loop/Hello.html http://www.cs.princeton.edu/introcs/13loop/index.html http://www.cs.princeton.edu/introcs/12type/index.html

Basic rule: need to use the whole key.

Problem: Need a theorem for each type of data to ensure reliability.

Digression: using a hash function for data mining

Digression: using a hash function to profile a document for data mining

Use content to characterize documents.

Applications

- Search documents on the web for documents similar to a given one.
- Determine whether a new document belongs in one set or another

Approach

- Fix order k and dimension d
- Compute hashcode() % d for all k-grams in the document
- Result: d-dimensional vector profile of each document
- To compare documents: Consider angle θ separating vectors
 - cos θ close to 0: not similar
 - cos θ close to 1: similar

Effective for literature, genomes, Java code, art, music, data, video

public class Document private String name; private double[] profile; public Document(String name, int k, int d) this.name = name; String doc = (new In(name)).readAll(); int N = doc.length(); profile = new double[d]; for (int i = 0; i < N-k; i++) { int h = doc.substring(i, i+k).hashCode(); profile[Math.abs(h % d)] += 1; } public double simTo(Document other) - { // compute dot product and divide by magnitudes }

Digression: using a hash function for data mining

	k = 10		tale.txt		genome.txt	E
% more tale.txt	d = 65536		10-grams with hashcode() i	freq	10-grams with hashcode() i	fre
it was the best of times it was the worst of times		0		0		0
it was the age of wisdom it was the age of		1		0		0
foolishness		2		0		0
•••						
<pre>% more genome.txt CTTTCGGTTTGGAACC GAAGCCGCGCGCGTCT</pre>		435	best of ti foolishnes	2	TTTCGGTTTG TGTCTGCTGC	2
TGTCTGCTGCAGC						
ATCGTTC		8999	it was the	8		0
		12122		0	CTTTCGGTTT	3
		34543	t was the b	5	ATGCGGTCGA	4
cos θ small: <mark>not</mark> similar						
		65535				
		65536				

14

profiles /

b

θ

 $\cos \theta = a \cdot b / |a| |b|$

Digression: using a hash function to compare documents

public class CompareAll {
<pre>public static void main(String args[]) {</pre>
<pre>int k = Integer.parseInt(args[0]);</pre>
<pre>int d = Integer.parseInt(args[1]);</pre>
<pre>int N = StdIn.readInt();</pre>
<pre>Document[] a = new Document[N];</pre>
for (int $i = 0; i < N; i++$)
<pre>a[i] = new Document(StdIn.readString(), k, d);</pre>
<pre>System.out.print(" ");</pre>
for (int $j = 0; j < N; j++$)
<pre>System.out.printf(" %.4s", a[j].name());</pre>
System.out.println();
for (int $i = 0; i < N; i++$)
{
<pre>System.out.printf("%.4s ", a[i].name());</pre>
for (int $j = 0; j < N; j++$)
<pre>System.out.printf("%8.2f", a[i].simTo(a[j]));</pre>
System.out.println();
}
}
}

