
Copyright © 2007 by Robert Sedgewick and Kevin Wayne. 1

Symbol Tables

References: Algorithms in Java, Chapter 12.
Intro to Algs and Data Structs, Chapter 4.
Intro to Programming, Section 4.4.

• API

• basic implementations

• iterators

• Comparable keys

• challenges

2

API

basic implementations

iterators

Comparable keys

challenges

3

Symbol Tables

Key-value pair abstraction.
! Insert a value with specified key.
! Given a key, search for the corresponding value.

Example: DNS lookup.
! Insert URL with specified IP address.
! Given URL, find corresponding IP address

Can interchange roles: given IP address find corresponding URL

key value

 www.cs.princeton.edu

URL IP address

128.112.136.11

 www.princeton.edu 128.112.128.15

 www.yale.edu 130.132.143.21

 www.harvard.edu 128.103.060.55

 www.simpsons.com 209.052.165.60

4

Symbol Table Applications

Application Purpose Key Value

Phone book Look up phone number Name Phone number

Bank Process transaction Account number Transaction details

File share Find song to download Name of song Computer ID

Dictionary Look up word Word Definition

Web search Find relevant documents Keyword List of documents

Genomics Find markers DNA string Known positions

DNS Find IP address given URL URL IP address

Reverse DNS Find URL given IP address IP address URL

Book index Find relevant pages Keyword List of pages

Web cache Download Filename File contents

Compiler Find properties of variable Variable name Value and type

File system Find file on disk Filename Location on disk

Routing table Route Internet packets Destination Best route

5

Symbol Table API

Associative array abstraction. Unique value associated with each key.

Symbol table API.
! put(key, val) insert the key-value pair
! get(key) search: return value associated with given key
! remove(key) remove the key
! contains(key) is given key present?
! iterator() return iterator over all keys

Our conventions.
! Values are not null.
! Method get() returns null if key not present.
! Implementations all have

! Method put() overwrites old value with new value.

a[key] = val;

 public boolean contains(Key key)
 { return get(key) != null; }

Some languages (not Java) allow this notation

ST client: make a dictionary and process lookup requests

Command line arguments
! a comma-separated value (CSV) file
! key field
! value field

Example 1: DNS lookup

6

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
sohu.com,61.135.133.103
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java Lookup ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java Lookup ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

URL is key IP is value

IP is key URL is value

7

ST client: make a dictionary and process lookup requests

public class Lookup

{

 public static void main(String[] args)

 {

 In in = new In(args[0]);

 int keyField = Integer.parseInt(args[1]);

 int valField = Integer.parseInt(args[2]);

 String[] database = in.readAll().split("\n");

 ST<String, String> st = new ST<String, String>();

 for (int i = 0; i < database.length; i++)

 {

 String[] tokens = database[i].split(",");

 String key = tokens[keyField];

 String val = tokens[valField];

 st.put(key, val);

 }

 while (!StdIn.isEmpty())

 {

 String s = StdIn.readString();

 if (!st.contains(s)) StdOut.println("Not found");

 else StdOut.println(st.get(s));

 }

 }

}

process input

build symbol table

process lookups

ST client: make a dictionary and process lookup requests

Command line arguments
! a comma-separated value (CSV) file
! key field
! value field

Example 2: Amino acids

8

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
CGA,Arg,R,Arginine
CGG,Arg,R,Arginine
ATT,Ile,I,Isoleucine
ATC,Ile,I,Isoleucine
ATA,Ile,I,Isoleucine
ATG,Met,M,Methionine
...

% % java Lookup amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

ST client: make a dictionary and process lookup requests

Command line arguments
! a comma-separated value (CSV) file
! key field
! value field

