

Summary of symbol-table implementations

		_	_					
		guarantee			average case			
	search			search			iteration?	
unordered array	Ν	Ν	Ν	N/2	N/2	N/2	no	
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes	
unordered list	Ν	Ν	Ν	N/2	N	N/2	no	
ordered list	Ν	Ν	Ν	N/2	N/2	N/2	yes	
BST	Ν	Ν	Ν	1.39 lg N	1.39 lg N	?	yes	
randomized BST	7 lg N	7 lg N	7 lg N	1.39 lg N	1.39 lg N	1.39 lg N	yes	

Randomized BSTs provide the desired guarantees

l probabilistic, with exponentially small chance of error

This lecture: Can we do better?

Symbol Table Review

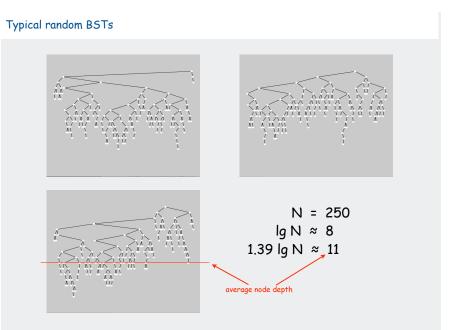
Symbol table: key-value pair abstraction.

- Insert a value with specified key.
- Search for value given key.
- Delete value with given key.

Randomized BST.

- Guarantee of ~c lg N time per operation (probabilistic).
- Need subtree count in each node.
- Need random numbers for each insert/delete op.

This lecture. 2-3-4 trees, red-black trees, B-trees.



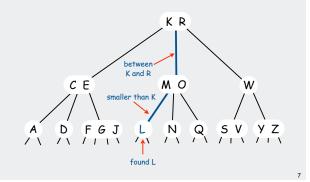
2-3-4 trees red-black trees B-trees

Searching in a 2-3-4 Tree

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

$\operatorname{\mathsf{Ex.}}\nolimits$ Search for L



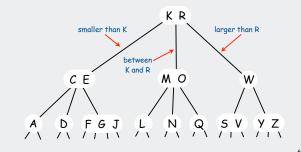
2-3-4 Tree

2-3-4 tree. Generalize node to allow multiple keys; keep tree balanced.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.
- 4-node: three keys, four children.

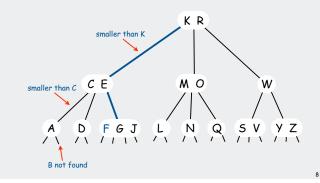


Insertion in a 2-3-4 Tree

Insert.

Search to bottom for key.

Ex. Insert B

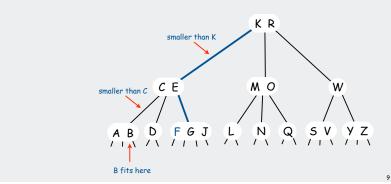


Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.

Ex. Insert B

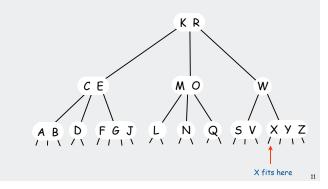


Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.

Ex. Insert X

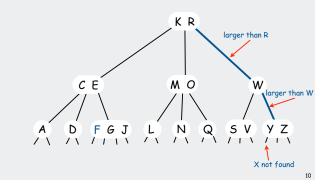


Insertion in a 2-3-4 Tree

Insert.

Search to bottom for key.

Ex. Insert X

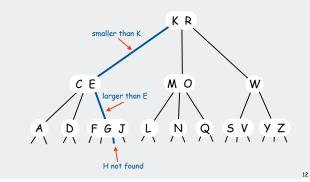


Insertion in a 2-3-4 Tree

Insert.

Search to bottom for key.

Ex. Insert H

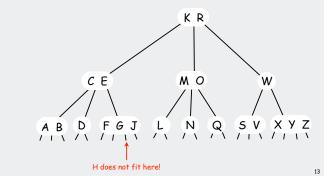


Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.
- 4-node at bottom: ??

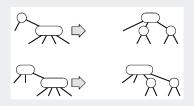
Ex. Insert H



Splitting 4-nodes in a 2-3-4 tree

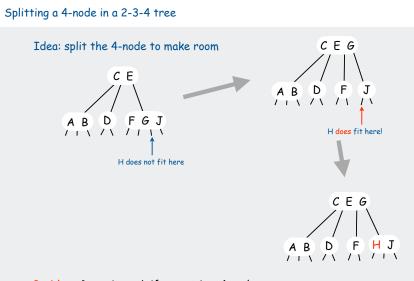
Idea: split 4-nodes on the way down the tree.

