
Copyright © 2007 by Robert Sedgewick and Kevin Wayne. 1

Priority Queues

References: Algorithms in Java, Chapter 9
 Intro to Algs and Data Structs, Chapter 3

• API

• elementary implementations

• binary heaps

• heapsort

• event-driven simulation

2

API
elementary implementations
binary heaps
heapsort
event-driven simulation

3

Priority Queues

Data. Items that can be compared.

Basic operations.
! Insert.
! Remove largest.

! Copy.
! Create.
! Destroy.
! Test if empty.

defining ops

generic ops

4

Priority Queue Applications

! Event-driven simulation. [customers in a line, colliding particles]

! Numerical computation. [reducing roundoff error]
! Data compression. [Huffman codes]
! Graph searching. [Dijkstra's algorithm, Prim's algorithm]
! Computational number theory. [sum of powers]
! Artificial intelligence. [A* search]
! Statistics. [maintain largest M values in a sequence]
! Operating systems. [load balancing, interrupt handling]
! Discrete optimization. [bin packing, scheduling]

! Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

5

Priority queue client example

Problem: Find the largest M of a stream of N elements.
! Fraud detection: isolate $$ transactions.
! File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements.

Solution. Use a priority queue.

sort

Operation

elementary PQ

binary heap

best in theory

N

space

M

M

M

N lg N

time

M N

N lg M

N

MinPQ<String> pq = new MinPQ<String>();

while(!StdIn.isEmpty())
{
 String s = StdIn.readString();
 pq.insert(s);
 if (pq.size() > M)
 pq.delMin();
}

while (!pq.isEmpty())
 System.out.println(pq.delMin());

6

API
elementary implementations
binary heaps
heapsort
event-driven simulation

public class UnorderedPQ<Item extends Comparable>
{
 private Item[] pq; // pq[i] = ith element on PQ
 private int N; // number of elements on PQ

 public UnorderedPQ(int maxN)
 { pq = (Item[]) new Comparable[maxN]; }

 public boolean isEmpty()
 { return N == 0; }

 public void insert(Item x)
 { pq[N++] = x; }

 public Item delMax()
 {
 int max = 0;
 for (int i = 1; i < N; i++)
 if (less(max, i)) max = i;
 exch(max, N-1);
 return pq[--N];
 }
}

7

Priority queue: unordered array implementation

no generic array creation

8

Priority queue elementary implementations

Challenge. Implement both operations efficiently.

unordered array

Implementation

ordered array

N

Del Max

1

1

Insert

N

worst-case asymptotic costs for PQ with N items

9

API
elementary implementations
binary heaps
heapsort
event-driven simulation

10

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.
! Empty or
! Node with links to left and

right trees.

11

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.
! Empty or
! Node with links to left and

right trees.

Heap-ordered binary tree.
! Keys in nodes.
! No smaller than children’s keys.

12

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.
! Empty or
! Node with links to left and

right trees.

Heap-ordered binary tree.
! Keys in nodes.
! No smaller than children’s keys.

Array representation.
! Take nodes in level order.
! No explicit links needed since

tree is complete.

13

Binary Heap Properties

Property A. Largest key is at root.

14

Binary Heap Properties

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.
! Note: indices start at 1.
! Parent of node at k is at k/2.
! Children of node at k are at 2k and 2k+1.

15

Binary Heap Properties

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.
! Note: indices start at 1.
! Parent of node at k is at k/2.
! Children of node at k are at 2k and 2k+1.

Property C. Height of N node heap is 1 + !lg N".

N = 16
height =
5

height only increases when
N is a power of 2

16

Promotion In a Heap

Scenario. Exactly one node has a larger key than its parent.

To eliminate the violation:
! Exchange with its parent.
! Repeat until heap order restored.

Peter principle: node promoted to level

of incompetence.

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k, k/2);
 k = k/2;
 }
}

parent of node at k is at k/2

17

Insert

Insert. Add node at end, then promote.

public void insert(Item x)
{
 pq[++N] = x;
 swim(N);
}

18

Demotion In a Heap

Scenario. Exactly one node has a smaller key than does a child.

To eliminate the violation:
! Exchange with larger child.
! Repeat until heap order restored.

Power struggle: better subordinate promoted.

children of node
at k are 2k and 2k+1

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

public Item delMax()
{
 Item max = pq[1];
 exch(1, N--);
 sink(1);
 pq[N+1] = null;
 return max;
}

19

Remove the Maximum

Remove max. Exchange root with node at end, then demote.

prevent loitering

array helper functions

heap helper functions

PQ ops

20

Binary heap implementation summary

public class MaxPQ<Item extends Comparable>
{
 private Item[] pq;
 private int N;

 public MaxPQ(int maxN
 { . . . }
 public boolean isEmpty()
 { . . . }

 public void insert(Item x)
 { . . . }
 public Item delMax()
 { . . . }

 private void swim(int k)
 { . . . }
 private void sink(int k)
 { . . . }

 private boolean less(int i, int j)
 { . . . }
 private void exch(int i, int j)
 { . . . }
}

same as array-based PQ,
but allocate one extra element

21

Binary heap considerations

Minimum oriented priority queue. Replace less() with greater() and

implement greater().