Example 3: Class lists

9

% more classlist.csv
10,Bo Ling,P03,bling
10,Steven A Ross,P01,saross
10,Thomas Oliver Horton
Conway,P03,oconway
08,Michael R. Corces
Zimmerman,P01A,mcorces
09,Bruce David Halperin,P02,bhalperi
09,Glenn Charles Snyders Jr.,P03,gsnyders
09,Siyu Yang,P01A,siyuyang
08,Taofik O. Kolade,P01,tkolade
09,Katharine Paris
Klosterman,P01A,kkloster
SP,Daniel Gopstein,P01,dgtwo
10,Sauhard Sahi,P01,ssahi
10,Eric Daniel Cohen,P01A,edcohen
09,Brian Anthony Geistwhite,P02,bgeistwh
09,Boris Pivtorak,P01A,pivtorak
09,Jonathan Patrick
Zebrowski,P01A,jzebrows
09,Dexter James Doyle,P01A,ddoyle
09,Michael Weiyang Ye,P03,ye
08,Delwin Uy Olivan,P02,dolivan
08,Edward George Conbeer,P01A,econbeer
09,Mark Daniel Stefanski,P01,mstefans
09,Carter Adams Cleveland,P03,cclevela
10,Jacob Stephen Lewellen,P02,jlewelle
10,Ilya Trubov,P02,itrubov
09,Kenton William Murray,P03,kwmurray
07,Daniel Steven Marks,P02,dmarks
09,Vittal Kadapakkam,P01,vkadapak
10,Eric Ruben Domb,P01A,edomb
07,Jie Wu,P03,jiewu
08,Pritha Ghosh,P02,prithag
10,Minh Quang Anh Do,P01,mqdo
...

% java Lookup classlist.csv 3 1
jsh
Jeffrey Scott Harris
dgtwo
Daniel Gopstein
ye
Michael Weiyang Ye

% java Lookup classlist.csv 3 2
jsh
P01A
dgtwo
P01

login is key name is value

login is key precept is value

10

Keys and Values

Associative array abstraction.
! Unique value associated with each key
! If client presents duplicate key, overwrite to change value.

Key type: several possibilities

1. Assume keys are any generic type, use equals() to test equality.

2. Assume keys are Comparable, use compareTo().

3. Use equals() to test equality, make some other assumptions.

Value type. Any generic type.

Best practices. Use immutable types for symbol table keys.
! Immutable in Java: String, Integer, BigInteger.
! Mutable in Java: Date, GregorianCalendar, StringBuilder.

a[key] = val;

Elementary ST implementations

Unordered array

Ordered array

Unordered linked list

Ordered linked list

Why study elementary implementations?
! API details need to be worked out
! performance benchmarks
! method of choice can be one of these in many situations
! basis for advanced implementations

Always good practice to study elementary implementations

11

12

API

basic implementations

iterators

Comparable keys

challenges

13

Unordered array ST implementation

Maintain parallel arrays of keys and values.

Instance variables
! array keys[] holds the keys.
! array vals[] holds the values.
! integer N holds the number of entries.

Need to use standard array-doubling technique

Alternative: define inner type for entries
! space overhead for entry objects
! more complicated code

0 1 2 3 4 5

keys[] it was the best of times

vals[] 2 2 1 1 1 1

N = 6

@SuppressWarnings("unchecked")

public class UnorderedST<Key, Val>

{

 private Val[] vals;

 private Key[] keys;

 private int N = 0;

 public UnorderedST(int maxN)

 {

 keys = (Key[]) new Object[maxN];

 vals = (Val[]) new Object[maxN];

 }

 public boolean isEmpty()

 { return N == 0; }

 public void put(Key key, Val, val)

 // see next slide

 public Val get(Key key)
 // see next slide

}

14

Unordered array ST implementation (skeleton)

standard ugly casts

standard array doubling code omitted

suppress annoying message about ugly casts

parallel arrays lead to cleaner code
than defining a type for entries

Key, Value are generic and can be any type

15

Unordered array ST implementation (search)

public Val get(Key key)

{
 for (int i = 0; i < N; i++)
 if (keys[i].equals(key))
 return vals[i];
 return null;
}

0 1 2 3 4 5

keys[] it was the best of times

vals[] 2 2 1 1 1 1

0 1 2 3 4 5

keys[] it was the best of times

vals[] 2 2 1 1 1 1

get(“worst”)

returns null

Java convention: all objects implement equals()

Associative array abstraction
! must search for key and overwrite with new value if it is there
! otherwise, add new key, value at the end (as in stack)

16

Unordered array ST implementation (insert)

public void put(Key key, Val, val)

{

 int i;

 for (int i = 0; i < N; i++)

 if (key.equals(keys[i]))

 break;

 vals[i] = val;

 keys[i] = key;

 if (i == N) N++;

}

0 1 2 3 4 5

keys[] it was the best of times

vals[] 2 2 1 1 1 1

0 1 2 3 4 5

keys[] it was the best of times

vals[] 2 2 2 1 1 1

put(“the”, 2)

overwrites the 1

0 1 2 3 4 5 6

keys[] it was the best of times worst

vals[] 2 2 2 1 1 1 1

put(“worst”, 1)

adds a new entry

17

Java conventions for equals()

All objects implement equals() but default implementation is (x == y)

Customized implementations.