- Ensures last node is not a 4-node.
- Transformations to split 4-nodes:

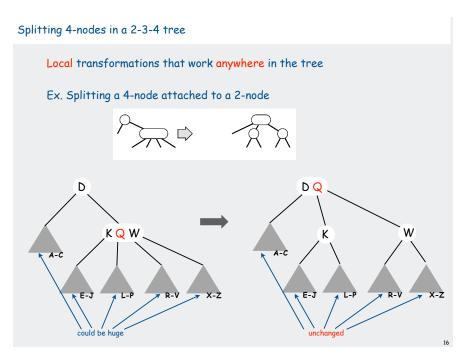


Invariant. Current node is not a 4-node.

Consequence. Insertion at bottom is easy since it's not a 4-node.

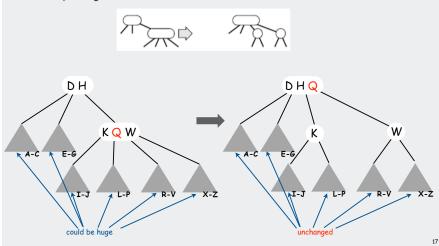


Problem: Doesn't work if parent is a 4-node Solution 1: Split the parent (and continue splitting while necessary). Solution 2: Split 4-nodes on the way down.



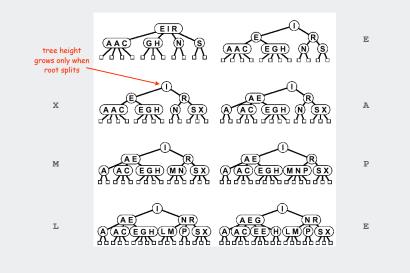
Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 3-node



2-3-4 Tree

Tree grows up from the bottom.



Splitting 4-nodes in a 2-3-4 tree

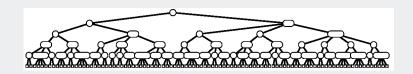
Local transformations that work anywhere in the tree

Splitting a 4-node attached to a 4-node never happens when we split nodes on the way down the tree.

Invariant. Current node is not a 4-node.

2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.



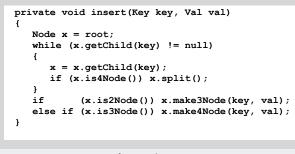
Tree height.

- Worst case: Ig N
 [all 2-nodes]
- Best case: log₄ N = 1/2 lg N [all 4-nodes]
- Between 10 and 20 for a million nodes.
- Between 15 and 30 for a billion nodes.

2-3-4 Tree: Implementation?

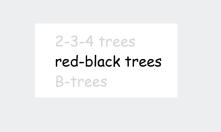
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Implementation of getChild() involves multiple compares.
- Large number of cases for split(), make3Node(), and make4Node().



fantasy code

Bottom line: could do it, but say tuned for an easier way.



Summary of symbol-table implementations

	guarantee			average case			ordered		
implementation	search	insert		search	insert		iteration?		
unordered array	Ν	Ν	Ν	N/2	N/2	N/2	no		
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes		
unordered list	Ν	Ν	Ν	N/2	Ν	N/2	no		
ordered list	Ν	Ν	Ν	N/2	N/2	N/2	yes		
BST	Ν	Ν	Ν	1.38 lg N	1.38 lg N	?	yes		
randomized BST	7 lg N	7 lg N	7 lg N	1.38 lg N	1.38 lg N	1.38 lg N	yes		
2-3-4 tree	c lg N	c lg N		c lg N	c lg N				
constants depend upon implementation									

Red-black trees (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a BST.

Use "internal" edges for 3- and 4- nodes.

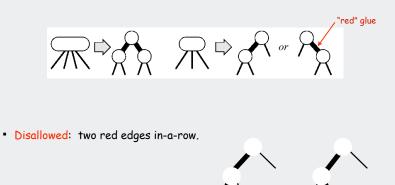
Correspondence between 2-3-4 trees and red-black trees.



Red-Black Tree

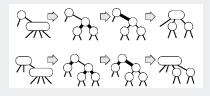
Represent 2-3-4 tree as a BST.

