

Overview

Analysis of algorithms: framework for comparing algorithms and predicting performance.

Scientific method.

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate the theory by repeating the previous steps until the hypothesis agrees with the observations.

Universe = computer itself.

Running time

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage

how many times do you have to turn the crank?

Charles Babbage (1864)

overviev

case study formulating hypotheses

Case study: Sorting

Sorting problem:

- Given N items, rearrange them in ascending order.
- Applications: commercial databases, statistics, databases, data compression, computational biology, computer graphics, scientific computing, ...

Hauser	Hanley
Hong	Haskell
Hsu	Hauser
Hayes	Hayes
Haskell	Hong
Hanley	Hornet
Hornet	Hsu

Insertion sort

Insertion sort.

- Brute-force sorting solution.
- Move left-to-right through array.
- Exchange next element with larger elements to its left, one-by-one.

<pre>public static void InsertionSort(double[] a)</pre>
{
int $N = a.length;$
for (int $i = 0; i < N; i++$)
for (int $j = i; j > 0; j$)
if (a[j] < a[j-1])
exch(a, j, j-1);
else break;
}

Insertion sort

Insertion sort.

- Brute-force sorting solution.
- Move left-to-right through array.
- Exchange next element with larger elements to its left, one-by-one.

S	0	R	т	Е	х	A	M	Ρ	L	Е
0	S	R	Т	Ε	X	A	Μ	Ρ	L	Ε
0	R	S	Τ	E	X	A	M	Ρ	L	Ε
0	R	S	T	Е	X	A	\mathbb{M}	Ρ	L	Ε
E	0	R	S	т	X	A	M	Ρ	L	Ε
E	0	R	S	Т	X	A	M	Ρ	L	Ε
A	Е	0	R	S	т	х	M	Ρ	L	Ε
A	E	M	0	R	s	т	х	Ρ	L	Ε
A	E	M	0	P	R	s	т	x	L	Ε
A	Е	Ŀ	М	0	P	R	S	т	X	Ε
A	E	E	L	М	0	Ρ	R	s	т	X
A	Е	Е	L	м	0	Р	R	S	т	X

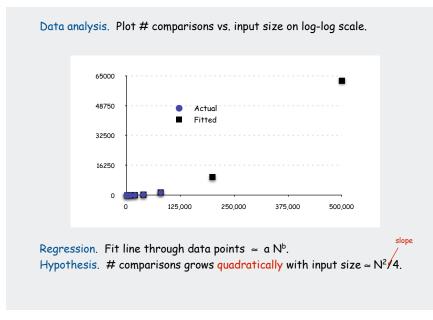
Insertion sort: Observation

Observe and tabulate operation counts for various values of N.

- concentrate on most frequently performed operation (comparisons for sorting)
- Data source: N random numbers between 0 and 1.

N	Comparisons
5,000	6 million
10,000	25 million
20,000	99 million
40,000	398 million
80,000	1600 million

Insertion sort: Experimental hypothesis



Experimental vs. theoretical hypotheses

Experimental hypothesis.

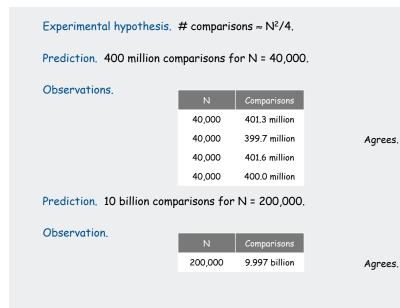
- Measure running times, plot, and fit curve.
- Model useful for predicting.

Theoretical hypothesis.

- Analyze algorithm to estimate # comparisons as a function of:
 - number of elements N to sort
 - average or worst case input
- Model useful for predicting and explaining.

Difference. Theoretical model is independent of a particular machine or compiler; applies to machines not yet built.

Insertion sort: Prediction and verification



Insertion sort: Theoretical hypothesis

Worst case. [descending]

- Iteration i requires i comparisons.
- Total = 0 + 1 + 2 + ... + N-2 + N-1 ≈ N²/2.

Average case. [random]

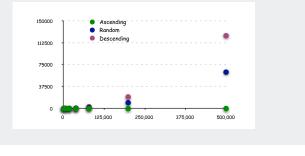
- Iteration i requires i/2 comparisons on average.
- Total = 0 + 1/2 + 2/2 + ... + (N-1)/2 ≈ N²/4.

Insertion sort: Theoretical hypothesis

Theoretical hypothesis.