 String, URL, Integer.

User-defined implementations.

 Some care needed (example: type of argument must be Object)

Equivalence relation. For any references x, y and z:
! Reflexive: x.equals(x) is true.
! Symmetric: x.equals(y) iff y.equals(x).
! Transitive: If x.equals(y) and y.equals(z), then x.equals(z).
! Non-null: x.equals(null) is false.
! Consistency: Multiple calls to x.equals(y) return same value.

is the object referred to by x
the same object that is referred to by y?

Implementing equals()

Seems easy

18

public class PhoneNumber
{
 private int area, exch, ext;

 ...

 public boolean equals(PhoneNumber y)
 {

 PhoneNumber a = this;
 PhoneNumber b = (PhoneNumber) y;
 return (a.area == b.area)
 && (a.exch == b.exch)
 && (a.ext == b.ext);
 }
}

Implementing equals()

Seems easy, but requires some care

19

public final class PhoneNumber
{
 private final int area, exch, ext;

 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 PhoneNumber a = this;
 PhoneNumber b = (PhoneNumber) y;
 return (a.area == b.area)
 && (a.exch == b.exch)
 && (a.ext == b.ext);
 }
}

If I’m executing this code,
I’m not null.

Optimize for true object equality

enforce immutability

Must be Object.
Why? Experts still debate.

Objects must be in the same class.

Maintain a linked list with keys and values.

inner Node class
! instance variable key holds the key
! instance variable val holds the value

instance variable
! node first refers to the first node in the list

20

Linked list ST implementation

it

2

was

2

the

1

best

1

of

1

times

1

first

public class LinkedListST<Key, Val>

{

 private Node first;

 private class Node

 {

 Key key;

 Val val;

 Node next;

 Node(Key key, Val val, Node next)

 {

 this.key = key;

 this.val = val;

 this.next = next;

 }

 }

 public void put(Key key, Val, val)

 // see next slides

 public Val get(Key key)
 // see next slides

}

21

Linked list ST implementation (skeleton)

instance variable

inner class

Key, Value are generic and can be any type

22

Linked list ST implementation (search)

Java convention: all objects implement equals()

public Val get(Key key)

{
 for (Node x = first; x != null; x = x.next))
 if (key.equals(x.key))
 return vals[i];
 return null;
}

get(“the”)

returns 1

get(“worst”)

returns null

it

2

was

2

the

1

best

1

of

1

times

1

first

it

2

was

2

the

1

best

1

of

1

times

1

first

23

Linked list ST implementation (insert)

public void put(Key key, Val, val)

{

 for (Node x = first; x != null; x = x.next)

 if (key.equals(x.key))

 { x.value = value; return; }

 first = new Node(key, value, first);

}

put(“the”, 2)

overwrites the 1

put(“worst”, 1)

adds a new entry

it

2

was

2

the

1

best

1

of

1

times

1

first

Associative array abstraction
! must search for key and, if it is

there, overwrite with new value
! otherwise, add new key, value at

the beginning (as in stack)

was

2

the

2

best

1

of

1

times

1

worst

1

first

it

2

24

API

basic implementations

iterators

Comparable keys

challenges

Iterators

Symbol tables should be Iterable

Q. What is Iterable?

A. Implements iterator()

Q. What is an iterator?

A. Implements hasNext() and next().

Q. Why should symbol tables be iterable?

A. Java language supports elegant client code for iterators

25

Iterator<String> i = st.iterator();
while (i.hasNext())
{
 String s = i.next();
 StdOut.println(st.get(s));
}

public interface Iterator<Item>

{

 boolean hasNext();

 Item next();

 void remove();

}

for (String s: st)
 StdOut.println(st.get(s));

optional in Java
use at your own risk

“foreach” statement equivalent code

public interface Iterable<Item>

{

 Iterator<Item> iterator();

}

java.util.Iterator

Iterable ST client: count frequencies of occurrence of input strings

Standard input: A file (of strings)

Standard output: All the distinct strings in the file with frequency

26

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
2 age
1 best
1 foolishness
4 it
4 of
4 the
2 times
4 was
1 wisdom
1 worst

