
COS 116 – Lab 10 1

COS 116
 The Computational Universe
Laboratory 10: Cryptography

In this lab you’ll learn several methods of encrypting messages to maintain
confidentiality, and you’ll learn how some of these encryption methods can be broken.

In Parts 1,2,3, and 5 of this lab, you’ll be working with a partner. In Parts 1 and 3,
one partner will encrypt a secret message that the other partner will decrypt. In
Parts 2 and 5, you and your partner will try to break another group’s encrypted
message, and that group will try to break yours.

Even though you’ll be working with a partner, please write your lab report on your
own.

Hand in your lab report at the beginning of lecture on Tuesday, April 24. Include
responses to questions printed in bold. (Number them by Part and Step.)

COS 116 – Lab 10 2

Part 1: Substitution Cipher

You need a partner for this part.

A substitution cipher is one of the simplest encryption methods. It’s only a small step up
from the Caesar’s Cipher discussed in class, and it’s the one that’s used in the
“Cryptogram” puzzles in the newspaper. It works as follows:

Alice, the sender, and Bob, the receiver agree in advance on a table that maps each letter
of the alphabet to a different letter of the alphabet. This table is the secret key that only
Alice and Bob are supposed to know. Here is an example of such a table:

Letter Replace with
A Z
B G
C S
D L
E Y
F _
G H
H C
I R
J T
K X
L Q
M B
N U
O F
P E
Q W
R K
S D
T O
U N
V J
W A
X V
Y P
Z M
_ I

Note that in this table, we have a 27th letter “_” that represents a space.

Now suppose that Alice wants to send Bob the secret message:

COS 116 – Lab 10 3

MEET AT NOON

Alice can encrypt the message by replacing each letter of the message with the
appropriate letter from the “Replace with” column of the secret table. The encryption of
the message would be:

BYYOIZOIUFFU

To decrypt the message, Bob, who knows the same secret table as Alice, can simply do
the substitution in reverse.

1. With your partner, agree on a substitution table like the one above that maps
each letter of the alphabet to another letter of the alphabet. Make sure your
table has a 27th entry for the space character “_”. Record your table in your
lab report.

2. Decide with your partner which one of you will be the sender and which one

will be receiver.

3. If you are the sender, do the following:

a. Devise a secret message, but do not reveal it to your partner. To make
your encrypted message easier to break in Part 2, make the message
you choose start with the text:

THIS IS A SECRET MESSAGE

Your message should be between 80 and 120 letters long including
spaces and the required starting text. Use all capital letters and don’t
use any punctuation.

b. Encrypt the message using the substitution table that you agreed on
with your partner. Write the ciphertext of the message neatly and
clearly on a separate sheet of paper, and then give the paper to your
partner.

4. If you are the receiver, wait for your partner to give an encrypted message.

When you receive it, use the substitution table that you agreed on with your
partner to decrypt the message. One you’ve decrypted the message, confirm
with your partner that you’ve decrypted it correctly. Save the sheet of paper
with the ciphertext of the message; you’ll need it for Part 2.

5. Record the original message text and the ciphertext, in your lab report.

COS 116 – Lab 10 4

Part 2: Breaking a Substitution Cipher

You need a partner for this part.

1. Find another group that has finished Part 2, and give them the sheet of paper
with the ciphertext of the message that you sent in Part 1. In return, you’ll
get the ciphertext of their message.

2. Work with your partner to try to break the other group’s message (i.e. try to

decode it without knowing the secret table that the other group used). Here
are some tips that may help:

• Trying to blindly guess the other group’s substitution table at random isn’t

going to work. There are

!

27!, or more than

!

10
28 , possible substitution tables.

Even a computer can’t try that many possibilities.

• The fact that all messages begin with “THIS IS A SECRET MESSAGE”

should be very helpful. It should allow you to learn a number of the rows of
the substitution table that the other group used. You might think that having
every message start with the same prefix is unrealistic, but it’s not as
unrealistic as you might think. In the real world, messages, especially those
exchanged by computers, often have standard formats and often begin with
well-known sequences of bytes.

• The frequency that letters appear in the encrypted message might give

something away. The letters that appear most frequently in the ciphertext of
the message may very well correspond to letters that appear most frequently in
English text. You can get a list of letter frequencies at:

http://en.wikipedia.org/wiki/Letter_frequencies

• Once you have learned some of the rows of the substitution table, especially
the mapping for the space character, you can start to deduce words of the
message. Correctly guessing words should, in turn allow, you to deduce the
mappings for more letters.

DON’T SPEND MORE THAN AROUND 30 MINUTES ON THIS PART OF THE
LAB. THERE ARE 3 MORE PARTS THAT YOU HAVE TO GET TO. IF YOU
HAVEN’T DECODED THE MESSAGE AFTER 30 MINUTES, MOVE ON.

3. Record the ciphertext of the other group’s message in your lab report. If you
successfully decoded the message, include the decoded version in your lab
report. If you haven’t, include your progress in your lab report.

