Memory; Sequential & Clocked Circuits; Finite State Machines

COS 116: 3/27/2007

Adam Finkelstein

Combinational circuit: addition

25	11001
+ 29	11101
54	110110

Want to any two N-bit integers

Modular design

Need *N* 1-bit adders

1-bit adder

Do yourself: Write truth table, circuit.

A Full Adder (from handout)

Going beyond combinational circuits

 Need 2-way communication between circuits (i.e. need cycles!)

 Need memory (scratchpad)

What do you understand by 'memory"?

How can you tell that a 1-year old child has it?

Behaviorist's answer: His/her actions depend upon past events.

Matt likes Sue but he doesn't like changing his mind

 Represent with a circuit: Matt will go to the party if Sue goes or if he already wanted to go

Is this well-defined?

Enter Rita

 Matt will go to the party if Sue goes OR if the following holds: if Rita does not go and he already wanted to go.

R, S: "control" inputs

What combination of R, S changes M?

- M becomes 1 if Set is turned on
- M becomes 0 if Reset is turned on
- Otherwise (if both are 0), M just remembers its value

A more convenient form of memory

- If Write = 0, M just keeps its value. (It ignores D.)
- If Write = 1, then M becomes set to D

"Data Flip-Flop" or "D flip flop."

What controls the "Write" signal?

- Often, the system clock!
- "clock" = device that sends out a fluctuating voltage signal that looks like this

"Computer speed" often refers to the clock frequency (e.g. 2.4GHz)

Memory "Register": 4 bits

Clocked Sequential Circuits

Synchronous Sequential Circuit

(aka Clocked Sequential Circuit)

Clock Speeds

1974	Intel 8080	2 MHz (Mega = Million)
1981	Original IBM PC	4.77 MHz
1993	Intel Pentium	66 MHz
2005	Pentium 4	3.4 GHz (Giga = Billion)

Heinrich Hertz 1857-94

Delays in combinational logic (remember the adder) During 1 clock cycle of Pentium 4, light travels: **4 inches**

Sequential Circuits (Recap.)

Circuits with AND, OR and NOT gates.

- Cycles are allowed.
- Can exhibit "memory".

Finite State Machines

State diagram for automatic door

Implementing as synchronous circuit

Implementation

Other examples of FSMs

 Brook's Genghis (51 FSMs) (see p. 46 in our text)

Human Soul a la Aquinas (see Handout)

Portion of Genghis AFSM Network

Next time...

- How computers execute programs.
- Discuss Boole/Clarke "proof" of the existence of God.