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Balanced Trees

References: Algorithms in Java, Chapter 13
Intro to Algs and Data Structs, Section 4.4

• 2-3-4 trees

• red-black trees

• B-trees
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Symbol Table Review

Symbol table:  key-value pair abstraction.
! Insert a value with specified key.
! Search for value given key.
! Delete value with given key.

Randomized BST.
! Guarantee of ~c lg N time per operation (probabilistic).
! Need subtree count in each node.
! Need random numbers for each insert/delete op.

This lecture.  2-3-4 trees, red-black trees, B-trees.

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantees

This lecture: Can we do better?
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guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.39 lg N 1.39 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.39 lg N 1.39 lg N 1.39 lg N yes

probabilistic, with
exponentially small

chance of error

Typical random BSTs
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           N  =  250
       lg N  !  8
1.39 lg N  !  11

average node depth
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2-3-4 trees

red-black trees

B-trees
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2-3-4 Tree

2-3-4 tree.  Generalize node to allow multiple keys; keep tree balanced.

Perfect balance.  Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.
! 2-node:  one key, two children.
! 3-node:  two keys, three children.
! 4-node:  three keys, four children.

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K larger than R

between
K and R

Search.
! Compare search key against keys in node.
! Find interval containing search key.
! Follow associated link (recursively).

Ex. Search for L
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Searching in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

found L

smaller than K

between
K and R
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Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.

Ex. Insert B

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K

B not found

smaller than C
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Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.
! 2-node at bottom:  convert to 3-node.

Ex. Insert B

S  VF  G  J

K  R

C  E M  O W

D L N Q Y  Z

smaller than K

B fits here

smaller than C

A  B

Insert.
! Search to bottom for key.

Ex. Insert X
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Insertion in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

X not found

larger than R

larger than W
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Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.
! 2-node at bottom:  convert to 3-node.
! 3-node at bottom:  convert to 4-node.

Ex. Insert X

S  VF  G  J

K  R

C  E M  O W

D L N Q

X fits here

A  B X  Y  Z

Insert.
! Search to bottom for key.

Ex. Insert H
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Insertion in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K

larger than E

H not found
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Insertion in a 2-3-4 Tree

Insert.
! Search to bottom for key.
! 2-node at bottom:  convert to 3-node.
! 3-node at bottom:  convert to 4-node.
! 4-node at bottom:  ??

Ex. Insert H

S  VF  G  J

K  R

C  E M  O W

D L N Q

H does not fit here!

A  B X  Y  Z

Idea: split the 4-node to make room 

Problem: Doesn’t work if parent is a 4-node

Solution 1: Split the parent (and continue splitting while necessary). 

Solution 2: Split 4-nodes on the way down.
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Splitting a 4-node in a 2-3-4 tree

F  G  J

C  E

D

H does not fit here

A  B

D

H does fit here!

A  B

C  E  G

F J

DA  B

C  E  G

F H  J
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Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.
! Ensures last node is not a 4-node.
! Transformations to split 4-nodes:

Invariant.  Current node is not a 4-node.

Consequence.  Insertion at bottom is easy since it's not a 4-node.
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Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 2-node

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

K Q W

D QD

K W

could be huge  unchanged
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Splitting 4-nodes in a 2-3-4 tree

A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K Q W K W

could be huge  unchanged

E-G

D H

A-C E-G

D H Q

Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 3-node
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Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree

Splitting a 4-node attached to a 4-node never happens

when we split nodes on the way down the tree.

Invariant.  Current node is not a 4-node.
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2-3-4 Tree

Tree grows up from the bottom.

E

A

P

E

X

M

L

tree height
grows only when

root splits
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2-3-4 Tree:  Balance

Property.  All paths from root to leaf have same length.

Tree height.
! Worst case: lg N    [all 2-nodes]
! Best case: log4 N = 1/2 lg N    [all 4-nodes]
! Between 10 and 20 for a million nodes.
! Between 15 and 30 for a billion nodes.
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2-3-4 Tree:  Implementation?

Direct implementation is complicated, because:
! Maintaining multiple node types is cumbersome.
! Implementation of getChild() involves multiple compares.
! Large number of cases for split(), make3Node(), and make4Node().

Bottom line: could do it, but say tuned for an easier way.

fantasy code

private void insert(Key key, Val val)
{
   Node x = root;
   while (x.getChild(key) != null)
   {
      x = x.getChild(key);
      if (x.is4Node()) x.split();
   }
   if      (x.is2Node()) x.make3Node(key, val);
   else if (x.is3Node()) x.make4Node(key, val);
}

Summary of symbol-table implementations
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guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N

constants depend upon
implementation
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2-3-4 trees

red-black trees

B-trees

24

Red-black trees (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a BST.
! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

“red” glue

not 1-1 because 3-nodes
can swing either way.
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Red-Black Tree

Represent 2-3-4 tree as a BST.
! Use "internal" edges for 3- and 4- nodes.

! Disallowed:  two red edges in-a-row.

“red” glue
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Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.
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Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

Two hard cases.  Use rotations.

do single rotation

do double rotation
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Rotations in a red-black tree

right rotate R   !

left rotate E   !

change colors

to insert G:

G does not fit here

G does fit here!

single
rotation

double
rotation

single
rotation



29

Red-Black Tree:  Insertion

E

A

P

E

X

M

L

black tree height
grows only when

root splits
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Red-Black Tree:  Balance

Property A.  Every path from root to leaf has same number of black links.