4. Explain how you went about decoding the message. Which strategies were

most effective?

COS 116 – Lab 10 5

Part 3: Pseudorandom Generator

You need a partner for this part.

A pseudorandom generator is an algorithm that takes a secret key as input and outputs a
“random-looking” sequence of numbers called a keystream. The keystream is actually not
random at all — given the same secret key, a pseudorandom generator will always
produce the same keystream. However, there is no known efficient way for someone who
does not know the secret key to predict what the keystream will be. Thus, from his or her
perspective, the keystream might as well be truly random.

Alice and Bob can use a pseudorandom generator in manner similar to the way they
would use a one-time pad. Instead of agreeing on an entire one-time pad in advance,
Alice and Bob can simply agree on a relatively short secret key. Then, when Alice wants
to send an encrypted message to Bob, she can input the secret key into a pseudorandom
generator and get a keystream. She can then add that keystream to the message just as she
would add a one-time pad to the message and then send the resulting ciphertext to Bob.
To decrypt the message, Bob can enter the secret key into his own pseudorandom
generator and get back the same keystream that Alice used to encrypt the message.
Finally, Bob can subtract that keystream from the ciphertext to produce the original
message.

1. With your partner, agree on a secret key. The secret key can be made up of
letters and numbers and can be as short as the passwords that you use to log
into Web sites.

2. Record your secret key in your lab report.

3. Decide with your partner which one of you will be the sender and which one

will be receiver.

4. If you are the sender, do the following:

a. Devise a secret message, but do not reveal it to your partner. Your
message should be less than 80 letters. Use all capital letters and don’t
use any punctuation. The message does not need to start with any
particular text.

b. Go to the following web site:

http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab10/prg.php

c. Enter you secret key into the text box on the site and click ‘Generate.’

The site will use a pseudorandom generator to produce a keystream.
The keystream will consist of a string of random numbers. Each
number will be between 0 and 26.

COS 116 – Lab 10 6

d. Encrypt your secret message with the keystream. Do the following:

i. Represent each letter of your message as a number: A is 0, B is
1, C is 2, Z is 25, and the space character is 26, etc.

ii. Add each letter of your message to the corresponding number

in the keystream and then take the result mod 27. The
resulting string of numbers is the ciphertext.

For example, if your message were:

MEET AT NOON

You would first represent it as numbers as follows:

12 4 4 19 26 0 19 26 13 14 14 13

Then, if your keystream were:

3 5 10 25 16 13 7 6 14 14 22 23

you would add it to your message mod 27 to get:

15 9 14 17 15 13 26 5 0 1 9 9

This would be your ciphertext. Notice that, because the result of the
addition is being taken mod 27, sums that are greater than or equal to 27
“wrap around.”

e. Write the ciphertext of the message neatly and clearly on a separate

sheet of paper, and then give the paper to your partner.

5. If you are the receiver, wait for your partner to give an encrypted message.

a. Go to the following web site:

http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab10/prg.php

b. Enter you secret key into the text box on the site and click ‘Generate.’

The site will use a pseudorandom generator to produce a keystream.
The keystream will consist of a string of random numbers. Each
number will be between 0 and 26.

COS 116 – Lab 10 7

c. Decrypt the secret message with the keystream. Do the following:

i. From each number of the ciphertext, subtract the
corresponding number in the keystream and take the result
mod 27. If the result is negative, add 27 to it.

ii. Convert the numbers back to letters. Remember: A is 0, B is 1,

C is 2, Z is 25, and the space character is 26, etc.

d. One you’ve decrypted the message, confirm with your partner that
you’ve decrypted it correctly.

6. Record the original message text and the ciphertext, in your lab report.

Part 4: Diffie-Hellman

You don’t need a partner for this part.

WARNING: There is a bit of unavoidable math below. Please read it; if you have
questions, don’t hesitate to ask.

Diffie-Hellman is public-key cryptosystem that allows two perfect strangers to establish a
shared secret key without ever agreeing on anything in advance. Here’s how it works.

As in other public-key cryptosystems, each person has two keys: a private key that only
he or she knows and a public key that everyone knows. For Diffie-Hellman, a person’s
private key is simply a random number – call it

!

x . A person’s public key is equal to

!

g
x
mod p where

!

x is the private key,

!

p is a large prime number and

!

g is a small, but
carefully chosen number.

Suppose that Alice wants to send a message to Bob, but that Alice and Bob are strangers
and haven’t agreed on a secret key in advance. Also, suppose that Alice’s private key is

!

a and her public key is

!

g
a
mod p, and suppose that Bob’s private key is

!

b and his public
key is

!

g
b
mod p.

To send an encrypted message, Alice takes Bob’s public key, raises it to the

!

a power
(Alice’s private key), and then takes the result

!

mod p. This gives her:

!

