Today

- Brief review of last time.
- How computers manage memory.

■ How computers multitask.

D Flip Flop

Try completing this for D F-F

DATA	WRITE	MEMORY (previous)	MEMORY
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiplexer

Demultiplexer

Mini-CPU

What is a program?

- A program is a sequence of binary numbers -- instructions.
- Each bit of each instruction corresponds to a control line in a programmable circuit (e.g. Pentium processor).

Different CPUs have different machine languages

- Intel Pentium
- Power PC
- Palmpilot, etc.
"Backwards Compatibility" - Pentium 4's machine language extends Pentium 2's machine language

Machine languages now allow complicated calculations (eg for multimedia, graphics) in a single instruction

How to streamline your life (lessons from computer architecture).

COS 116 4/3/2006
Instructor: Umar Syed

The Tired Librarian

Reserves

100 ft roundtrip

- 1000 checkouts/returns per day
- Distance covered $=1000 \times 100 \mathrm{ft}=100,000 \mathrm{ft} \sim$ 20 miles

■ Please help!!!

80-20 "Rule"

- Pareto [1906]: 20\% of the people own 80% of the wealth
- Juran [1930's]: 20\% of the organization does 80% of the work

Better Arrangement

"Most popular" shelf:
Reserves 20% most popular books

- Distance covered per day?

■ $(80 \% \times 1000 \times 10 \mathrm{ft})+(20 \% \times 1000 \times 100 \mathrm{ft})=28,000 \mathrm{ft}$

Even better arrangement

Reserves

Books in the $5^{\text {th }}$ to $20^{\text {th }}$ percentile of popularity

- Distance covered per day?
- $(80 \% \times 80 \% \times 1000 \times 0 \mathrm{ft})+(20 \% \times 80 \% \times 1000 \times 10 \mathrm{ft})$ $+(20 \% \times 1000 \times 100 \mathrm{ft})=21,600 \mathrm{ft}$

Computer tibrarian arrangement

Resisiskes

Books in the 5th to 20th percentile of popularityMemory

Often, today's computers have even more levels of caching

New and improved

Class Discussion

- Is problem solved?

How to predict the most popular memory locations?

It's not easy, because:

- Popularity is dynamic.
- Difficult to predict what a program will do in the future.
\square Remember the halting problem!
- Not a lot of time to make predictions.

Computer programs typically exhibit...

- Temporal locality
\square "If a memory location is accessed now, it will be accessed again in the near future."
- Spatial locality
\square "If a memory location is accessed now, nearby locations will be accessed in the near future."

Temporal and spatial locality?

sum $\leftarrow 0$
for $\mathrm{i}=1$ to n
\{
sum \leftarrow sum $+A[i]$
\}
$\operatorname{avg} \leftarrow$ sum $/ \mathrm{n}$

Simple rules for managing the cache

- When accessing a memory location:
\square Bring that location into the cache.
\square Bring nearby locations into the cache.
- When the cache gets full:
\square Remove the memory location that was Least Recently Used.

Delay vs. cost of various memories

	Cost: $\$ / G B$	Delay: CPU cycles/byte
Hard drive	<1	$>100,000$
RAM	200	$50-100$
Cache	80,000	1

Moral

- Performance:
\square Speed is close to that of fastest memory (cache)
Overall capacity is that of largest memory (disk)

Virtual Memory

Recall: Compilation

$\begin{array}{\|ccccc} \hline & & \leftarrow & Y+Z & \\ & & \imath & & \\ \text { ADD } & 10 & 11 & 12 \end{array}$	1. Human writes this. 2. "Add contents of Location 11 and 12, and store result in Location 10" - X in Location 10 - Y in Location 11 - Z in Location 12

Question:

- What if two programs choose the same memory locations???

Virtual Memory

Program 1's Program 2's RAM: view of memory view of memory:

Virtual Memory

Program 1's RAM

Hard Drive view of memory
Program 1a

Virtual memory manager also handles RAM-to-HD caching!

Virtual Memory

■ Program's view:
Lec15.ppt $\quad \mathrm{P} \neq \mathrm{NP}$.ppt
Powerpoint
Memory:

Address 0
Address $2^{64}-1$

- Underlying truth:

Multitasking

■ "The Multitasking Generation"

An Evening's Tasks for a Gen-M'er

\square Homework
\square Listen to music
\square Instant Messaging
Call Mom (goes to bed by 11 PM!)
\square Answer phone
\square Read a bit more of Joyce's Ulysses
\square Watch the Daily Show
■ How do you do it all?

How does a CPU multitask?

■ Answer: It doesn't!
Programs

Powerpoint
iTunes

Time

Scheduler's objectives

- Fairness
- Timeliness
- Critical tasks processed promptly
- Low overhead

Class Discussion: How can one achieve these (often conflicting) goals?

Tasks done by my PC last night

- Word processing
- Play CD

■ Download news updates
■ Download email

- Run clock

■ Hidden tasks: handle network traffic, manage disk and RAM traffic, scheduler, etc.

Managed by "Operating System" (WinXP, Linux, MacOS, etc.)

- Bonus reading (in the "Extras" section): Proof of the halting problem, written in Dr. Seuss rhyme.
- Please pick up your graded lab reports.