Digression: using a hash function to compare documents

Cons US Constitution TomS "Tom Sawyer" Huck "Huckleberry Finn" Prej "Pride and Prejudice" Pict a photograph DJIA financial data Amaz Amazon.com website .html source ACTG genome * java CompareAll 5 1000 < docs.txt Cons TomS Huck Prej DJIA Financial data Amaz ACTG genome DIA
Huck "Huckleberry Finn" Prej "Pride and Prejudice" Pict a photograph DJIA financial data Amaz Amazon.com website .html source ACTG genome % java CompareAll 5 1000 < docs.txt Toms Huck Prej Pict DJIA Amaz
 Prej "Pride and Prejudice" Pict a photograph DJIA financial data Amaz Amazon.com website .html source ACTG genome % java CompareAll 5 1000 < docs.txt Cons Toms Huck Prej Pict DJIA Amaz A
 Pict a photograph DJIA financial data Amaz Amazon.com website.html source ACTG genome % java CompareAll 5 1000 < docs.txt Cons Toms Huck Prej Pict DJIA Amaz A
 BJIA financial data Amaz Amazon.com website.html source ACTG genome % java CompareAll 5 1000 < docs.txt Cons TomS Huck Prej Pict DJIA Amaz A
Amaz Amazon.com website.html source ACTG genome % java CompareAll 5 1000 < docs.txt Cons TomS Huck Prej Pict DJIA Amaz A
<pre>% java CompareAll 5 1000 < docs.txt Cons TomS Huck Prej Pict DJIA Amaz A</pre>
<pre>% java CompareAll 5 1000 < docs.txt Cons TomS Huck Prej Pict DJIA Amaz A</pre>
Cons TomS Huck Prej Pict DJIA Amaz A
Cons TomS Huck Prej Pict DJIA Amaz A
Cons 1.00 0.89 0.87 0.88 0.35 0.70 0.63 0
TomS 0.89 1.00 0.98 0.96 0.34 0.75 0.66 0
Huck 0.87 0.98 1.00 0.94 0.32 0.74 0.65 0
Prej 0.88 0.96 0.94 1.00 0.34 0.76 0.67 0
Pict 0.35 0.34 0.32 0.34 1.00 0.29 0.48 0
DJIA 0.70 0.75 0.74 0.76 0.29 1.00 0.62 0
Amaz 0.63 0.66 0.65 0.67 0.48 0.62 1.00 0
ACTG 0.58 0.62 0.61 0.63 0.24 0.58 0.45 1

hash functions collision resolution applications

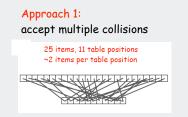
Helpful results from probability theory

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after $\sqrt{\pi M/2}$ tosses.

Coupon collector. Expect every bin has \geq 1 ball after $\Theta(M \ln M)$ tosses.

Load balancing. After tossing M balls, expect most loaded bin has $\Theta(\log M \ / \ \log \log M)$ balls.

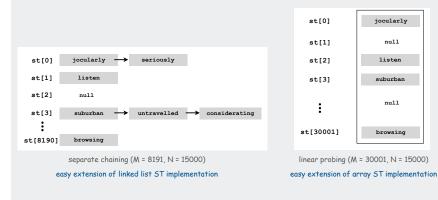

Collisions

17

Collision. Two distinct keys hashing to same index.

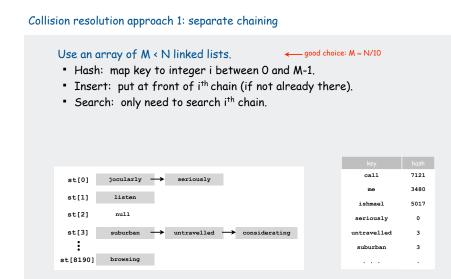
Conclusion. Birthday problem \Rightarrow can't avoid collisions unless you have a ridiculous amount of memory.

Challenge. Deal with collisions efficiently.


Approach 2: minimize collisions

> 5 items, 11 table positions ~ .5 items per table position

Collision resolution: two approaches


1. Separate chaining. [H. P. Luhn, IBM 1953] Put keys that collide in a list associated with index.

2. Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953] When a new key collides, find next empty slot, and put it there.

Separate chaining ST implementation (skeleton)

could use _ doubling	<pre>public class ListHashST<key, val=""> { private int M = 8191; private Node[] st = new Node[M]; </key,></pre>	compare with linked lists
no generics in _ arrays in Java	<pre>private class Node { Object key; Object val; Node next; Node (Key key, Val val, Node next) { this.key = key; this.val = val; this.next = next; } }</pre>	
	<pre>private int hash(Key key) { return (key.hashcode() & 0x7ffffffff) % M; } public void put(Key key, Val, val) // see next slide public Val get(Key key) // see next slide }</pre>	

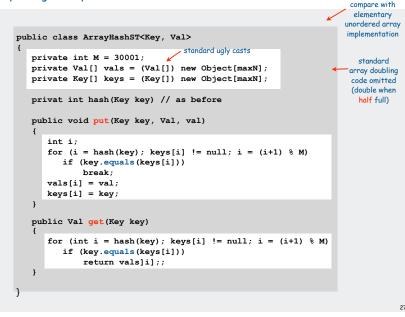
Separate chaining ST implementation (put and get)

Identical to linked-list code, except hash to pick a list.

Analysis of separate chaining

Separate chaining performance.