Array resizing. Add no-arg constructor, and apply repeated doubling.

Immutability of keys. We assume client does not change keys while

they're on the PQ. Best practice: make keys immutable.

Other operations.
! Remove an arbitrary item.
! Change the priority of an item.
! Can implement using sink() and swim() abstractions, but we defer.

O(log N) amortized time per op

22

Priority Queues Implementation Cost Summary

Hopeless challenge. Make all ops O(1). Why hopeless?

ordered array

Operation

ordered list

unordered array

unordered list

binary heap

1

Remove Max

1

N

N

lg N

1

Find Max

1

N

N

1

N

Insert

N

1

1

lg N

worst-case asymptotic costs for PQ with N items

23

API
elementary implementations
binary heaps
heapsort
event-driven simulation

24

Digression: Heapsort

First pass: build heap.
! Insert items into heap, one at at time.
! Or can use faster bottom-up method; see book.

Second pass: sort.
! Remove maximum items, one at a time.
! Leave in array, instead of nulling out.

Property D. At most 2 N lg N comparisons.

for (int k = N/2; k >= 1; k--)
 sink(a, k, N);

while (N > 1
{
 exch(a, 1, N--);
 sink(a, 1, N);
}

Q. Sort in O(N log N) worst-case without using extra memory?

A. Yes. Heapsort.

Not mergesort? Linear extra space.

Not quicksort? Quadratic time in worst case.

Heapsort is optimal for both time and space, but:
! inner loop longer than quicksort’s.
! makes poor use of cache memory.

25

Significance of Heapsort

in-place merge possible, not practical

 O(N log N) worst-case quicksort
possible, not practical.

26

Sorting Summary

In-Place

Bubble sort X

Selection sort

Insertion sort

Shellsort

Quicksort

Mergesort

Heapsort

X

X

X

X

X

Stable

X

X

X

Worst

N2 / 2

N2 / 2

N2 / 2

N1 + 1/k

N2 / 2

N lg N

2 N lg N

Average

N2 / 2

N2 / 2

N2 / 4

N1 + 1/k

2N ln N

N lg N

2 N lg N

Best

N

N2 / 2

N

N

N lg N

N lg N

N lg N

Remarks

never use it

N exchanges

use as cutoff for small N

can do better

fastest in practice

N log N guarantee, stable

N log N guarantee, in-place

key comparisons to sort N distinct randomly-ordered keys

27

API
elementary implementations
binary heaps
heapsort
event-driven simulation

28

Molecular dynamics simulation of hard spheres

Goal. Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

Hard sphere model.
! Moving particles interact via elastic collisions with each other,

and with fixed walls.
! Each particle is a sphere with known position, velocity, mass, and radius.
! No other forces are exerted.

Significance. Relates macroscopic observables to microscopic dynamics.
! Maxwell and Boltzmann: derive distribution of speeds of interacting

molecules as a function of temperature.
! Einstein: explain Brownian motion of pollen grains.

motion of individual
atoms and molecules

 temperature, pressure,
diffusion constant

29

Time-driven simulation

Time-driven simulation.
! Discretize time in quanta of size dt.
! Update the position of each particle after every dt units of time, and

check for overlaps.
! If overlap, roll back the clock to the time of the collision, update the

velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt
(collision detected)

t + #t
(roll back clock)

30

Time-driven simulation

Main drawbacks.
! N2 overlap checks per time quantum.
! May miss collisions if dt is too large and colliding particles fail to

overlap when we are looking.
! Simulation is too slow if dt is very small.

t t + dt t + 2 dt

31

Event-driven simulation

Change state only when something happens.
! Between collisions, particles move in straight-line trajectories.
! Focus only on times when collisions occur.
! Maintain priority queue of collision events, prioritized by time.
! Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,

when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s)

according to laws of elastic collisions.

Note: Same approach works for a broad variety of systems

32

Particle-wall collision

Collision prediction.
! Particle of radius $ at position (rx, ry), moving with velocity (vx, vy).
! Will it collide with a horizontal wall? If so, when?

Collision resolution. (vx', vy') = (vx, -vy).
!

"t =

 # if vy = 0

 ($ % ry)/vy if vy < 0

 (1% $ % ry)/vy if vy > 0

&

'
(

)
(

$

(rx, ry)

time = t

(vx, vy) (vx, -vy)

(rx', ry')

time = t +
#t

33

Particle-particle collision prediction

Collision prediction.
! Particle i: radius $i, position (rxi, ryi), velocity (vxi, vyi).
! Particle j: radius $j, position (rxj, ryj), velocity (vxj, vyj).
! Will particles i and j collide? If so, when?

$j

$i

(rxi , ryi)

time = t

(vxi , vyi)

m i

i

j

(rxi', ryi')

time = t +
#t

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)

34

Particle-particle collision prediction

Collision prediction.
! Particle i: radius $i, position (rxi, ryi), velocity (vxi, vyi).
! Particle j: radius $j, position (rxj, ryj), velocity (vxj, vyj).
! Will particles i and j collide? If so, when?

!