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
we had everything before us
we had nothing before us
...
% java FrequencyCount < tale.txt
2941 a
1 aback
1 abandon
10 abandoned
1 abandoning
1 abandonment
1 abashed
1 abate
1 abated
5 abbaye
2 abed
1 abhorrence
1 abided
1 abiding
1 abilities
2 ability
1 abject
1 ablaze
17 able
1 abnegating

tiny example
24 words

10 distinct

real example
137177 words
9888 distinct

27

Iterable ST client: count frequencies of occurrence of input strings

public class FrequencyCount
{
 public static void main(String[] args)
 {
 ST<String, Integer> st;
 st = new ST<String, Integer>();

 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();

 if (!st.contains(key))
 st.put(key, 1);
 else
 st.put(key, st.get(key) + 1);

 }

 for (String s: st)
 StdOut.println(st.get(s) + " " + s);

 }
}

read a string

insert

print all strings

increment

Note: Only slightly more work required to build an index

of all of the places where each key occurs in the text.

Iterators for array, linked list ST implementations

28

import java.util.Iterator;
public class LinkedListST<Key, Value>
 implements Iterable<Key>

{
 ...

 public Iterator<Key> iterator()
 { return new ListIterator(); }

 private class ListIterator
 implements Iterator<Key>
 {
 private Node current = first;

 public boolean hasNext()
 { return current != null; }

 public void remove() { }

 public Key next()
 {
 Key key = current.key;
 current = current.next;
 return key;
 }
 }
}

import java.util.Iterator;
public class UnorderedST<Key, Value>
 implements Iterable<Key>

{
 ...

 public Iterator<Key> iterator()
 { return new ArrayIterator(); }

 private class ArrayIterator
 implements Iterator<Key>
 {
 private int i = 0;

 public boolean hasNext()
 { return i < N; }

 public void remove() { }

 public Key next()
 { return keys[i++]; }
 }
}

Iterable ST client: A problem?

Clients who use Comparable keys might expect ordered iteration
! not a requirement for some clients
! not a problem if postprocessing, e.g. with sort or grep
! not in API

29

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
4 it
4 was
4 the
1 best
4 of
2 times
1 worst
2 age
1 wisdom
1 foolishness

Use UnorderedST in FrequencyCount

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
1 foolishness
1 wisdom
2 age
1 worst
2 times
4 of
1 best
4 the
4 was
4 it

Use LinkedListST in FrequencyCount

30

API

basic implementations

iterators

Comparable keys

challenges

31

Ordered array ST implementation

Assume that keys are Comparable

Maintain parallel arrays with keys and values that are sorted by key.

Instance variables
! keys[i] holds the ith smallest key
! vals[i] holds the value associated with the ith smallest key
! integer N holds the number of entries.

Note: no duplicate keys

Need to use standard array-doubling technique

Two reasons to consider using ordered arrays
! provides ordered iteration (for free)
! can use binary search to significantly speed up search

0 1 2 3 4 5

keys[] best it of the times was

vals[] 1 2 1 1 1 2

N = 6

public class OrderedST

 <Key extends Comparable, Val>

 implements Iterable<Key>

{

 private Val[] vals;

 private Key[] keys;

 private int N = 0;

 public UnorderedST(int maxN)

 {

 keys = (Key[]) new Object[maxN];

 vals = (Val[]) new Object[maxN];

 }

 public boolean isEmpty()

 { return N == 0; }

 public void put(Key key, Val, val)

 // see next slides

 public Val get(Key key)
 // see next slides

}

32

Ordered array ST implementation (skeleton)

standard array doubling code omitted

standard array iterator code omitted

3

of

3

Keeping array in order enables binary search algorithm

33

Ordered array ST implementation (search)

0 4 8

age best it of the times was wisdom worst

2 1 4 3 4 2 4 1 1

get(“of”)

returns 3

 public Val get(Key key)
 {
 int i = bsearch(key);
 if (i == -1) return null;
 return vals[i];
 }

 private int bsearch(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int m = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[m]);
 if (cmp < 0) hi = m - 1;
 else if (cmp > 0) lo = m + 1;
 else return m;
 }
 return -1;
 }

0 1 3

age best it of

2 1 4 3

2 3

it of

4 3

lo him

34

Binary search analysis: Comparison count

Def. T(N) ≡ number of comparisons to search in an ST of size N

 = T(N/2) + 1

Binary search recurrence

! not quite right for odd N
! same recurrence holds for many algorithms
! same number of comparisons for any input of size N.