- Cost is proportional to length of list.
- Average length = N / M.
- Worst case: all keys hash to same list.


Theorem. Let $\alpha = N / M > 1$ be average length of list. For any t > 1, probability that list length $> t \alpha$ is exponentially small in t.

depends on hash map being random map

Parameters.

- M too large ⇒ too many empty chains.
- M too small \Rightarrow chains too long.
- Typical choice: $\alpha = N / M \approx 10 \Rightarrow$ constant-time ops.

Linear probing ST implementation

Collision resolution approach 2: open addressing

Use an array of size M >> N. ← good choice: M ~ 2N

- Hash: map key to integer i between 0 and M-1. Linear probing:
- Insert: put in slot i if free; if not try i+1, i+2, etc.
- Search: search slot i; if occupied but no match, try i+1, i+2, etc.

Clustering

Cluster. A contiguous block of items. Observation. New keys likely to hash into middle of big clusters.

- - - S H A C E - - - X M I - - - P - - R L - -

cluster

Knuth's parking problem. Cars arrive at one-way street with M parking spaces. Each desires a random space i: if space i is taken, try i+1, i+2, ... What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is about 3/2. Full. With M cars, mean displacement is about $\sqrt{\pi M/2}$

Analysis of linear probing

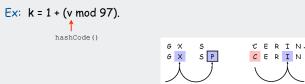
Linear probing performance.

- Insert and search cost depend on length of cluster.
 but keys more likely to
- Average length of cluster = α = N / M. hash to big clusters
- Worst case: all keys hash to same cluster.

Theorem. [Knuth 1962] Let $\alpha = N / M < 1$ be the load factor.

insert / search miss
$$\approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)$$

search hit $\approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)} \right)$ assumes hash function is random


Parameters.

- M too large ⇒ too many empty array entries.
- M too small ⇒ clusters coalesce.
- Typical choice: $M \approx 2N \Rightarrow$ constant-time ops.

Double hashing

Idea Avoid clustering by using second hash to compute skip for search.

Hash. Map key to integer i between 0 and M-1. Second hash. Map key to nonzero skip value k.

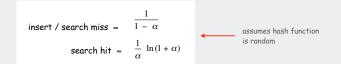
Effect. Skip values give different search paths for keys that collide.

Best practices. Make k and M relatively prime.

Hashing: variations on the theme

Many improved versions have been studied:

Ex: Two-probe hashing


- hash to two positions, put key in shorter of the two lists
- reduces average length of the longest list to log log N

Ex: Double hashing

- use linear probing, but skip a variable amount, not just 1 each time
- effectively eliminates clustering
- can allow table to become nearly full

Double Hashing Performance

Theorem. [Guibas-Szemerédi] Let $\alpha = N / M < 1$ be average length of list.

Parameters. Typical choice: $M \approx 1.2 \text{ N} \Rightarrow \text{ constant-time ops.}$

Disadvantage. Delete cumbersome to implement.

Hashing Tradeoffs

Separate chaining vs. linear probing/double hashing.

- Space for links vs. empty table slots.
- Small table + linked allocation vs. big coherent array.

Linear probing vs. double hashing.

			load fo	actor α	
		50%	66%	75%	90%
linear	get	1.5	2.0	3.0	5.5
probing	put	2.5	5.0	8.5	55.5
double	get	1.4	1.6	1.8	2.6
hashing	put	1.5	2.0	3.0	5.5

number of probes

Hashing versus balanced trees

Hashing

- simpler to code
- no effective alternative for unordered keys
- faster for simple keys (a few arithmetic ops versus lg N compares)
- (Java) better system support for strings [cached hashcode]
- does your hash function produce random values for your key type??