• Use "internal" edges for 3- and 4- nodes.



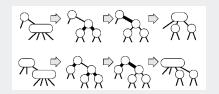
Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

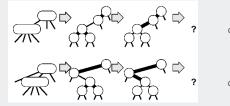


Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

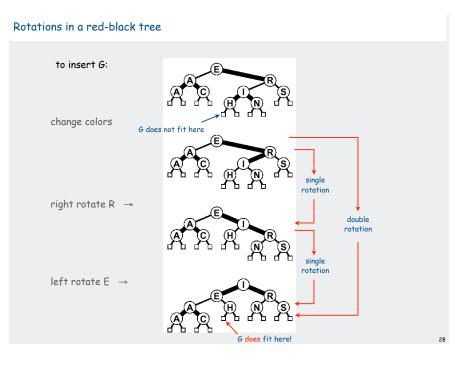


Two hard cases. Use rotations.

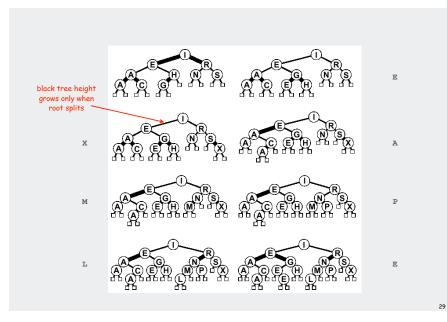


do single rotation

do double rotation



Red-Black Tree: Insertion



Search implementation for red-black trees

Search code is the same as elementary BST.

Runs faster because of better balance in tree.

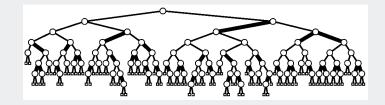
Red-Black Tree: Balance

Property A. Every path from root to leaf has same number of black links.

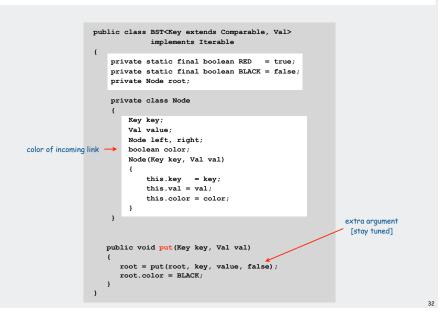
Property B. Never two red links in-a-row.

Property C. Height of tree is less than 2 lg N + 2 in the worst case.

Property D. Height of tree is lg N in the average case.



Insert implementation for red-black trees (skeleton)



Insert implementation for red-black trees (strategy)

Search as usual

- if key found reset value, as usual
- if key not found add a new red node at the bottom in the usual way

 $\rightarrow \lambda$

Split 4-nodes on the way down the tree.

- flip colors
- may leave two red links in a row (unbalanced 4-node) higher up in the tree

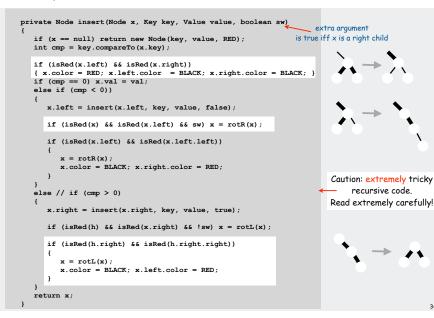
Perform rotations on the way up the tree.

- look for two red links in a row
- perform bottom rotation if directions are different
- perform top rotation to balance 4-nodes
- symmetric cases for left and right

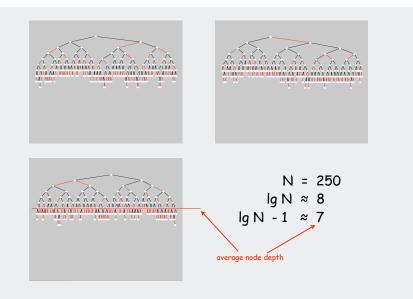
Nonrecursive top-down implementation possible, but requires keeping track of great-grandparent on search path (!) and lots of cases.

	guarantee				average case			
implementation	search	insert		search			iteration?	
unordered array	Ν	Ν	Ν	N/2	N/2	N/2	no	
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes	
unordered list	Ν	Ν	Ν	N/2	Ν	N/2	no	
ordered list	Ν	Ν	Ν	N/2	N/2	N/2	yes	
BST	Ν	Ν	Ν	1.38 lg N	1.38 lg N	?	yes	
randomized BST	7 lg N	7 lg N	7 lg N	1.38 lg N	1.38 lg N	1.38 lg N	yes	
2-3-4 tree	c lg N	c lg N		c lg N	c lg N		yes	
red-black tree	2 lg N	2 lg N	2 lg N	lg N	lg N	lg N	yes	
	exact value of coefficient unknown but extremely close to 1							

