

Priority Queues

Data. Items that can be compared.

Basic operations.

- Insert.
- Remove largest. defining ops
- Copy.
- Create.
- Destroy. generic ops
- Test if empty.

[customers in a line, colliding particles]

[Dijkstra's algorithm, Prim's algorithm]

[maintain largest M values in a sequence]

[load balancing, interrupt handling]

[bin packing, scheduling]

[Bayesian spam filter]

[reducing roundoff error]

[Huffman codes]

[sum of powers]

[A* search]

Priority Queue Applications

- Event-driven simulation.
- Numerical computation.
- Data compression.
- Graph searching.
- Computational number theory.
- Artificial intelligence.
- Statistics.
- Operating systems.
- Discrete optimization.
- Spam filtering.

Generalizes: stack, queue, randomized queue.

API

elementary implementations binary heaps heapsort event-driven simulation

Priority queue client example

Problem: Find the largest M of a stream of N elements.

- Fraud detection: isolate \$\$ transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements. Solution. Use a priority queue.

Operation	time	space
sort	N lg N	Ν
elementary PQ	MN	Μ
binary heap	N lg M	Μ
best in theory	Ν	Μ

<pre>MinPQ<string> pq = new MinPQ<string>();</string></string></pre>
<pre>while(!StdIn.isEmpty()) {</pre>
<pre>String s = StdIn.readString(); pq.insert(s); if (pq.size() > M) pq.delMin();</pre>
}
<pre>while (!pq.isEmpty()) System out println(pg.delMin()):</pre>

Priority queue: unordered array implementation

L Contraction of the second
<pre>private Item[] pq; // pq[i] = ith element on PQ private int N; // number of elements on PQ</pre>
<pre>public UnorderedPQ(int maxN) { pq = (Item[]) new Comparable[maxN]; }</pre>
<pre>public boolean isEmpty() { return N == 0; }</pre>
<pre>public void insert(Item x) { pq[N++] = x; }</pre>
<pre>public Item delMax() {</pre>
int max = 0;
for (int $i = 1; i < N; i++)$
if $(less(max, i)) max = i;$
exch(max, N-1);
return pg[N];
}
}

Priority queue elementary implementations

Implementation	Insert	Del Max
unordered array	1	Ν
ordered array	N	1

worst-case asymptotic costs for PQ with N items

insert P	P	P
insert Q	PQ	PQ
insert E	PQE	EPQ
delmax (Q)	PE	EP
insert X	PEX	EPX
insert A	PEXA	AEPX
insert M	PEXAM	AEMPX
delmax(X)	PEMA	AEMP
	unordered	ordered

Challenge. Implement both operations efficiently.

API

elementary implementations

binary heaps heapsort event-driven simulation

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

- Empty or
- Node with links to left and right trees.

Heap-ordered binary tree.

- Keys in nodes.
- No smaller than children's keys.

API elementary implementations binary heaps heapsort event-driven simulation

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

- Empty or
- Node with links to left and right trees.

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

- Empty or
- Node with links to left and right trees.

Heap-ordered binary tree.

- Keys in nodes.
- No smaller than children's keys.

Array representation.

- Take nodes in level order.
- No explicit links needed since tree is complete.

Binary Heap Properties

Property A. Largest key is at root.

Binary Heap Properties

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.

Note: indices start at 1.

Binary Heap Properties

Property A. Largest key is at root.

Property B. Can use array indices to move through tree.

- Note: indices start at 1.
- Parent of node at k is at k/2.
- Children of node at k are at 2k and 2k+1.

1	2	3	4	5	6	7	8	9	10	11	12	
/	т	0	6	c		NI		E	D	٨	т	

Promotion In a Heap

Scenario. Exactly one node has a larger key than its parent.

To eliminate the violation:

- Exchange with its parent.
- Repeat until heap order restored.

Peter principle: node promoted to level of incompetence.

16

Insert

Insert. Add node at end, then promote. item to inser public Item delMax() Item max = pq[1]; exch(1, N--);public void insert(Item x) sink(1); { pq[N+1] = null; pq[++N] = x;add to hear return max; swim(N); } }

Remove the Maximum

Demotion In a Heap

Scenario. Exactly one node has a smaller key than does a child.

To eliminate the violation:

- Exchange with larger child.
- Repeat until heap order restored.

Power struggle: better subordinate promoted.

Binary heap implementation summary

Binary heap considerations

Minimum oriented priority queue. Replace less() with greater() and implement greater().

Array resizing. Add no-arg constructor, and apply repeated doubling.

O(log N) amortized time per op

Immutability of keys. We assume client does not change keys while they're on the PQ. Best practice: make keys immutable.