Balanced trees

- stronger performance guarantee
- can support many more operations for ordered keys
- easier to implement Comparable correctly than equals () and hashcode ()

Java system includes both

- red-black trees: Java.util.TreeMap, Java.util.TreeSet
- hashing: Java.util.HashMap, Java.util.IdentityHashMap

unordered array Ν Ν Ν N/2 N/2 N/2 no equals() ordered array lg N Ν Ν lg N N/2 N/2 Comparable yes Ν unordered list Ν Ν Ν N/2 N/2 equals() no ordered list Ν Ν Ν N/2 N/2 N/2 Comparable yes 1.38 lg N 1.38 lg N BST Ν Ν Ν ? Comparable yes randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes Comparable red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N Comparable yes equals() hashing 1* 1* 1* 1* 1* 1* no hashcode()

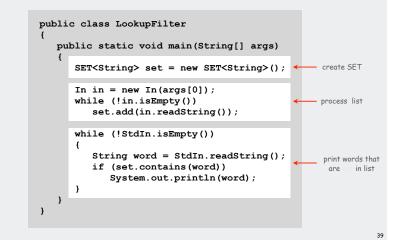
* assumes random hash code

hash functions collision resolution applications

Summary of symbol-table implementations

Set ADT

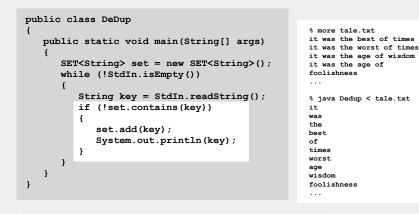
Set. Unordered collection of distinct keys.


API for SET.

- insert the key into the set add(key)
- contains (key)
- remove(key)
- iterator()
- is the given key in the set? remove the key from the set return iterator over all keys
- Q. How to implement?
- AO. Use hashing (unordered keys)
- A1. Remove value from ST hashing code
- A2. USe java.util.HashSet

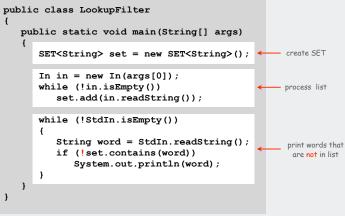
SET client example 2A: lookup filter

Print words from standard input that are found in a list


- Read in a list of words from one file.
- Print out all words from standard input that are in the list.

SET client example 1: dedup filter

Remove duplicates from strings in standard input


- Read a key.
- If key is not in set, insert and print it.

SET client example 2B: exception filter

Print words from standard input that are not found in a list

- Read in a list of words from one file.
- Print out all words from standard input that are in the list.

Simplified version of FrequencyCount (no iterator needed)

SET filter applications

eliminate duplicates			duplicates	unique keys
find misspelled words	word	exception	dictionary	misspelled words
mark visited pages	URL	lookup	visited pages	
detect draw	board	lookup	positions	
eliminate spam	IP addr	exception	spam	good mail
allow trusted mail	URL	lookup	good mail	
check for stolen cards	number	exception	stolen cards	good cards
	find misspelled words mark visited pages detect draw eliminate spam allow trusted mail	eliminate duplicates find misspelled words word mark visited pages URL detect draw board eliminate spam IP addr allow trusted mail URL	eliminate duplicates find misspelled words word exception mark visited pages URL lookup detect draw board lookup eliminate spam IP addr exception allow trusted mail URL lookup	eliminate duplicatesduplicatesfind misspelled wordswordexceptiondictionarymark visited pagesURLlookupvisited pagesdetect drawboardlookuppositionseliminate spamIP addrexceptionspamallow trusted mailURLlookupgood mail

Searching challenge:

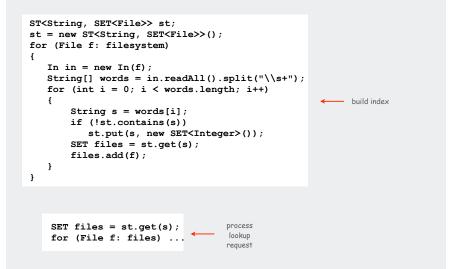
Problem: Index for a PC or the web Assumptions: 1 billion++ words to index

Which searching method to use? ✓ 1) hashing implementation of SET 2) hashing implementation of ST

Assumptions: I Dimonter words to index	Spotlight	searching challenge 🛛 🛞
		Show All (200)
	Top Hit	🙀 10Hashing
 Which searching method to use? 1) hashing implementation of SET 2) hashing implementation of ST 3) red-black-tree implementation of ST 4) red-black-tree implementation of SET 	Documents Mail Messages	mobydick.txt movies.txt Papers/Abstracts score.card.txt Requests Re: Draft of lecture on symb SODA 07 Final Accepts SODA 07 Summary Got-it
5) doesn't matter much	PDF Documents	No Subject 08BinarySearchTrees.pdf 07SymbolTables.pdf 07SymbolTables.pdf 06PriorityQueues.pdf 06PriorityQueues.pdf
Trick question: need both ST (search key, SET of pointers to files)	Presentations	ক্র 10Hashing ক্রি 07SymbolTables ক্রি 06PriorityQueues