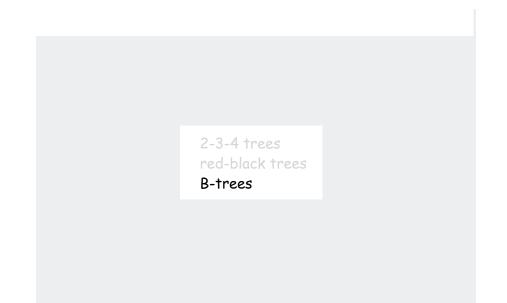
Insert implementation for red-black trees



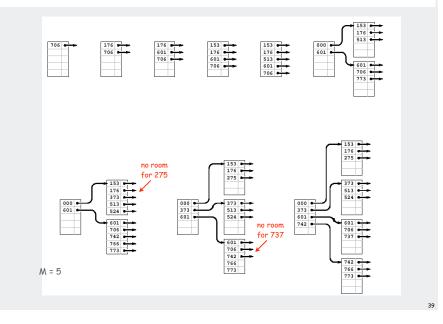
Typical random red-black trees



Summary of symbol-table implementations



B-Tree Example



B-trees (Bayer-McCreight, 1972)

B-Tree. Generalizes 2-3-4 trees by allowing up to M links per node.

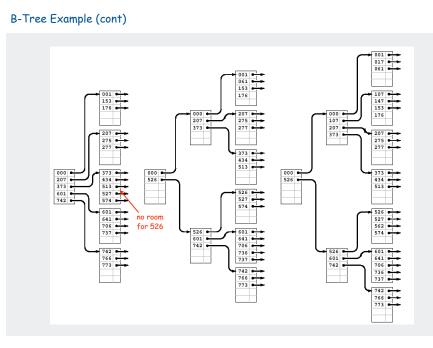
Main application: file systems.

- Reading a page into memory from disk is expensive.
- Accessing info on a page in memory is free.
- Goal: minimize # page accesses.
- Node size M = page size.

Space-time tradeoff.

- M large \Rightarrow only a few levels in tree.
- M small \Rightarrow less wasted space.
- Typical M = 1000, N < 1 trillion.

Bottom line. Number of page accesses is log_MN per op.

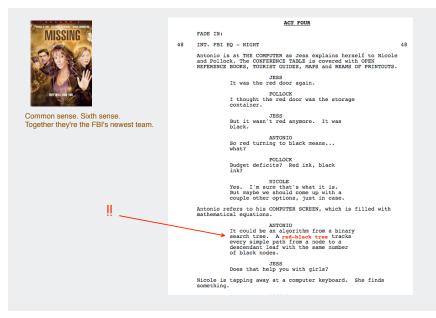


Summary of symbol-table implementations

	guarantee			average case			ordered
	search			search			iteration?
unordered array	Ν	Ν	Ν	N/2	N/2	N/2	no
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes
unordered list	Ν	Ν	Ν	N/2	Ν	N/2	no
ordered list	Ν	Ν	Ν	N/2	N/2	N/2	yes
BST	Ν	Ν	Ν	1.44 lg N	1.44 lg N	?	yes
randomized BST	7 lg N	7 lg N	7 lg N	1.44 lg N	1.44 lg N	1.44 lg N	yes
2-3-4 tree	c lg N	c lg N		c lg N	c lg N		yes
red-black tree	2 lg N	2 lg N	2 lg N	lg N	lg N	lg N	yes
B-tree	1	1	1	1	1	1	yes

B-Tree. Number of page accesses is log_MN per op.

Red-black trees in the wild



Balanced trees in the wild

Red-black trees: widely used as system symbol tables

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: linux/rbtree.h.

B-Trees: widely used for file systems and databases

- Windows: HPFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Balanced trees summary

Goal. ST implementation with Ig N guarantee for all ops.

- Difference in quality of guarantee is immaterial.
- Easy to implement other ops: randomized BST.
- Fast average case: red-black tree.
- Algorithms are variations on a theme: rotations when inserting.

Abstraction extends to give search algorithms for huge files.

B-tree.