Property B.  Never two red links in-a-row.

Property C.  Height of tree is less than 2 lg N + 2 in the worst case. 

Property D.  Height of tree is lg N in the average case.

Search implementation for red-black trees

Search code is the same as elementary BST.

Runs faster because of better balance in tree.
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public Val get(Key key)

{
   Node x = root;

   while (x != null)
   {
      int cmp = key.compareTo(x.key);

      if (cmp == 0)     return x.val;
      else if (cmp < 0) x = x.left;

      else if (cmp > 0) x = x.right;
   }
   return null;

}

Insert implementation for red-black trees (skeleton)
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public class BST<Key extends Comparable, Val>

             implements Iterable

{

    private static final boolean RED   = true;

    private static final boolean BLACK = false;

    private Node root;

    private class Node

    {

        Key key;

        Val value;

        Node left, right;

        boolean color;

        Node(Key key, Val val)

        {

            this.key   = key;

            this.val = val;

            this.color = color;

        }

    }

     

   public void put(Key key, Val val)

   {

      root = put(root, key, value, false);

      root.color = BLACK;

   }

}

extra argument
[stay tuned]

color of incoming link



Insert implementation for red-black trees (strategy)

Search as usual
! if key found reset value, as usual
! if key not found add a new red node at the bottom in the usual way

Split 4-nodes on the way down the tree.
! flip colors
! may leave two red links in a row

(unbalanced 4-node) higher up in the tree

Perform rotations on the way up the tree.
! look for two red links in a row
! perform bottom rotation if directions are different
! perform top rotation to balance 4-nodes
! symmetric cases for left and right

Nonrecursive top-down implementation possible, but requires

keeping track of great-grandparent on search path (!) and lots of cases.
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Insert implementation for red-black trees
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private Node insert(Node x, Key key, Value value, boolean sw)

{ 

   if (x == null) return new Node(key, value, RED);

   int cmp = key.compareTo(x.key);

   if (isRed(x.left) && isRed(x.right))

   { x.color = RED; x.left.color  = BLACK; x.right.color = BLACK; }

   if (cmp == 0) x.val = val;

   else if (cmp < 0))

   { 

      x.left = insert(x.left, key, value, false); 

      if (isRed(x) && isRed(x.left) && sw) x = rotR(x);

      if (isRed(x.left) && isRed(x.left.left))         

      {

         x = rotR(x);

         x.color = BLACK; x.right.color = RED;  

      }

   }

   else // if (cmp > 0)

   { 

      x.right = insert(x.right, key, value, true);

 

      if (isRed(h) && isRed(x.right) && !sw) x = rotL(x);

 

      if (isRed(h.right) && isRed(h.right.right)) 

      {

         x = rotL(x);

         x.color = BLACK; x.left.color = RED;   

      }

   }

   return x;

}

Caution: extremely tricky 
recursive code.

Read extremely carefully!

extra argument
is true iff x is a right child

Summary of symbol-table implementations
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guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes

exact value of coefficient unknown
but extremely close to 1

Typical random red-black trees

36

           N  =  250
       lg N  !  8
lg N  - 1   !  7

average node depth



 

37

2-3-4 trees

red-black trees

B-trees
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B-trees (Bayer-McCreight, 1972)

B-Tree.  Generalizes 2-3-4 trees by allowing up to M links per node.

Main application:  file systems.
! Reading a page into memory from disk is expensive.
! Accessing info on a page in memory is free.
! Goal:  minimize # page accesses.
! Node size M = page size.

Space-time tradeoff.
! M large  "   only a few levels in tree.
! M small  "   less wasted space.
! Typical M = 1000,  N < 1 trillion.

Bottom line.  Number of page accesses is logMN per op.

3 or 4 in practice!
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B-Tree Example

M = 5

no room
for 275

no room
for 737
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B-Tree Example (cont)

no room
for 526



Summary of symbol-table implementations
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guarantee average case ordered
iteration?implementation search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.44 lg N 1.44 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.44 lg N 1.44 lg N 1.44 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes

B-tree 1 1 1 1 1 1 yes

B-Tree.  Number of page accesses is logMN per op.

42

Balanced trees in the wild

Red-black trees: widely used as system symbol tables
! Java:  java.util.TreeMap, java.util.TreeSet.
! C++ STL:  map, multimap, multiset.
! Linux kernel:  linux/rbtree.h.

B-Trees: widely used for file systems and databases
! Windows:  HPFS.
! Mac:  HFS, HFS+. 
! Linux:  ReiserFS, XFS, Ext3FS, JFS.
! Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Red-black trees in the wild
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!!

Common sense. Sixth sense.
Together they're the FBI's newest team.

red-black tree
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Balanced trees summary

Goal.  ST implementation with lg N guarantee for all ops.
! Difference in quality of guarantee is immaterial.
! Easy to implement other ops:  randomized BST.
! Fast average case:  red-black tree.
! Algorithms are variations on a theme:  rotations when inserting.

Abstraction extends to give search algorithms for huge files.
! B-tree.

Next lecture: Can we do better??