Caveat: use B-tree or similar structure for truly huge indices

Searching challenge:


Problem: Index for a PC or the web Assumptions: 1 billion++ words to index

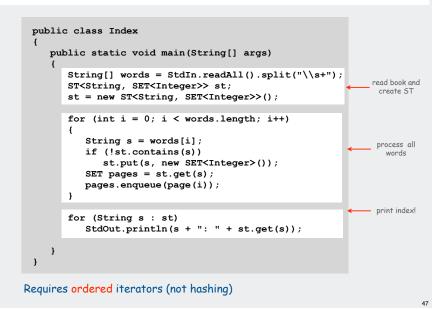
Which searching method to use?

- 1) hashing implementation of SET
- 2) hashing implementation of ST
- 3) red-black-tree implementation of ST
- 4) red-black-tree implementation of SET
- 5) doesn't matter much

Spotlight	searching challenge
	Show All (200)
Top Hit	🗟 10Hashing
Documents	mobydick.txt movies.txt
	 Papers/Abstracts score.card.txt Requests
Mail Messages	Re: Draft of lecture on symb SODA 07 Final Accepts SODA 07 Summary Got-it No Subject
PDF Documents	 2 08BinarySearchTrees.pdf 07SymbolTables.pdf 07SymbolTables.pdf 07SymbolTables.pdf 06PriorityQueues.pdf 06PriorityQueues.pdf
Presentations	료 10Hashing 로 07SymbolTables 로 06PriorityQueues

Index for search in a PC

Searching challenge:


Problem: Index for a book Assumptions: book has 100,000+ words

Which searching method to use?

- 1) hashing implementation of SET
- 2) hashing implementation of ST
- 3) red-black-tree implementation of ST
- 4) red-black-tree implementation of SET
- 5) doesn't matter much

Index Index Interpretation of the second o	mail of statistical statistica	and land law, 52, 54 mildlermen, 11, 11, 14 mildlermen, 11, 11, 14 mildlermen, 11, 11, 14 mildlermen, 11, 11, 14 mildlermen, 11, 11, 14 14, 14
indirect priority queue (PQL),	steps in, 22-23	indexed sequential access, 69
403	See also Randomized algorithm	692
intra (ay2ton), 273, 498	Amortization approach, 557, 627	performance, 575-576, 581-5
key (ay5ey), 455	Arithmetic operator, 177-179,	595-595
polymoraid (Poly), 189	188, 191	nordomizel, 559,564
point (Polant), 134	Array, 12, 83	red-black, 577,585
priority queue (PQ), 375	binary search, 57	dop lists, 587,594
queue of fast (intQueue), 166	dynamic allocation, 87	splay, 566-371

Index for a book

Searching challenge:

Problem: Index for a book Assumptions: book has 100,000+ words

Which searching method to use?

- 1) hashing implementation of SET
- 2) hashing implementation of ST
- ✓ 3) red-black-tree implementation of ST
- 4) red-black-tree implementation of SET
 5) doesn't matter much

Trick question: need both ST (search key, SET of page numbers) with ordered iteration for both