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.
- Can implement using sink() and swim() abstractions, but we defer.

API elementary implementations binary heaps

heapsort event-driven simulation

Priority Queues Implementation Cost Summary

Operation	Insert	Remove Max	Find Max
ordered array	N	1	1
ordered list	N	1	1
unordered array	1	N	Ν
unordered list	1	N	Ν
binary heap	lg N	lg N	1

worst-case asymptotic costs for PQ with N items

Hopeless challenge. Make all ops O(1). Why hopeless?

Digression: Heapsort

First pass: build heap.

- Insert items into heap, one at at time.
- Or can use faster bottom-up method; see book.

for (int k = N/2; k >= 1; k--)
 sink(a, k, N);

Second pass: sort.

- Remove maximum items, one at a time.
- Leave in array, instead of nulling out.

```
while (N > 1
{
    exch(a, 1, N--);
    sink(a, 1, N);
}
```

Property D. At most 2 N lg N comparisons.

HEAPSORTING

Η	Е	A	Ρ	s	0	R	Т	Ι	N	G
Η	\mathbb{E}	A	T	S		R	P	Ι	\mathbb{N}	G
H	\mathbb{E}	R	Т	S	0	A	Ρ	Ι	\mathbb{N}	G
Η	T	R	P	s		A	E	I	\mathbb{N}	G
T	S	R	Ρ	N	0	A	Ε	I	H	G
т	s	R	P	N	0	A	Е	I	H	G
S	P	R	G	N	0	A	Е	Ι	Η	т
R	P	0	G	N	H	A	Е	Ι	s	т
P	N	0	G	I	н	A	Ε	R	S	т
0	N	H	G	Ι	E	A	Ρ	R	S	т
N	I	н	G	A	Е	0	Ρ	R	S	т
I	G	н	E	A	N	0	Ρ	R	S	т
H	G	A	Е	I	\mathbb{N}		Ρ	R	S	Т
G	A	Е	H	Ι	N		Ρ	R	S	Т
E	A	G	Η	Ι	N		Ρ	R	S	т
A	Е	G	Η	Ι	N		Ρ	R	S	т
A	Е	G	H	I	N	0	Ρ	R	S	т

Significance of Heapsort

Q. Sort in O(N log N) worst-case without using extra memory? A. Yes. Heapsort.

Not mergesort? Linear extra space. Not quicksort? Quadratic time in worst case. O(N log N) worst-case quicksort possible, not practical

Heapsort is optimal for both time and space, but:

- inner loop longer than quicksort's.
- makes poor use of cache memory.

API

elementary implementations binary heaps heapsort event-driven simulation

Sorting Summary

	In-Place	Stable	Worst	Average	Best	Remarks
Bubble sort	×	Х	N² / 2	N² / 2	N	never use it
Selection sort	×		N² / 2	N² / 2	N² / 2	N exchanges
Insertion sort	×	х	N² / 2	N² / 4	N	use as cutoff for small N
Shellsort	×		N ^{1 + 1/k}	N ^{1 + 1/k}	N	can do better
Quicksort	×		N² / 2	2N In N	N lg N	fastest in practice
Mergesort		х	N lg N	N lg N	N lg N	N log N guarantee, stable
Heapsort	х		2 N lg N	2 N lg N	N lg N	N log N guarantee, in-place

key comparisons to sort N distinct randomly-ordered keys

Molecular dynamics simulation of hard spheres

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard sphere model.

- Moving particles interact via elastic collisions with each other, and with fixed walls.
- Each particle is a sphere with known position, velocity, mass, and radius.
- No other forces are exerted.

temperature, pressure, diffusion constant motion of individual atoms and molecules

Significance. Relates macroscopic observables to microscopic dynamics.

- Maxwell and Boltzmann: derive distribution of speeds of interacting molecules as a function of temperature.
- Einstein: explain Brownian motion of pollen grains.

Time-driven simulation

Time-driven simulation.

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

t + dt

t + 2 dt (collision detected)

† + Δ† (roll back clock)

Event-driven simulation

Change state only when something happens.

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain priority queue of collision events, prioritized by time.
- Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.

Note: Same approach works for a broad variety of systems

Time-driven simulation

Main drawbacks.

- N² overlap checks per time quantum.
- May miss collisions if dt is too large and colliding particles fail to overlap when we are looking.
- Simulation is too slow if dt is very small.

Particle-wall collision

Collision prediction.

- Particle of radius σ at position (rx, ry), moving with velocity (vx, vy).
- Will it collide with a horizontal wall? If so, when?

