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Mergesort and Quicksort

Reference: Algorithms in Java, Chapters 7 and 8
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Mergesort and Quicksort

Two great sorting algorithms.
! Full scientific understanding of their properties has enabled us

to hammer them into practical system sorts.
! Occupy a prominent place in world's computational infrastructure. 
! Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Mergesort.
! Java sort for objects.
! Perl, Python stable.

Quicksort.
! Java sort for primitive types. 
! C qsort, Unix, g++, Visual C++, Python.
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Mergesort

Basic plan:
! Divide array into two halves.
! Recursively sort each half.
! Merge two halves to make sorted whole.
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Mergesort:  Example



Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?  Use an auxiliary array.
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Merging
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private static void merge(Comparable[] a,
                          Comparable[] aux, int l, int m, int r)
{ 
   for (int k = l; k < r; k++) aux[k] = a[k];
   int i = l, j = m;
   for (int k = l; k < r; k++)
      if      (i >= m)               a[k] = aux[j++];
      else if (j >= r)               a[k] = aux[i++];
      else if (less(aux[j], aux[i])) a[k] = aux[j++];
      else                           a[k] = aux[i++];
   
}

merge

copy
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Mergesort:  Java implementation of recursive sort

l m r

10 11 12 13 14 15 16 17 18 19

public class Merge
{
   private static void sort(Comparable[] a,
                            Comparable[] aux, int l, int r)
   {
      if (r <= l + 1) return;
      int m = l + (r - l) / 2;
      sort(a, aux, l, m);
      sort(a, aux, m, r);
      merge(a, aux, l, m, r);
   }

   public static void sort(Comparable[] a)
   {
      Comparable[] aux = new Comparable[a.length];
      sort(a, aux, 0, a.length);
   }
}
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Mergesort analysis:  Memory

Q.  How much memory does mergesort require?

A.  Too much!
! Original input array =  N.
! Auxiliary array for merging = N.
! Local variables:  constant.
! Function call stack:  log2 N  [stay tuned].
! Total = 2N + O(log N).

Q.  How much memory do other sorting algorithms require?
! N + O(1) for insertion sort and selection sort.
! In-place  =  N + O(log N).

Challenge for the bored.  In-place merge.  [Kronrud, 1969]

cannot “fill the memory and sort”
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Mergesort analysis:  Comparison count

Def.  T(N)  ≡ number of comparisons to mergesort an input of size N

                  =  T(N/2)    +    T(N/2)     +    N

Mergesort recurrence  

! not quite right for odd N
! same recurrence holds for many algorithms
! same number of comparisons for any input of size N.

Solution of Mergesort recurrence

! true for all N, as long as integer approx of N/2 is within a constant
! easy to prove when N is a power of 2.

T(N)  = 2 T(N/2)  +  N
                                  for N > 1, with T(1) = 0

lg N ≡ log2 N 

T(N)  ~ N lg N

left half right half merge

can then use induction for general N
(see COS 341)
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Mergesort recurrence: Proof 1 (by recursion tree)

T(N)

T(N/2)T(N/2)

T(N/4)T(N/4)T(N/4) T(N/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2(N/2)

2k(N/2k)

N/2 (2)

...

lg N

N lg N

T(N)  = 2 T(N/2)  +  N
                                  for N > 1, with T(1) = 0

= N

= N

= N

= N

+

...

T(N)  = N lg N

(assume that N is a power of 2)
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Mergesort recurrence: Proof 2 (by telescoping)

Pf.  

T(N)  = 2 T(N/2)  +  N
                                  for N > 1, with T(1) = 0

    T(N)  =  2 T(N/2)  +  N

T(N)/N  =  2 T(N/2)/N  +  1

              =  T(N/2)/(N/2)  +  1

              =  T(N/4)/(N/4)  +  1  +  1

              =  T(N/8)/(N/8)  +  1  +  1  +  1

             . . .

              =  T(N/N)/(N/N) +  1  + 1  +. . .+  1

              =  lg N

T(N)  = N lg N

(assume that N is a power of 2)

given

divide both sides by N

algebra

telescope (apply to first term)

telescope again

stop telescoping, T(1) = 0

Claim.  If T(N) satisfies this recurrence, then T(N) = N lg N.