Index	enck of int (intEnaci), 140 oynebit 100 (201, 503) new index (TEL 325 uniton-faid (201, 159) Abstrat implate merging, 351- 333 Abstrat apprentime, 10 Access control atax, 131 Antana (data, 31 Abstrat, 201, 353-557 Adapties sort, 268 Abstrat	and linked lines, 222, 94-83 remedgias, 248-359 rendolaterensional, 117-118 exformance, 86-87, 89 sorting, 265-267, 2273-276 and arrays, 119 roas dimensional, 117-118, 120 124 visualizations, 205 Sociative lades, arrays Array merosenations
Almone da en ope (2017), 127- 136-147, 127- 136-147, 127- 136-147, 127- 136-147, 127- 136-147, 127- 137-147, 128-147, 127- 137-147, 128-147, 128-147, 128-147, 129- 137-147, 128-147, 12	Adjunction (June 2014) Marginetic and State (June 2014) Marginetic and June 2014 Marginetic and June 2014 Marginetic and June 2014 Marginetic and June 2014 Marginetic Jun	Binnyme, 381 Berler, M., 1997, P. J. Polytaria, M. B. Stark, J. S. Stark, J. S. Stark, B. S. Stark, J. S. Stark, J. S. Stark, J. S. Stark, S. S. Stark, J. S. Stark, J. S. Stark, J. S. Stark, S. S. Stark, S. S. Stark, J. S. Stark, J. S. Stark, S. S. Stark, S. S. Stark, J. S. Stark, J. S. Stark, S. S. Stark, S. S. Stark, J. S. Stark, J. S. Stark, S. S. Stark, S. Stark, J. S. Stark, J. S. Stark, S. S. Stark, J. S. Stark, J. S. Stark, J. S. Stark, S. Stark, S. Stark, J. S. Stark, J. S. Stark, S. Stark, J. S. Stark, J. S. Stark, J. Stark, S. Stark, J. S. Stark, S. Stark, J. S. Stark, J. S. Stark, J. Stark, J. S. Stark, J. S

Hashing in the wild: Java implementations

Java has built-in libraries for hash tables.

- java.util.HashMap = Separate chaining implementation.
- java.util.IdentityHashMap = linear probing implementation.

import java.util.HashMap; public class HashMapDemo public static void main(String[] args) HashMap<String, String> st = new HashMap <String, String>(); st.put("www.cs.princeton.edu", "128.112.136.11"); st.put("www.princeton.edu", "128.112.128.15"); System.out.println(st.get("www.cs.princeton.edu")); } }

Duplicate policy.

- Java HashMap allows null values.
- Our implementation forbids null values.

Using HashMap

Implementation of our API with java.util.HashMap.

```
import java.util.HashMap;
import java.util.Iterator;
public class ST<Key, Val> implements Iterable<Key>
  private HashMap<Key, Val> st = new HashMap<Key, Val>();
  public void put(Key key, Val val)
     if (val == null) st.remove(key);
      else
                     st.put(key, val);
  public Val get(Key key)
                                   { return st.get(key);
                                                                     }
  public Val remove(Key key)
                                  { return st.remove(key);
                                                                     3
  public boolean contains(Key key) { return st.containsKey(key);
  public int size() contains(Key ke{ return st.size();
  public Iterator<Key> iterator() { return st.keySet().iterator(); }
}
```

Algorithmic complexity attack on the Java Library

Goal. Find strings with the same hash code. Solution. The base-31 hash code is part of Java's string API.

Key hashC	ode()	Key	hashCode()	
Aa 21	12	АаАаАаАа	-540425984	
BB 21	12	AaAaAaBB	-540425984	
		AaAaBBAa	-540425984	
		AaAaBBBB	-540425984	
		AaBBAaAa	-540425984	
		AaBBAaBB	-540425984	
		AaBBBBAa	-540425984	
		AaBBBBBB	-540425984	2 ^N strings of I
		BBAaAaAa	-540425984	that hash to s
		BBAaAaBB	-540425984	
		BBAaBBAa	-540425984	
		BBAaBBBB	-540425984	
		BBBBAaAa	-540425984	
es your hash functio	on	BBBBAaBB	-540425984	
duce random values		BBBBBBAa	-540425984	
your key type??		BBBBBBBB	-540425984	

Hashing in the wild: algorithmic complexity attacks

- · Obvious situations: aircraft control, nuclear reactor, pacemaker.
- Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

Reference: <u>http://www.cs.rice.edu/~scrosby/hash</u>

One-Way Hash Functions

One-way hash function. Hard to find a key that will hash to a desired value, or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

insecure

String password = args[0]; MessageDigest shal = MessageDigest.getInstance("SHA1"); byte[] bytes = shal.digest(password);

// prints bytes as hex string

Applications. Digital fingerprint, message digest, storing passwords.

Too expensive for use in ST implementations (use balanced trees)

malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in single address that grinds performance to a halt