Memory; Sequential \& Clocked Circuits; Finite State Machines
 COS 116: 3/27/2007
 Adam Finkelstein

Combinational circuit: addition

$$
\begin{array}{rr}
25 & 11001 \\
+\quad 29 & 11101 \\
\hline 54 & 110110
\end{array}
$$

- Want to any two N-bit integers

Modular design

$$
\begin{array}{lllllll}
& \begin{array}{lllll}
\mathbf{C}_{N-1} & \mathbf{C}_{N-2} & \cdots & \mathbf{c}_{1} & \mathbf{c}_{0} \\
a_{N-1} & a_{N-2} & \cdots & a_{1} & a_{0} \\
\mathbf{b}_{N-1} & b_{N-2} & \ldots & b_{1} & b_{0}
\end{array} \\
\hline & S_{N-1} & S_{N-2} & \cdots & S_{1} & S_{0}
\end{array}
$$

Need N 1-bit adders

1-bit adder

Do yourself: Write truth table, circuit.

A Full Adder (from handout)

Timing Diagram
 NOT gate

Memory

Going beyond combinational circuits

- Need 2-way
communication between circuits (i.e. need cycles!)

Ethernet card

- Need memory
(scratchpad)

What do you understand by 'memory"?

How can you tell that a 1 -year old child has it?

Behaviorist's answer: His/her actions depend upon past events.

Matt likes Sue but he doesn't like changing his mind

- Represent with a circuit: Matt will go to the party if Sue goes or if he already wanted to go

Is this well-defined?

Enter Rita

- Matt will go to the party if Sue goes OR if the following holds: if Rita does not go and he already wanted to go.

R, S: "control" inputs

What combination of R, S changes M ?

Flip-Flop

- M becomes 1 if Set is turned on
- $\quad \mathrm{M}$ becomes 0 if Reset is turned on
- Otherwise (if both are 0), M just remembers its value

A more convenient form of memory

- If Write $=0, \mathrm{M}$ just keeps its value. (It ignores D.)
- If Write $=1$, then M becomes set to D
"Data Flip-Flop" or "D flip flop."

What controls the "Write" signal?

- Often, the system clock!
- "clock" = device that sends out a fluctuating voltage signal that looks like this

Write $=1$

Write $=0$
\qquad

Memory "Register": 4 bits

Clocked Sequential Circuits

Synchronous Sequential Circuit

(aka Clocked Sequential Circuit)

Shorthand

Clock Speeds

1974	Intel 8080	2 MHz (Mega $=$ Million)
Heinrich Hertz $1857-94$		
	Original IBM PC	4.77 MHz
1993	Intel Pentium	66 MHz
2005	Pentium 4	3.4 GHz (Giga $=$ Billion)

What limits clock speed?

Delays in combinational logic (remember the adder)
During 1 clock cycle of Pentium 4, light travels: 4 inches

Sequential Circuits (Recap.)

- Circuits with AND, OR and NOT gates.
- Cycles are allowed.
- Can exhibit "memory".

Finite State Machines

State diagram for automatic door

No Person Detected

Implementing as synchronous circuit

INPUT

$$
\begin{aligned}
& 0=\text { No Person Detected } \\
& 1=\text { Person Detected }
\end{aligned}
$$

STATE

$$
\begin{aligned}
& 0=\text { Door Closed } \\
& 1=\text { Open }
\end{aligned}
$$

No Person Detected

Input	Present State	Next State
0	0	0
1	0	1
0	1	0
1	1	1

Implementation

Other examples of FSMs

- Sisyphus

- Brook's Genghis (51 FSMs) (see p. 46 in our text)
- Human Soul a la Aquinas (see Handout)

Portion of Genghis AFSM Network

Next time...

- How computers execute programs.
- Discuss Boole/Clarke "proof" of the existence of God.