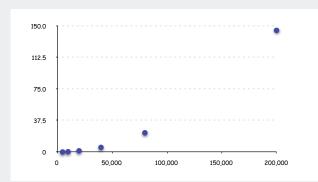
Analysis	Input	Comparisons	Stddev
Worst	Descending	1/2 N ²	-
Average	Random	1/4 N ²	1/6 N ^{3/2}
Best	Ascending	N	-

Validation. Theory agrees with observations.



Insertion sort: A last check

Data analysis. Plot total running time vs. input size on log-log scale.



Regression fit validates hypothesis that total running time is $\sim cN^2$ A scientific connection between program and natural world.

Insertion sort: Observation

Observe and tabulate actual running time for various values of N.

- Data source: N random numbers between 0 and 1.
- Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.

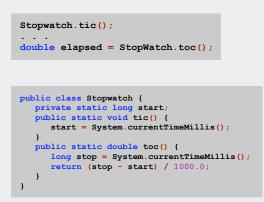
N	Comparisons	Time
5,000	6.2 million	0.13 seconds
10,000	25 million	0.43 seconds
20,000	99 million	1.5 seconds
40,000	400 million	5.6 seconds
80,000	1.6 billion	23 seconds
200,000	10 billion	145 seconds

Goal: use models to predict running time.

Timing in Java

Wall clock. Measure time between beginning and end of computation.

- Manual: Skagen wristwatch.
- Automatic: Stopwatch.java library.



14

13

Measuring running time

Factors that affect running time.

- Machine.
- Compiler.
- Algorithm.
- Input data.

More factors.

- Caching.
- Garbage collection.
- Just-in-time compilation.
- CPU used by other processes.

Bottom line. Often difficult to get precise measurements.

overview case study formulating hypotheses

Summary

Analysis of algorithms: framework for comparing algorithms and predicting performance.

Scientific method.

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate the theory by repeating the previous steps until the hypothesis agrees with the observations.

Remaining question. How to formulate a hypothesis?

Types of hypotheses

Worst case running time. Obtain bound on largest possible running time of algorithm on any input of a given size N.

- · Easy to obtain an initial estimate, harder to refine
- Draconian view: real instances may not come close to worst case

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard to accurately model real instances by random distributions.
- Randomized algorithm: create random distribution.

Amortized running time. Worst-case bound on running time of any sequence of N operations.

Estimating the Running Time

Total running time: sum of cost × frequency for all of the basic ops.

- Cost depends on machine, compiler.
- Frequency depends on algorithm, input.

Cost for sorting.

- A = # exchanges.
- B = # comparisons.
- Cost on a typical machine = 11A + 4B.

Frequency of sorting ops.

- N = # elements to sort.
- Selection sort: A = N-1, B = N(N-1)/2.

Donald Knuth 1974 Turing Award

Big Oh Notation

Big Theta, Oh, and Omega notation.

- Θ(N²) means { N², 17N², N² + 17N^{1.5} + 3N, ... }
 ignore lower order terms and leading coefficients
- O(N²) means { N², 17N², N² + 17N^{1.5} + 3N, N^{1.5}, 100N, ... }
 Θ(N²) and smaller
 - use for upper bounds
- $\Omega(N^2)$ means { N², 17N², N² + 17N^{1.5} + 3N, N³, 100N⁵, ... }
 - $\Theta(N^2)$ and larger
 - use for lower bounds

Never use O-notation to predict performance or to compare algorithms.

Little Oh and Tilde notation.

- o(N²) means { 17N^{1.5} + 3N, N log N . . . }
 lower order terms and leading coefficients
- $\sim 6N^2$ means { $6N^2$, $6N^2 + 17N^{1.5} + 3N$, $6N^2 + N^{1.5}$, $6N^2 + 100N$, ... }
 - leading term
 - use to predict performance and compare algorithms

Asymptotic growth

An easier alternative.

(i) Analyze asymptotic growth as a function of input size N.

(ii) For medium N, run and measure time.

(iii) For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

- Estimate as a function of input size N.
 N, N log N, N², N³, 2^N, N!
- Ignore lower order terms.
 - $6N^3$ + $17N^2$ + 56 is approximately $6N^3$
- Formulate hypotheses that cancel constants.
 - doubling hypothesis

Predictions and guarantees

Research literature: The running time of an algorithm is (O(f(N)))

• worst case

advantages

- guaranteed performance
- can ignore constants
- problems
- worst-case running time, cannot predict performance
- constants could play a significant role

