
Copyright © 2007 by Robert Sedgewick and Kevin Wayne. 1

Balanced Trees

References: Algorithms in Java, Chapter 13
Intro to Algs and Data Structs, Section 4.4

• 2-3-4 trees

• red-black trees

• B-trees

2

Symbol Table Review

Symbol table: key-value pair abstraction.
! Insert a value with specified key.
! Search for value given key.
! Delete value with given key.

Randomized BST.
! Guarantee of ~c lg N time per operation (probabilistic).
! Need subtree count in each node.
! Need random numbers for each insert/delete op.

This lecture. 2-3-4 trees, red-black trees, B-trees.

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantees

This lecture: Can we do better?
3

guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.39 lg N 1.39 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.39 lg N 1.39 lg N 1.39 lg N yes

probabilistic, with
exponentially small

chance of error

Typical random BSTs

4

 N = 250
 lg N ! 8
1.39 lg N ! 11

average node depth

5

2-3-4 trees

red-black trees

B-trees

6

2-3-4 Tree

2-3-4 tree. Generalize node to allow multiple keys; keep tree balanced.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.
! 2-node: one key, two children.
! 3-node: two keys, three children.
! 4-node: three keys, four children.

S VF G J

K R

C E M O W

A D L N Q Y Z

smaller than K larger than R

between
K and R

Search.
! Compare search key against keys in node.
! Find interval containing search key.
! Follow associated link (recursively).

Ex. Search for L

7

Searching in a 2-3-4 Tree

S VF G J

K R

C E M O W

A D L N Q Y Z

found L

smaller than K

between
K and R

8

Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.

Ex. Insert B

S VF G J

K R

C E M O W

A D L N Q Y Z

smaller than K

B not found

smaller than C

9

Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.
! 2-node at bottom: convert to 3-node.

Ex. Insert B

S VF G J

K R

C E M O W

D L N Q Y Z

smaller than K

B fits here

smaller than C

A B

Insert.
! Search to bottom for key.

Ex. Insert X

10

Insertion in a 2-3-4 Tree

S VF G J

K R

C E M O W

A D L N Q Y Z

X not found

larger than R

larger than W

11

Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.
! 2-node at bottom: convert to 3-node.
! 3-node at bottom: convert to 4-node.

Ex. Insert X

S VF G J

K R

C E M O W

D L N Q

X fits here

A B X Y Z

Insert.
! Search to bottom for key.

Ex. Insert H

12

Insertion in a 2-3-4 Tree

S VF G J

K R

C E M O W

A D L N Q Y Z

smaller than K

larger than E

H not found

13

Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.
! 2-node at bottom: convert to 3-node.
! 3-node at bottom: convert to 4-node.
! 4-node at bottom: ??

Ex. Insert H

S VF G J

K R

C E M O W

D L N Q

H does not fit here!

A B X Y Z

Idea: split the 4-node to make room

Problem: Doesn’t work if parent is a 4-node

Solution 1: Split the parent (and continue splitting while necessary).

Solution 2: Split 4-nodes on the way down.
14

Splitting a 4-node in a 2-3-4 tree

F G J

C E

D

H does not fit here

A B

D

H does fit here!

A B

C E G

F J

DA B

C E G

F H J

15

Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.
! Ensures last node is not a 4-node.
! Transformations to split 4-nodes:

Invariant. Current node is not a 4-node.

Consequence. Insertion at bottom is easy since it's not a 4-node.

16

Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 2-node

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

K Q W

D QD

K W

could be huge unchanged

17

Splitting 4-nodes in a 2-3-4 tree

A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K Q W K W

could be huge unchanged

E-G

D H

A-C E-G

D H Q

Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 3-node

18

Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree

Splitting a 4-node attached to a 4-node never happens

when we split nodes on the way down the tree.

Invariant. Current node is not a 4-node.

19

2-3-4 Tree

Tree grows up from the bottom.

E

A

P

E

X

M

L

tree height
grows only when

root splits

20

2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.

Tree height.
! Worst case: lg N [all 2-nodes]
! Best case: log4 N = 1/2 lg N [all 4-nodes]
! Between 10 and 20 for a million nodes.
! Between 15 and 30 for a billion nodes.

21

2-3-4 Tree: Implementation?

Direct implementation is complicated, because:
! Maintaining multiple node types is cumbersome.
! Implementation of getChild() involves multiple compares.
! Large number of cases for split(), make3Node(), and make4Node().

Bottom line: could do it, but say tuned for an easier way.

fantasy code

private void insert(Key key, Val val)
{
 Node x = root;
 while (x.getChild(key) != null)
 {
 x = x.getChild(key);
 if (x.is4Node()) x.split();
 }
 if (x.is2Node()) x.make3Node(key, val);
 else if (x.is3Node()) x.make4Node(key, val);
}

Summary of symbol-table implementations

22

guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N

constants depend upon
implementation

23

2-3-4 trees

red-black trees

B-trees

24

Red-black trees (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a BST.
! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

“red” glue

not 1-1 because 3-nodes
can swing either way.

25

Red-Black Tree

Represent 2-3-4 tree as a BST.
! Use "internal" edges for 3- and 4- nodes.