	1	∫ ∞	if $vy = 0$
t	= {	$(\sigma - ry)/vy$	if vy < 0
		$(1-\sigma-ry)/vy$	if $vy > 0$

Collision resolution. (vx', vy') = (vx, -vy).

Particle-particle collision prediction

Collision prediction.

- Particle i: radius σ_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius σ_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Will particles i and j collide? If so, when?

Particle-particle collision prediction implementation

Particle has method to predict collision with another particle

pub {	blic double dt(Particle b)
	Particle a = this;
	if (a == b) return INFINITY;
	double dx = b.rx - a.rx;
	<pre>double dy = b.ry - a.ry;</pre>
	double dvx = b.vx - a.vx;
	double dvy = b.vy - a.vy;
	<pre>double dvdr = dx*dvx + dy*dvy;</pre>
	<pre>if(dvdr > 0) return INFINITY;</pre>
	<pre>double dvdv = dvx*dvx + dvy*dvy;</pre>
	<pre>double drdr = dx*dx + dy*dy;</pre>
	<pre>double sigma = a.radius + b.radius;</pre>
	<pre>double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);</pre>
	if (d < 0) return INFINITY;
	<pre>return -(dvdr + Math.sqrt(d)) / dvdv;</pre>
}	

and methods dtx() and dtx() to predict collisions with walls

Particle-particle collision prediction

Collision prediction.

- Particle i: radius σ_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius σ_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Will particles i and j collide? If so, when?

$$\Delta t = \begin{cases} \infty & \text{if } \Delta v \cdot \Delta r \ge 0 \\ \infty & \text{if } d < 0 \\ - \frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise} \end{cases}$$
$$d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v) (\Delta r \cdot \Delta r - \sigma^2) \qquad \sigma = \sigma_i + \sigma_i^2 + \sigma_i^2$$

 $\begin{array}{lll} \Delta v = (\Delta vx, \ \Delta vy) = (vx_i - vx_j, \ vy_i - vy_j) & \Delta v \cdot \Delta v = (\Delta vx)^2 + (\Delta vy)^2 \\ \Delta r = (\Delta rx, \ \Delta ry) = (rx_i - rx_j, \ ry_i - ry_j) & \Delta r \cdot \Delta r = (\Delta rx)^2 + (\Delta ry)^2 \\ \Delta v \cdot \Delta r = (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry) \end{array}$

Particle-particle collision prediction implementation

CollisionSystem has method to predict all collisions

```
private void predict(Particle a, double limit)
{
    if (a == null) return;
    for(int i = 0; i < N; i++)
    {
        double dt = a.dt(particles[i]);
        if(t + dt <= limit)
            pq.insert(new Event(t + dt, a, particles[i]));
    }
    double dtX = a.dtX();
    double dtY = a.dtY();
    if (t + dtX <= limit)
        pq.insert(new Event(t + dtX, a, null));
    if (t + dtY <= limit)
        pq.insert(new Event(t + dtY, null, a));
}
</pre>
```

Collision resolution. When two particles collide, how does velocity change?

$$Jx = \frac{J\Delta rx}{\sigma}, Jy = \frac{J\Delta ry}{\sigma}, J = \frac{2m_im_j(\Delta v \cdot \Delta r)}{\sigma(m_i + m_j)}$$

impulse due to normal force (conservation of energy, conservation of momentum)

Collision system: event-driven simulation main loop

Initialization.

- Fill PQ with all potential particle-wall collisions
- Fill PQ with all potential particle-particle collisions.

Main loop.

- Delete the impending event from PQ (min priority = t).
- If the event in no longer valid, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.

Particle-particle collision resolution implementation

Particle has method to resolve collision with another particle

```
public void bounce (Particle b)
ſ
     Particle a = this;
     double dx = b.rx - a.rx;
     double dy = b.ry - a.ry;
     double dvx = b.vx - a.vx;
     double dvy = b.vy - a.vy;
    double dvdr = dx*dvx + dy*dvy;
     double dist = a.radius + b.radius;
     double F = 2 * a.mass * b.mass * dvdr / ((a.mass + b.mass) * dist);
     double Fx = F * dx / dist;
     double Fy = F * dy / dist;
    a.vx += Fx / a.mass;
     a.vy += Fy / a.mass;
    b.vx -= Fx / b.mass;
    b.vy -= Fy / b.mass;
     a.count++;
     b.count++;
 3
```

and methods bouncex() and bouncer() to resolve collisions with walls

Collision system: main event-driven simulation loop implementation

java CollisionSystem 200

java CollisionSystem < brownianmotion.txt

java CollisionSystem < diffusion.txt