This course: The running time of an algorithm is $\sim c f(N)$

"expected"

advantages

- can use to predict performance
- can use to compare algorithms

problems

- need to model actual input
- no guarantees

Why asymptotic growth rate matters

	rime in conds>	1.3 N ³	10 N ²	47 N log ₂ N	48 N
	1000	1.3 seconds	10 msec	0.4 msec	0.048 msec
Time to	10,000	22 minutes	1 second	6 msec	0.48 msec
solve a problem	100,000	15 days	1.7 minutes	78 msec	4.8 msec
of size	million	41 years	2.8 hours	0.94 seconds	48 msec
	10 million	41 millennia	1.7 weeks	11 seconds	0.48 seconds
Max size	second	920	10,000	1 million	21 million
problem	minute	3,600	77,000	49 million	1.3 billion
solved	hour	14,000	600,000	2.4 trillion	76 trillion
in one	day	41,000	2.9 million	50 trillion	1,800 trillion
	lied by 10, tiplied by	1,000	100	10+	10

Reference: More Programming Pearls by Jon Bentley

25

Orders of magnitude

Seconds	Equivalent	Meters Per Second	Imperial Units	Example
1	1 second	10-10	1.2 in / decade	Continental drift
10	10 seconds	10-8	1 ft / year	Hair growing
10²	1.7 minutes	10-6	3.4 in / day	Glacier
10 ³	17 minutes	10-4	1.2 ft / hour	Gastro-intestinal tract
10 ⁴	2.8 hours	10-2	2 ft / minute	Ant
10 ⁵	1.1 days	1	2 2 mi / hour	Human walk
10 ⁶	1.6 weeks	10 ²	220 mi / hour	Propeller airplane
107	3.8 months	104	370 mi / min	Space shuttle
10 ⁸	3.1 years	10	620 mi / sec	Earth in galactic orbit
10 ⁹	3.1 decades			5
1010	3.1 centuries	10 ⁸	62,000 mi / sec	1/3 speed of light
	forever		2 ¹⁰ thousand	
		Powers	2 ²⁰ million	
1017	age of universe	of 2	2 ³⁰ billion	

Reference: More Programming Pearls by Jon Bentley

Constant Time

Constant time. Running time is O(1).

Elementary operations.

- Function call.
- Boolean operation.
- Arithmetic operation.
- Assignment statement.
- Access array element by index.

Logarithmic Time

Logarithmic time. Running time is O (log N).

Searching in a sorted list. Given a sorted array of items, find index of query item.

O(log N) solution. Binary search.

```
public static int binarySearch(String[] a, String key) {
    int left = 0;
    int right = a.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        int cmp = key.compareTo(a[mid]);
        if (cmp < 0) right = mid - 1;
        else if (cmp > 0) left = mid + 1;
        else return mid;
    }
    return -1;
}
```

26

Linear Time

Linear time. Running time is O(N).

Find the maximum. Find the maximum value of N items in an array.

```
double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++) {
    if (a[i] > max)
        max = a[i];
}
```

Quadratic Time

Quadratic time. Running time is $O(N^2)$.

Closest pair of points. Given N points in the plane, find closest pair.

~c N² solution. Enumerate all pairs of points.

```
double min = Double.POSITIVE_INFINITY;
for (int i = 0; i < N; i++) {
    for (int j = i+1; j < N; j++) {
        double dx = (x[i] - x[j]);
        double dy = (y[i] - y[j]);
        if (dx*dx + dy*dy < min)
            min = dx*dx + dy*dy;
    }
}
```

Remark. $\Omega(N^2)$ seems inevitable, but this is just an illusion.

Linearithmic Time

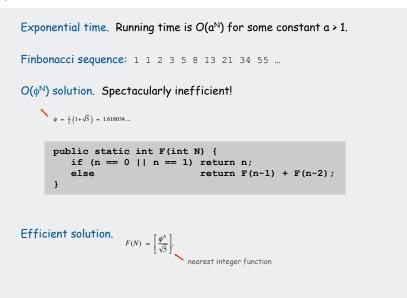
Linearithmic time. Running time is O(N log N).

Sorting. Given an array of N elements, rearrange in ascending order.

~c N log N solution. Mergesort. [stay tuned]

Remark. $\Omega(N \log N)$ comparisons required. [stay tuned]

Exponential Time



29

Summary of Common Hypotheses

Complexity	Description	When N doubles, running time
1	Constant algorithm is independent of input size.	does not change
log N	Logarithmic algorithm gets slightly slower as N grows.	increases by a constant
N	Linear algorithm is optimal if you need to process N inputs.	doubles
N log N	Linearithmic algorithm scales to huge problems.	slightly more than doubles
N ²	Quadratic algorithm practical for use only on relatively small problems.	quadruples
2 ^N	Exponential algorithm is not usually practical.	squares!