Solution of binary search recurrence

! true for all N, as long as integer approx of N/2 is within a constant
! easy to prove when N is a power of 2.

T(N) = T(N/2) + 1
 for N > 1, with T(1) = 0

T(N) ~ lg N

left or right half

can then use induction for general N
(see COS 341)

middle

Pf.

35

Binary search recurrence: Proof by telescoping

T(N) = T(N/2) + 1
 for N > 1, with T(1) = 0

 T(N) = T(N/2) + 1

 = T(N/4) + 1 + 1

 = T(N/8) + 1 + 1 + 1

 . . .

 = T(N/N) + 1 + 1 +. . .+ 1

 = lg N

T(N) = lg N

(assume that N is a power of 2)

given

telescope (apply to first term)

telescope again

stop telescoping, T(1) = 0

Binary search is little help for put(): still need to move larger keys

36

Ordered array ST implementation (insert)

age best it of the times was wisdom worst

2 1 4 4 4 2 4 1 1

 public Val put(Key key, Val val)
 {
 int i = bsearch(key);
 if (i != -1)
 { vals[i] = val; return; }

 for (i = N; i > 0; i--)
 {
 if key.compareTo(keys[i-1] < 0) break;
 keys[i] = keys[i-1];
 vals[i] = vals[i-1];
 }
 vals[i] = val;
 keys[i] = key;
 N++;

 }

age best foolish it of the times was wisdom worst

2 1 1 4 4 4 2 4 1 1

overwrite with new value
if key in table

put(“foolish”)

move larger keys to make room
if key not in table

Ordered array ST implementation: an important special case

Test whether key is equal to or greater than largest key

If either test succeeds, constant-time insert!

Method of choice for some clients:
! sort database by key
! insert N key-value pairs in order by key
! support searches that never use more than lg N compares
! support occasional (expensive) inserts

37

public Val put(Key key, Val val)
{
 if (key.compareTo(keys[N-1] == 0)
 { vals[N-1] = val; return; }

 if (key.compareTo(keys[N-1] > 0)
 {
 vals[N] = val;
 keys[N] = key;
 N++;
 return;
 }
}

Ordered linked-list ST implementation

Binary search depends on array indexing for efficiency.

Jump to the middle of a linked list?

Advantages of keeping list in order for Comparable keys:
! support ordered iterator (for free)
! cuts search/insert time in half (on average) for random search/insert

[code omitted]

38

was

2

times

1

the

1

of

1

it

2

best

1

first

39

API

basic implementations

iterators

Comparable keys

challenges

Searching challenge 1A:

Problem: maintain symbol table of song names for an iPod

Assumption A: hundreds of songs

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

40

Searching challenge 1B:

Problem: maintain symbol table of song names for an iPod

Assumption B: thousands of songs

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

41

Searching challenge 2A:

Problem: IP lookups in a web monitoring device

Assumption A: billions of lookups, millions of distinct addresses

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

42

Searching challenge 2B:

Problem: IP lookups in a web monitoring device

Assumption B: billions of lookups, thousands of distinct addresses

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

43

Searching challenge 3:

Problem: Frequency counts in “Tale of Two Cities”

Assumptions: book has 135,000+ words

 about 10,000 distinct words

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

44

Searching challenge 4:

Problem: Spell checking for a book

Assumptions: dictionary has 25,000 words

 book has 100,000+ words

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

45

Searching challenge 5:

Problem: Sparse matrix-vector multiplication

Assumptions: matrix dimension is billions by billions

 average number of nonzero entries/row is ~10

Which searching method to use?

1) unordered array

2) ordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

46

A * x = b

Summary and roadmap

• basic algorithmics

• no generics

• more code

• more analysis

• equal keys in ST (not associative arrays)

• iterators

• ST as associative array (all keys distinct)

• BST implementations

• applications

• distinguish algs by operations on keys

• ST as associative array (all keys distinct)

• important special case for binary search

• challenges

47

48

Elementary implementations: summary

Ordered array
! binary search reduces search time to lg N for get()
! need to move large elements for put()

Linked list
! need to scan whole list for get()
! need to scan whole list for put() to implement associative array
! can only save half (on average) by keeping in order

Challenge.

 Efficient implementations of get() and put() and ordered iteration.

 (Ordered array meets challenge if keys arrive approximately in order)

worst case average case ordered
iteration?

operations
on keysimplementation search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes Comparable

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes Comparable

studying STs
for the midterm?

Start here.

