Today

- Brief review of last time.
- How computers manage memory.
- How computers multitask.

D Flip Flop

Try completing this for D F-F

DATA	WRITE	MEMORY	MEMORY
		(previous)	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiplexer

Demultiplexer

Mini-CPU

What is a program?

A program is a sequence of binary numbers -- *instructions*.

Each bit of each instruction corresponds to a control line in a programmable circuit (e.g. Pentium processor).

Different CPUs have different machine languages

- Intel Pentium
- Power PC
- Palmpilot, etc.

"Backwards Compatibility" – Pentium 4's machine language extends Pentium 2's machine language

Machine languages now allow complicated calculations (eg for multimedia, graphics) in a single instruction

How to streamline your life (lessons from computer architecture).

COS 116 4/3/2006 Instructor: Umar Syed

The Tired Librarian

Reserves

- 1000 checkouts/returns per day
- Distance covered = 1000 x 100ft = 100,000 ft ~
 20 miles
- Please help!!!

80-20 "Rule"

Pareto [1906]: 20% of the people own 80% of the wealth

Juran [1930's]: 20% of the organization does 80% of the work

Better Arrangement

- Distance covered per day?
- (80% x 1000 x 10 ft) + (20% x 1000 x 100 ft) = 28,000 ft

Even better arrangement

- Distance covered per day?
- (80% x 80% x 1000 x 0 ft) + (20% x 80% x 1000 x 10 ft) + (20% x 1000 x 100 ft) = 21,600 ft

Computer Librarian arrangement

Resistives

Books in the 5th to 20th percentile of popularityMemory

Often, today's computers have even more levels of caching

New and improved

Class Discussion

Is problem solved?

How to predict the most popular memory locations?

It's not easy, because:

- Popularity is dynamic.
- Difficult to predict what a program will do in the future.

□ Remember the halting problem!

Not a lot of time to make predictions.

Computer programs typically exhibit...

- Temporal locality
 - "If a memory location is accessed now, it will be accessed again in the near future."

Spatial locality

"If a memory location is accessed now, nearby locations will be accessed in the near future."

Temporal and spatial locality?

```
sum ← 0
for i = 1 to n
{
    sum ← sum + A[i]
}
avg ← sum / n
```

Simple rules for managing the cache

- When accessing a memory location:
 - Bring that location into the cache.
 - Bring nearby locations into the cache.
- When the cache gets full:
 - Remove the memory location that was Least Recently Used.

Delay vs. cost of various memories

	Cost:	Delay:
	\$ / GB	CPU cycles/byte
Hard drive	< 1	> 100,000
RAM	200	50-100
Cache	80,000	1

Moral

Performance:

- Speed is close to that of fastest memory (cache)
- Overall capacity is that of largest memory (disk)

Recall: Compilation

	x ←	Y + 2	Z	1.	Human writes this.
		\uparrow			
ADD	10	11	12	2.	"Add contents of
					Location 11 and 12,
					and store result in
		^			Location 10"
		\downarrow			X in Location 10
					Y in Location 11
					Z in Location 12
100	1010	1011	1100	3.	Convert to binary

Question:

What if two programs choose the same memory locations???

	Prog	jram	1			Prog	rar	m 2	
	x ←	Y +	·Z			a (В	+ (
		\uparrow					\uparrow		
ADD	10	-	L1	12	ADD	10		11	12
		€					€		
100	1010	101	1 11(00	100	1010	10)11	1100

Program's view:

Multitasking

"The Multitasking Generation"

An Evening's Tasks for a Gen-M'er

□Homework

- Listen to music
- Instant Messaging

□ Call Mom (goes to bed by 11 PM!)

- □ Answer phone
- □ Read a bit more of Joyce's Ulysses

□ Watch the Daily Show

How do you do it all?

How does a CPU multitask?

Answer: It doesn't!

Time

Scheduler's objectives

- Fairness
- Timeliness
- Critical tasks processed promptly
- Low overhead

Class Discussion: How can one achieve these (often conflicting) goals?

Tasks done by my PC last night

- Word processing
- Play CD
- Download news updates
- Download email
- Run clock
- Hidden tasks: handle network traffic, manage disk and RAM traffic, scheduler, etc.

Managed by "Operating System" (WinXP, Linux, MacOS, etc.)

📕 Windows Task Ma	nager					
File Options View Shu	ut Down Help					
Applications Processes	Performance Netwo	orking	Users			
Image Name	User Name	CPU	Mem Usage	^		
jusched.exe	David Xiao	00	2,056 K			
MSTORDB.EXE	David Xiao	00	12,464 K			
DVDLauncher.exe	David Xiao	00	4, 176 K			
cygrunsrv.exe	SYSTEM	00	2,320 K			
nvsvc32.exe	SYSTEM	00	2,488 K			
MDM.EXE	SYSTEM	00	3, 192 K			
CTsvcCDA.EXE	SYSTEM	00	1,524 K			
PCMService.exe	David Xiao	00	16,896 K			
wscntfy.exe	David Xiao	00	2,744 K			
alg.exe	LOCAL SERVICE	3,492 K				
spoolsv.exe	SYSTEM	00	7,488 K			
iPodService.exe	SYSTEM	00	3,484 K			
PcSync2.exe	David Xiao	00	14,616 K			
svchost.exe	LOCAL SERVICE	00	4,972 K			
svchost.exe	NETWORK SERVICE	00	3,480 K			
ViewMgr.exe	David Xiao	00	6,624 K			
svchost.exe	SYSTEM	00	27,260 K			
qttask.exe	David Xiao	00	2,780 K			
sychost.exe	NETWORK SERVICE	00	4.508 K	$\mathbf{\mathbf{v}}$		
Show processes from all users End Process						
Processes: 53 CPU Usage: 2% Commit Charge: 515M / 2464M						

- Bonus reading (in the "Extras" section): Proof of the halting problem, written in Dr. Seuss rhyme.
- Please pick up your graded lab reports.