! Disallowed: two red edges in-a-row.

“red” glue

26

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

27

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

28

Rotations in a red-black tree

right rotate R !

left rotate E !

change colors

to insert G:

G does not fit here

G does fit here!

single
rotation

double
rotation

single
rotation

29

Red-Black Tree: Insertion

E

A

P

E

X

M

L

black tree height
grows only when

root splits

30

Red-Black Tree: Balance

Property A. Every path from root to leaf has same number of black links.

Property B. Never two red links in-a-row.

Property C. Height of tree is less than 2 lg N + 2 in the worst case.

Property D. Height of tree is lg N in the average case.

Search implementation for red-black trees

Search code is the same as elementary BST.

Runs faster because of better balance in tree.

31

public Val get(Key key)

{
 Node x = root;

 while (x != null)
 {
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;

 else if (cmp > 0) x = x.right;
 }
 return null;

}

Insert implementation for red-black trees (skeleton)

32

public class BST<Key extends Comparable, Val>

 implements Iterable

{

 private static final boolean RED = true;

 private static final boolean BLACK = false;

 private Node root;

 private class Node

 {

 Key key;

 Val value;

 Node left, right;

 boolean color;

 Node(Key key, Val val)

 {

 this.key = key;

 this.val = val;

 this.color = color;

 }

 }

 public void put(Key key, Val val)

 {

 root = put(root, key, value, false);

 root.color = BLACK;

 }

}

extra argument
[stay tuned]

color of incoming link

Insert implementation for red-black trees (strategy)

Search as usual
! if key found reset value, as usual
! if key not found add a new red node at the bottom in the usual way

Split 4-nodes on the way down the tree.
! flip colors
! may leave two red links in a row

(unbalanced 4-node) higher up in the tree

Perform rotations on the way up the tree.
! look for two red links in a row
! perform bottom rotation if directions are different
! perform top rotation to balance 4-nodes
! symmetric cases for left and right

Nonrecursive top-down implementation possible, but requires

keeping track of great-grandparent on search path (!) and lots of cases.
33

Insert implementation for red-black trees

34

private Node insert(Node x, Key key, Value value, boolean sw)

{

 if (x == null) return new Node(key, value, RED);

 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))

 { x.color = RED; x.left.color = BLACK; x.right.color = BLACK; }

 if (cmp == 0) x.val = val;

 else if (cmp < 0))

 {

 x.left = insert(x.left, key, value, false);

 if (isRed(x) && isRed(x.left) && sw) x = rotR(x);

 if (isRed(x.left) && isRed(x.left.left))

 {

 x = rotR(x);

 x.color = BLACK; x.right.color = RED;

 }

 }

 else // if (cmp > 0)

 {

 x.right = insert(x.right, key, value, true);

 if (isRed(h) && isRed(x.right) && !sw) x = rotL(x);

 if (isRed(h.right) && isRed(h.right.right))

 {

 x = rotL(x);

 x.color = BLACK; x.left.color = RED;

 }

 }

 return x;

}

Caution: extremely tricky
recursive code.

Read extremely carefully!

extra argument
is true iff x is a right child

Summary of symbol-table implementations

35

guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes

exact value of coefficient unknown
but extremely close to 1

Typical random red-black trees

36

 N = 250
 lg N ! 8
lg N - 1 ! 7

average node depth

37

2-3-4 trees

red-black trees

B-trees

38

B-trees (Bayer-McCreight, 1972)

B-Tree. Generalizes 2-3-4 trees by allowing up to M links per node.

Main application: file systems.
! Reading a page into memory from disk is expensive.
! Accessing info on a page in memory is free.
! Goal: minimize # page accesses.
! Node size M = page size.

Space-time tradeoff.
! M large " only a few levels in tree.
! M small " less wasted space.
! Typical M = 1000, N < 1 trillion.

Bottom line. Number of page accesses is logMN per op.

3 or 4 in practice!

39

B-Tree Example

M = 5

no room
for 275

no room
for 737

40

B-Tree Example (cont)

no room
for 526

Summary of symbol-table implementations

41

guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.44 lg N 1.44 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.44 lg N 1.44 lg N 1.44 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes

B-tree 1 1 1 1 1 1 yes

B-Tree. Number of page accesses is logMN per op.

42

Balanced trees in the wild

Red-black trees: widely used as system symbol tables
! Java: java.util.TreeMap, java.util.TreeSet.
! C++ STL: map, multimap, multiset.
! Linux kernel: linux/rbtree.h.

B-Trees: widely used for file systems and databases
! Windows: HPFS.
! Mac: HFS, HFS+.
! Linux: ReiserFS, XFS, Ext3FS, JFS.
! Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Red-black trees in the wild

43

!!

Common sense. Sixth sense.
Together they're the FBI's newest team.

red-black tree

44

Balanced trees summary

Goal. ST implementation with lg N guarantee for all ops.
! Difference in quality of guarantee is immaterial.
! Easy to implement other ops: randomized BST.
! Fast average case: red-black tree.
! Algorithms are variations on a theme: rotations when inserting.

Abstraction extends to give search algorithms for huge files.
! B-tree.

Next lecture: Can we do better??

