
Copyright © 2007 by Robert Sedgewick and Kevin Wayne. 1

Analysis of Algorithms

References:
    Algorithms in Java, Chapter 2
    Intro to Programming in Java, Section 4.1

overview

case study

formulating hypotheses

2

Running time

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily 

guide the future course of the science.  Whenever any 

result is sought by its aid, the question will arise - By what 

course of calculation can these results be arrived at by the 

machine in the shortest time?  - Charles Babbage

Analytic Engine

how many times 
do you have to 
turn the crank?

3

Overview

Analysis of algorithms:  framework for comparing algorithms and 

predicting performance.

Scientific method.
! Observe some feature of the universe.
! Hypothesize a model that is consistent with observation.
! Predict events using the hypothesis.
! Verify the predictions by making further observations.
! Validate the theory by repeating the previous steps until the 

hypothesis agrees with the observations.

Universe = computer itself.

 

4

overview

case study

formulating hypotheses



5

Case study:  Sorting

Sorting problem:
! Given N items, rearrange them in ascending order.
! Applications:  commercial databases, statistics, databases, data 

compression, computational biology, computer graphics, scientific 

computing,  ... 

Hauser

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

...

...

Hanley

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

...

...

6

Insertion sort.
! Brute-force sorting solution.
! Move left-to-right through array.
! Exchange next element with larger elements to its left, one-by-one.

Insertion sort

7

Insertion sort.
! Brute-force sorting solution.
! Move left-to-right through array.
! Exchange next element with larger elements to its left, one-by-one.

Insertion sort

public static void InsertionSort(double[] a)

{

   int N = a.length;

   for (int i = 0; i < N; i++)

      for (int j = i; j > 0; j--)

         if (a[j] < a[j-1])

              exch(a, j, j-1);

         else break;

}

8

Insertion sort:  Observation

Observe and tabulate operation counts for various values of N.
! concentrate on most frequently performed operation

(comparisons for sorting)
! Data source:  N random numbers between 0 and 1.

398 million40,000

99 million20,000

25 million10,000

6 million5,000

ComparisonsN

1600 million80,000



9

Data analysis.  Plot # comparisons vs. input size on log-log scale.

Regression.  Fit line through data points  !  a Nb.

Hypothesis.  # comparisons grows quadratically with input size ! N2/4.

Insertion sort:  Experimental hypothesis

0

16250

32500

48750

65000

0 125,000 250,000 375,000 500,000

  Actual

  Fitted

slope

10

Insertion sort:  Prediction and verification

Experimental hypothesis.  # comparisons ! N2/4.

Prediction.  400 million comparisons for N = 40,000.

Observations.

Prediction.  10 billion comparisons for N = 200,000.

Observation.

9.997 billion200,000

ComparisonsN

399.7 million40,000

401.6 million40,000

400.0 million40,000

ComparisonsN

401.3 million40,000

Agrees.

Agrees.

11

Experimental vs. theoretical hypotheses

Experimental hypothesis.
! Measure running times, plot, and fit curve.
! Model useful for predicting.

Theoretical hypothesis.
! Analyze algorithm to estimate # comparisons as a function of:

– number of elements N to sort
– average or worst case input

! Model useful for predicting and explaining.

Difference.  Theoretical model is independent of a particular machine 

or compiler; applies to machines not yet built.

12

Insertion sort:  Theoretical hypothesis

Worst case.  [descending]
! Iteration i requires i comparisons.
! Total = 0 + 1 + 2 + … + N-2 + N-1  !  N2/2.

Average case.  [random]
! Iteration i requires  i/2 comparisons on average.
! Total = 0 + 1/2 + 2/2 + … + (N-1)/2  !  N2/4.

E F G H I J D C B A

A C D F H J E B I G

i

i



13

Insertion sort:  Theoretical hypothesis

Theoretical hypothesis. 

Validation.  Theory agrees with observations.

Random

Descending

Ascending

Input

Average

Worst

Best

Analysis

1/4 N2

1/2 N2

N

Comparisons

1/6 N3/2

-

-

Stddev

0

37500

75000

112500

150000

0 125,000 250,000 375,000 500,000

Ascending

Random

Descending

14

Insertion sort:  Observation

Observe and tabulate actual running time for various values of N.
! Data source:  N random numbers between 0 and 1.
! Machine:  Apple G5 1.8GHz with 1.5GB memory running OS X.

Goal: use models to predict running time.