Pf.  [by induction on N]
! Base case:  N = 1.
! Inductive hypothesis:  T(N) = N lg N
! Goal:  show that T(2N) + 2N lg (2N).

Ex. (for COS 341).  Extend to show that T(N) ~ N lg N for general N
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Mergesort recurrence: Proof 3 (by induction)

T(2N)  =  2 T(N)  +  2N                    given

           =  2 N lg N + 2 N                  inductive hypothesis

           =  2 N (lg (2N)  -  1)  + 2N     algebra

           =  2 N lg (2N)                       QED

T(N)  = 2 T(N/2)  +  N
                                  for N > 1, with T(1) = 0

(assume that N is a power of 2)



Basic plan:
! Pass through file, merging to double size of sorted subarrays.
! Do so for subarray sizes 1, 2, 4, 8, . . . , N/2,  N.
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Bottom-up mergesort

proof 4 that Mergesort uses N lgN compares

No recursion needed!
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Bottom-up Mergesort:  Java implementation

public class Merge
{
   private static void merge(Comparable[] a, Comparable[] aux,
                             int l, int m, int r)
   {
      for (int i = l; i < m; i++) aux[i] = a[i];
      for (int j = m; j < r; j++) aux[j] = a[m + r - j - 1];
      int i = l, j = r - 1;
      for (int k = l; k < r; k++)
          if (less(aux[j], aux[i])) a[k] = aux[j--];
          else                      a[k] = aux[i++];

   }

   public static void sort(Comparable[] a)
   {
      int N = a.length;
      Comparable[] aux = new Comparable[N];
      for (int m = 1; m < N; m = m+m)
         for (int i = 0; i < N-m; i += m+m)
            merge(a, aux, i, i+m, Math.min(i+m+m, N));
   }
}

uses sentinel 
(see Program 8.2)

Concise industrial-strength code if you have the space
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Mergesort:  Practical Improvements

Use sentinel.
! Two statements in inner loop are array-bounds checking.
! Reverse one subarray so that largest element is sentinel (Program 8.2)

Use insertion sort on small subarrays.
! Mergesort has too much overhead for tiny subarrays.
! Cutoff to insertion sort for ! 7 elements.

Stop if already sorted.
! Is biggest element in first half " smallest element in second half?
! Helps for nearly ordered lists.

Eliminate the copy to the auxiliary array.  Save time (but not space) by 

switching the role of the input and auxiliary array in each recursive call.

See Program 8.4 (or Java system sort)
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Sorting Analysis Summary

Running time estimates:
! Home pc executes 108 comparisons/second.
! Supercomputer executes 1012 comparisons/second.

Lesson 1.  Good algorithms are better than supercomputers.

computer

home

super

thousand

instant

instant

million

2.8 hours

1 second

billion

317 years

1.6 weeks

Insertion Sort (N2)

thousand

instant

instant

million

1 sec

instant

billion

18 min

instant

Mergesort (N log N)
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Quicksort

Basic plan.
! Shuffle the array.
! Partition array so that:

– element a[i] is in its final place for some i
– no larger element to the left of i
– no smaller element to the right of i

! Sort each piece recursively.

Sir Charles Antony Richard Hoare
1980 Turing Award

Q.  How do we partition in-place efficiently?

A.  Scan from right, scan from left, exchange
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Quicksort Partitioning
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Quicksort example



21

Quicksort:  Java implementation of recursive sort

public class Quick
{
   
   public static void sort(Comparable[] a)
   {
      StdRandom.shuffle(a);
      sort(a, 0, a.length - 1);
   }

   private static void sort(Comparable[] a, int l, int r)
   {
      if (r <= l) return;
      int m = partition(a, l, r);
      sort(a, l, m-1);
      sort(a, m+1, r);
   } 

private static int partition(Comparable[] a, int l, int r)
{
   int i = l - 1;
   int j = r;
   while(true)
   {

      while (less(a[++i], a[r]))
         if (i == r) break;

      while (less(a[r], a[--j]))
         if (j == l) break;

     
      if (i >= j) break;
      
      exch(a, i, j);
   }

   exch(a, i, r);
   return i;
} 
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Quicksort:  Java implementation of partitioning procedure

swap with partitioning element

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index where crossing occurs
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Quicksort Implementation details

Partitioning in-place.  Using a spare array makes partitioning easier,

but is not worth the cost.