"t =

 # if "v $"r % 0

 # if d < 0

 -
"v $"r + d

"v $"v
 otherwise

&

'

((

)

(
(

!

d = ("v #"r)
2
$ ("v #"v) ("r #"r $ %

2
)

!

" = " i +" j

!

"v = ("vx, "vy) = (vxi # vx j , vyi # vyj)

!

"r = ("rx, "ry) = (rxi # rx j , ryi # ryj)

!

"v # "v = ("vx)
2

+ ("vy)
2

!

"r # "r = ("rx)
2

+ ("ry)
2

!

"v # "r = ("vx)("rx)+ ("vy)("ry)

 public double dt(Particle b)

 {

 Particle a = this;

 if (a == b) return INFINITY;

 double dx = b.rx - a.rx;

 double dy = b.ry - a.ry;

 double dvx = b.vx - a.vx;

 double dvy = b.vy - a.vy;

 double dvdr = dx*dvx + dy*dvy;

 if(dvdr > 0) return INFINITY;

 double dvdv = dvx*dvx + dvy*dvy;

 double drdr = dx*dx + dy*dy;

 double sigma = a.radius + b.radius;

 double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);

 if (d < 0) return INFINITY;

 return -(dvdr + Math.sqrt(d)) / dvdv;

 }

Particle-particle collision prediction implementation

35

Particle has method to predict collision with another particle

and methods dtX() and dtY() to predict collisions with walls

Particle-particle collision prediction implementation

36

 private void predict(Particle a, double limit)

 {

 if (a == null) return;

 for(int i = 0; i < N; i++)

 {

 double dt = a.dt(particles[i]);

 if(t + dt <= limit)

 pq.insert(new Event(t + dt, a, particles[i]));

 }

 double dtX = a.dtX();

 double dtY = a.dtY();

 if (t + dtX <= limit)

 pq.insert(new Event(t + dtX, a, null));

 if (t + dtY <= limit)

 pq.insert(new Event(t + dtY, null, a));

 }

CollisionSystem has method to predict all collisions

37

Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

!

vxi
" = vxi + Jx / mi

vyi
" = vyi + Jy / mi

vx j
" = vx j # Jx / mj

vyj
" = vx j # Jy / mj

!

Jx =
J "rx

#
, Jy =

J "ry

#
, J =

2mi mj ("v $"r)

#(mi +mj)

impulse due to normal force
(conservation of energy, conservation of momentum)

Newton's second law
(momentum form)

 public void bounce(Particle b)

 {

 Particle a = this;

 double dx = b.rx - a.rx;

 double dy = b.ry - a.ry;

 double dvx = b.vx - a.vx;

 double dvy = b.vy - a.vy;

 double dvdr = dx*dvx + dy*dvy;

 double dist = a.radius + b.radius;

 double F = 2 * a.mass * b.mass * dvdr / ((a.mass + b.mass) * dist);

 double Fx = F * dx / dist;

 double Fy = F * dy / dist;

 a.vx += Fx / a.mass;

 a.vy += Fy / a.mass;

 b.vx -= Fx / b.mass;

 b.vy -= Fy / b.mass;

 a.count++;

 b.count++;

 }

Particle-particle collision resolution implementation

38

Particle has method to resolve collision with another particle

and methods bounceX() and bounceY() to resolve collisions with walls

39

Collision system: event-driven simulation main loop

Initialization.
! Fill PQ with all potential particle-wall collisions
! Fill PQ with all potential particle-particle collisions.

Main loop.
! Delete the impending event from PQ (min priority = t).
! If the event in no longer valid, ignore it.
! Advance all particles to time t, on a straight-line trajectory.
! Update the velocities of the colliding particle(s).
! Predict future particle-wall and particle-particle collisions involving

the colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if
some other collision intervenes

 public void simulate(double limit)

 {

 pq = new MinPQ<Event>();

 for(int i = 0; i < N; i++)

 predict(particles[i], limit);

 pq.insert(new Event(0, null, null));

 while(!pq.isEmpty())

 {

 Event e = pq.delMin();

 if(!e.isValid()) continue;

 Particle a = e.a();

 Particle b = e.b();

 for(int i = 0; i < N; i++)

 particles[i].move(e.time() - t);

 t = e.time();

 if (a != null && b != null) a.bounce(b);

 else if (a != null && b == null) a.bounceX()

 else if (a == null && b != null) b.bounceY();

 else if (a == null && b == null)

 {

 StdDraw.clear(StdDraw.WHITE);

 for(int i = 0; i < N; i++) particles[i].draw();

 StdDraw.show(20);

 if (t < limit)

 pq.insert(new Event(t + 1.0 / Hz, null, null));

 }

 predict(a, limit);

 predict(b, limit);

 }

 }

Collision system: main event-driven simulation loop implementation

40

initialize PQ with
collision events and
redraw event

main event-driven
simulation loop

update positions
and time

process event

predict new
events based on
changes

java CollisionSystem 200

41

java CollisionSystem < billiards5.txt

42

java CollisionSystem < squeeze2.txt

java CollisionSystem < brownianmotion.txt

43

java CollisionSystem < diffusion.txt

44