5.6 seconds400 million40,000

1.5 seconds99 million20,000

0.43 seconds25 million10,000

0.13 seconds6.2 million5,000

23 seconds

TimeComparisonsN

1.6 billion80,000

145 seconds10 billion200,000

15

Data analysis.  Plot total running time vs. input size on log-log scale.

Regression fit validates hypothesis that total running time is ~cN2

A scientific connection between program and natural world.

Insertion sort:  A last check

0

37.5

75.0

112.5

150.0

0 50,000 100,000 150,000 200,000

16

Timing in Java

Wall clock.  Measure time between beginning and end of computation.
! Manual:  Skagen wristwatch.
! Automatic:  Stopwatch.java library.

Stopwatch.tic();
. . .
double elapsed = StopWatch.toc();

public class Stopwatch {
   private static long start;
   public static void tic() {
      start = System.currentTimeMillis();
   }
   public static double toc() {
      long stop = System.currentTimeMillis();
      return (stop - start) / 1000.0;
   }
}



17

Measuring running time

Factors that affect running time.
! Machine.
! Compiler.
! Algorithm.
! Input data.

More factors.
! Caching.
! Garbage collection.
! Just-in-time compilation.
! CPU used by other processes.

Bottom line.  Often difficult to get precise measurements.

18

Summary

Analysis of algorithms:  framework for comparing algorithms and 

predicting performance.

Scientific method.
! Observe some feature of the universe.
! Hypothesize a model that is consistent with observation.
! Predict events using the hypothesis.
! Verify the predictions by making further observations.
! Validate the theory by repeating the previous steps until the 

hypothesis agrees with the observations.

Remaining question.  How to formulate a hypothesis?

 

19

overview

case study

formulating hypotheses

20

Types of hypotheses

Worst case running time.  Obtain bound on largest possible running time 

of algorithm on any input of a given size N.
! Easy to obtain an initial estimate, harder to refine
! Draconian view: real instances may not come close to worst case 

Average case running time.  Obtain bound on running time of algorithm 

on random input as a function of input size N.
! Hard to accurately model real instances by random distributions.
! Randomized algorithm: create random distribution.

Amortized running time.  Worst-case bound on running time of any 

sequence of N operations.



21

Estimating the Running Time

Total running time:  sum of cost " frequency for all of the basic ops.
! Cost depends on machine, compiler.
! Frequency depends on algorithm, input.

Cost for sorting.
! A  =  # exchanges.
! B  =  # comparisons.
! Cost on a typical machine = 11A + 4B.

Frequency of sorting ops.
! N  =  # elements to sort.
! Selection sort:  A = N-1, B = N(N-1)/2. Donald Knuth

1974 Turing Award

22

An easier alternative.

(i)   Analyze asymptotic growth as a function of input size N.

(ii)  For medium N, run and measure time.

(iii) For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.
! Estimate as a function of input size N.

– N,  N log N,  N2,  N3,  2N,  N!
! Ignore lower order terms.

– 6N3  + 17N2  + 56  is approximately 6N3

! Formulate hypotheses that cancel constants.
– doubling hypothesis

Asymptotic growth

6*(2 N)3 /6*N3 = 8

23

Big Theta, Oh, and Omega notation.
! #(N2) means { N2, 17N2, N2 + 17N1.5 + 3N,  . . . }

– ignore lower order terms and leading coefficients
! O(N2) means { N2, 17N2, N2 + 17N1.5 + 3N, N1.5, 100N, . . . }

– #(N2) and smaller
– use for upper bounds

! $(N2) means { N2, 17N2, N2 + 17N1.5 + 3N,  N3, 100N5, . . . }

– #(N2) and larger
– use for lower bounds

Never use O-notation to predict performance or to compare algorithms.

Little  Oh and Tilde notation.
! o(N2) means { 17N1.5 + 3N,  N log N . . . }

– lower order terms and leading coefficients
! ~6N2 means { 6N2, 6N2 + 17N1.5 + 3N, 6N2 + N1.5, 6N2 + 100N, . . . }

– leading term
– use to predict performance and compare algorithms

Big Oh Notation

Predictions and guarantees

Research literature: The running time of an algorithm is (O(f(N)) 

advantages
! guaranteed performance
! can ignore constants

problems
! worst-case running time, cannot predict performance
! constants could play a significant role

This course: The running time of an algorithm is ~c f(N)

advantages
! can use to predict performance
! can use to compare algorithms

problems
! need to model actual input
! no guarantees

24

worst case

“expected”