Terminating the loop.  Testing whether the pointers cross is a bit 

trickier than it might seem.

Staying in bounds.  The (i == r) test is redundant, but the (j == l) 

test is not.

Preserving randomness.  Shuffling is key for performance guarantee.

Equal keys.  When duplicates are present, it is (counter-intuitively) 

best to stop on elements equal to partitioning element.
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Theorem.  The average number of comparisons CN to quicksort a 

random file of N elements is about 2N ln N.

! The precise recurrence satisfies C0 = C1 = 0 and for N # 2:

! Multiply both sides by N 

! Subtract the same formula for N-1:

! Simplify:
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Quicksort:  Average-case analysis

CN  =  N + 1  +  ((C0 +  CN-1)  + . . .  +  (Ck-1 +  CN-k) + . . . +  (CN-1 +  C1)) / N

      =  N + 1  +  2 (C0 . . .  +  Ck-1  + . . . + CN-1) / N

NCN  =  N(N + 1)  +  2 (C0 . . .  +  Ck-1  + . . . + CN-1) 

NCN  - (N - 1)CN-1  =  N(N + 1)  - (N - 1)N  +  2 CN-1 

NCN  = (N + 1)CN-1  +  2N 

partition right partitioning
probability

left

! Divide both sides by N(N+1) to get a telescoping sum:

! Approximate the exact answer by an integral:

! Finally, the desired result:
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Quicksort:  Average Case

NCN  = (N + 1)CN-1  +  2N 

CN / (N + 1) =  CN-1 / N  +  2 / (N + 1) 

                   =  CN-2 / (N - 1)  +  2/N  +  2/(N + 1)

                   =  CN-3 / (N - 2)  +  2/(N - 1)  +  2/N  +  2/(N + 1)

                   =  2 ( 1 + 1/2 + 1/3 + . . .   +  1/N  +  1/(N + 1)  ) 

CN   !  2(N + 1)( 1 + 1/2 + 1/3 + . . .   +  1/N  )

       =  2(N + 1) HN  !  2(N + 1)" dx/x

CN   !  2(N + 1)  ln N   !   1.39 N lg N   

1

N
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Quicksort:  Summary of performance characteristics

Worst case.  Number of comparisons is quadratic.
! N + (N-1) + (N-2) + … + 1  ! N2 / 2.
! More likely that your computer is struck by lightning.

Average case.  Number of comparisons is ~ 1.39 N lg N.
! 39% more comparisons than mergesort.
! but faster than mergesort in practice because of lower cost of 

other high-frequency operations.

Random shuffle
! probabilistic guarantee against worst case
! basis for math model that can be validated with experiments

Caveat emptor.  Many textbook implementations go quadratic if input:
! Is sorted.
! Is reverse sorted.
! Has many duplicates (even if randomized)!   [stay tuned]
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Sorting analysis summary

Running time estimates:
! Home pc executes 108 comparisons/second.
! Supercomputer executes 1012 comparisons/second.

Lesson 1.  Good algorithms are better than supercomputers.

Lesson 2.  Great algorithms are better than good ones.

computer

home

super

thousand

instant

instant

million

2.8 hours

1 second

billion

317 years

1.6 weeks

Insertion Sort (N2)

thousand

instant

instant

million

1 sec

instant

billion

18 min

instant

Mergesort (N log N)

thousand

instant

instant

million

0.3 sec

instant

billion

6 min

instant

Quicksort (N log N)
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Quicksort:  Practical improvements

Median of sample.
! Best choice of pivot element  =  median.
! But how to compute the median?
! Estimate true median by taking median of sample.

Insertion sort small files.
! Even quicksort has too much overhead for tiny files.
! Can delay insertion sort until end.

Optimize parameters.
! Median-of-3 random elements.
! Cutoff to insertion sort for ! 10 elements.

Non-recursive version.
! Use explicit stack.
! Always sort smaller half first.

All validated with refined math models and experiments

guarantees O(log N) stack size

!  12/7  N log N comparisons
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Insertion sort animation
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i

a[i]

left of pointer is in sorted order right of pointer is untouched

Mergesort animation
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done

merge in progress
input

merge in progress
output

auxiliary array

untouched



Bottom-up mergesort animation
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merge in progress
input

merge in progress
output

this pass

auxiliary array

last pass

Quicksort animation
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done

first partition

second partition


