What computers just cannot do.

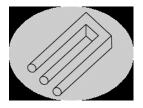
COS 116: 3/1/2007

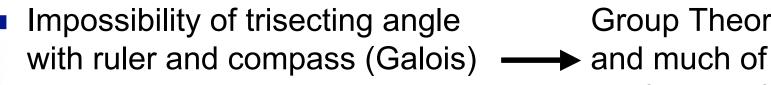
Adam Finkelstein

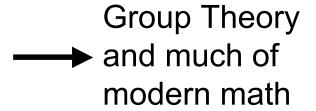
Administrivia

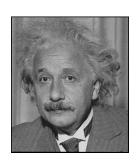
- Do we want "precepts" at start of lab?
- Take-home midterm in midterms week (closed book, 3-hour test). Preferences?
- Couple review sessions before midterm in the evening.
- Handouts today: 2 articles; HW 2

"Prof, what's with all the negative thinking?!?"


An obvious motivation: Understand the limits of technology


The power of negative thinking....


History-of-science perspective


Often, impossibility result — deep insight

Examples

Relativity and Nothing travels faster than light modern physics

CAPTCHA & ESP

[Luis von Ahn]

Computer generated test that computers cannot pass easily.

Reminiscent of cryptography

Image labeling

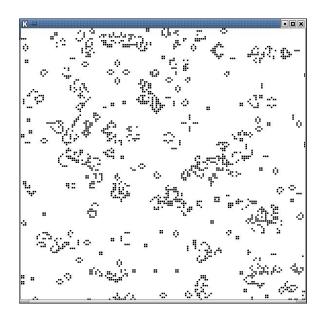
Can mathematicians be replaced by machines? [Hilbert, 1900]

Math is axiomatic

Axioms – Set of statements

<u>Derivation rules</u> – finite set of rules for deriving new statements from axioms

<u>Theorems</u> – Statements that *can* be derived from axioms in a finite number of steps


<u>Mathematician</u> – Person who tries to determine whether or not a statement is a theorem.

Can a simple set of mathematical equations "solve" problems like:

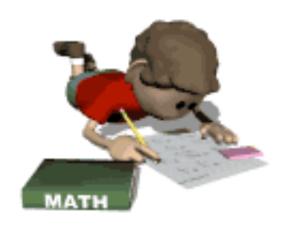
Given starting configuration for the game of life, determine whether or not cell (100,100) is ever occupied by a critter.

John Conway

Automated Checking of Software?

Windows XP: 40 million line program

Can computers check whether or not it will ever crash?



What is computation?

A formalization of an age-old notion

Basic Elements

- Scratch Pad
- Step-by-step description of what to do ("program"); should be finite!
- At each step:
 - Can only scan a fixed number of symbols
 - Can only write a fixed number of symbols

Turing's model

- 1 dimensional unlimited scratchpad ("infinite")
- Only symbols are 0/1 (tape initially has all 0s.)
- Can only scan/write one symbol per step
- Program looks like

- **1. PRINT 0**
- 2. GO LEFT
- 3. GO TO STEP 1 IF 1 SCANNED
- **4. PRINT 1**
- 5. GO RIGHT
- 6. GO TO STEP 5 IF 1 SCANNED
- **7. PRINT 1**
- 8. GO RIGHT
- 9. GO TO STEP 1 IF 1 SCANNED
- 10. STOP

The Doubling Program

What does this program do?

- **1. PRINT 0**
- 2. GO RIGHT
- 3. GO TO STEP 1 if 1 SCANNED
- 4. GO TO STEP 1 if 0 SCANNED

Turing —Church Thesis

This model exactly captures what computation is.

It can simulate every other computational model that can be physically built.

"Code" for a program

= Binary Representation

Many conventions possible (e.g., ASCII)

Davis's convention:

Code	Instruction
000	PRINT 0
001	PRINT 1
010	GO LEFT
011	GO RIGHT
101001	GO TO STEP i IF 0 IS SCANNED
110110	GO TO STEP I IF 1 IS SCANNED
ⁱ 100	STOP

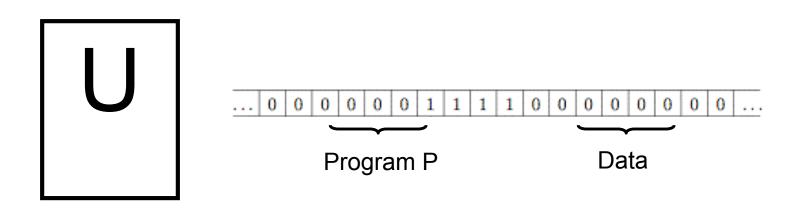
Programs and Data

A False Dichotomy

Usual viewpoint -

Program

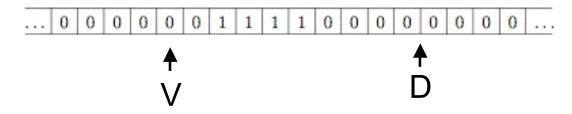
Data


But can have -

Program

Code of Program

Universal Program U



U "simulates" what P would do on that data

Automated Bug Checking Revisited

Halting Problem

Let P = program such that code(P) = V. Does P halt on data D?

Trivial Idea: Simulate P using universal program U.

If P halts, will eventually detect.

Problem: But if P never halts, neither does the simulation.

Next Time: Halting Problem is unsolvable by another program

Also, some class discussion of the readings.

Need to understand notion of Turing-Post program (e.g., doubling program) and what a universal program is.