25

Why asymptotic growth rate matters

1000

Time to
solve a
problem
of size

10,000

100,000

million

10 million

1.3 seconds

22 minutes

15 days

41 years

41 millennia

920

3,600

14,000

41,000

1,000

Run time in
nanoseconds -->

1.3 N3

second
Max size
problem
solved
in one

minute

hour

day

10 msec

1 second

1.7 minutes

2.8 hours

1.7 weeks

10,000

77,000

600,000

2.9 million

100

10 N2

0.4 msec

6 msec

78 msec

0.94 seconds

11 seconds

1 million

49 million

2.4 trillion

50 trillion

10+

47 N log2N

0.048 msec

0.48 msec

4.8 msec

48 msec

0.48 seconds

21 million

1.3 billion

76 trillion

1,800 trillion

10

48 N

N multiplied by 10,
time multiplied by

Reference: More Programming Pearls  by Jon Bentley

26

Orders of magnitude

10-10

Meters Per
Second

10-8

10-6

10-4

10-2

1

102

1.2 in / decade

Imperial
Units

1 ft / year

3.4 in / day

1.2 ft / hour

2 ft / minute

2.2 mi / hour

220 mi / hour

Continental drift

Example

Hair growing

Glacier

Gastro-intestinal tract

Ant

Human walk

Propeller airplane

104

106

108

370 mi / min

620 mi / sec

62,000 mi / sec

Space shuttle

Earth in galactic orbit

1/3 speed of light

1

Seconds

102

103

104

105

106

107

108

109

1010

1 second

Equivalent

1.7 minutes

17 minutes

2.8 hours

1.1 days

1.6 weeks

3.8 months

3.1 years

3.1 decades

3.1 centuries

forever

1017 age of
universe

. . .

10 10 seconds

210 thousand

220 million

230 billion

Powers
of 2

Reference: More Programming Pearls  by Jon Bentley

27

Constant Time

Constant time.  Running time is O(1).

Elementary operations.
! Function call. 
! Boolean operation.
! Arithmetic operation.
! Assignment statement.
! Access array element by index.

28

Logarithmic Time

Logarithmic time.  Running time is O (log N).

Searching in a sorted list.  Given a sorted array of items, find index of 

query item.

O(log N) solution.  Binary search.

public static int binarySearch(String[] a, String key) {
   int left  = 0;
   int right = a.length - 1;
   while (left <= right) {
      int mid = left + (right - left) / 2;
      int cmp = key.compareTo(a[mid]);
      if      (cmp < 0) right = mid - 1;
      else if (cmp > 0) left  = mid + 1;
      else return mid;
   }
   return -1;
}



29

Linear Time

Linear time.  Running time is O(N).

Find the maximum.  Find the maximum value of N items in an array.

double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++) {
   if (a[i] > max)
      max = a[i];
}

30

Linearithmic Time

Linearithmic time.  Running time is O(N log N).

Sorting.  Given an array of N elements, rearrange in ascending order.

~c N log N  solution.  Mergesort.  [stay tuned]

Remark.  $(N log N) comparisons required.  [stay tuned]

31

Quadratic Time

Quadratic time.  Running time is O(N2).

Closest pair of points.  Given N points in the plane, find closest pair.

~c N2 solution.  Enumerate all pairs of points.

Remark.  $(N2) seems inevitable, but this is just an illusion.

double min = Double.POSITIVE_INFINITY;
for (int i = 0; i < N; i++){
   for (int j = i+1; j < N; j++) {
      double dx = (x[i] - x[j]);
      double dy = (y[i] - y[j]);
      if (dx*dx + dy*dy < min)
         min = dx*dx + dy*dy;
   }
}

32

Exponential Time

Exponential time.  Running time is O(aN) for some constant a > 1.

Finbonacci sequence:  1 1 2 3 5 8 13 21 34 55 …

O(%N) solution.  Spectacularly inefficient!

Efficient solution.

public static int F(int N) {
   if (n == 0 || n == 1) return n;
   else                  return F(n-1) + F(n-2);
} 

! 

"  =  1

2
1+ 5( )  =  1.618034....

! 

F(N)  =  
"N

5

# 

$ 
% 

& 

' 
( .

nearest integer function



33

Summary of Common Hypotheses

When N doubles,
running time

DescriptionComplexity

squares!Exponential algorithm is not usually practical. 2N

quadruples
Quadratic algorithm practical for use only on 
relatively small problems. 

N2

does not changeConstant algorithm is independent of input size.1

increases by a 
constant

Logarithmic algorithm gets slightly slower as N 
grows. 

log N

doubles
Linear algorithm is optimal if you need to process 
N inputs. 

N

slightly more than 
doubles

Linearithmic algorithm scales to huge problems. N log N