(g
b
mod p)

a
mod p

which is the same as

!

g
ab
mod p

COS 116 – Lab 10 8

Alice can then enter this value

!

g
ab
mod p into a pseudorandom generator to get a

keystream that she can use to encrypt the message using same method that you used in
Part 3.

Now, to decrypt the message from Alice, Bob uses a similar procedure. He takes Alice’s
public key, raises it to the

!

b power (Bob’s private key), and then takes the result

!

mod p.
This gives him:

!

(g
a
mod p)

b
mod p

which is the same as

!

g
ab
mod p

Notice that Bob has just arrived at the same value as Alice -

!

g
ab
mod p - without ever

agreeing on anything with her! Bob can then enter this value into a pseudorandom
generator to get a keystream that he can use to decrypt the message using same method
that you used in Part 3.

Now that you see that Diffie-Hellman works, the next question is: why is it secure? The
security of Diffie-Hellman, like the security of RSA that you heard about in lecture, relies
on a problem that is easy to create, but seemingly difficult to solve. This problem is
known as the “discrete logarithm problem.” If you are just given

!

g
x and you wanted to

get

!

x , you could just take the logarithm of

!

g
x . But, if you are given

!

g
x
mod p and you

wanted to get

!

x , there is no known efficient way to do it. That extra

!

mod p makes a
difference.

1. Go to the following web site and log in:

http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab10/dh_keys.php

On the web site, you will see your own Diffie-Hellman private key along with
everyone’s public keys.

2. Pick a person in the class to send an encrypted message to and write down
their public key. Try to pick someone who is already done with Part 3 of the
lab and who has not yet received an encrypted message in Part 4.

3. Record the person that you chose in your lab report.

4. Pick a secret message less than 80 letters long to send to them. Use all capital

letters and don’t use any punctuation. The message does not need to start
with any particular text. Record the message in your lab report.

COS 116 – Lab 10 9

5. Take the recipient’s public key and raise it to the power of your private key
and take the result

!

mod p. In your case,

!

p = 51683. In other words, if the
recipient’s public key is

!

y and your private key is

!

x , then you want to calculate:

!

y
x
mod51683

The numbers involved in these calculations are too big for an ordinary calculator
to handle.

To perform the calculation, use the Big Number Calculator at:

http://world.std.com/~reinhold/BigNumCalc.html

Here’s how to use it:

a. Enter 51683 into the middle of the three text boxes (the one which
says y=) and click on the “=” button.

b. Then, click on the “SetMod” button. Once you do this, the bottom text

box should say: “16 bits, base 10, modulo 51683”

c. Enter the recipient’s public key into the middle text box and click on
the “x**y” button.

d. Enter your private key into the middle text box and click on the “=”

button. The result of the calculation appears in the top text box.

6. Encrypt your secret message using the process described in Part 3 Step 4
where the secret key is the value that you just calculated.

7. Write the ciphertext of the message along with your name neatly and clearly

on a separate sheet of paper and hand the sheet of paper to the recipient.

8. Record the ciphertext in your lab report.

9. If you receive an encrypted message from someone else, do the following
steps.

10. Go back to:

http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab10/dh_keys.php

11. The sender’s name should be written on the sheet of paper that you received.
Look up the sender’s public key on the web site and write it down.

COS 116 – Lab 10 10

12. Record the sender’s name in your lab report

13. Take the sender’s public key and raise it to the power of your private key and
take the result

!

mod p. In your case,

!

p = 51683. In other words, if the sender’s
public key is

!

y and your private key is

!

x , then you want to calculate:

!

y
x
mod51683

Use the Big Number Calculator to calculate this.

14. Decrypt the message that you received using the process described in Part 3
Step 5 where the secret key is the value that you just calculated.

15. Record both the encrypted and decrypted versions of the message in your lab

report.

16. Ask the sender whether you decrypted the message successfully and record
whether or not you did in your lab report.

Part 5: Why Reusing a One-time Pad Leads to Disaster

You need a partner for this part.

In this part, you will encrypt a new message under the same secret key that you used in
Part 3. Since entering the same secret key into a pseudorandom generator produces the
same keystream every time, you will end up encrypting two different messages with the
same keystream. This has the same effect as using the same one-time pad to encrypt two
different messages. You heard in lecture that reusing a one-time pad is a bad idea; now
you will see why.

1. Devise a new secret message that is different from the one you used in Part 3.
Your message should be less than 80 letters. Use all capital letters and don’t
use any punctuation. The message does not need to start with any particular
text.

2. Follow the instructions in Part 3 Step 4 to encrypt the message. USE THE

SAME SECRET KEY THAT YOU USED PART 3.

3. Write the ciphertext of the new message neatly and clearly on a separate
sheet of paper

4. Record the new ciphertext in your lab report

COS 116 – Lab 10 11

5. Find another group that has gotten to Part 5, and give them the following:

• The ciphertext of the message you sent in Part 3

• The ciphertext of the new message that you just encrypted

• The plaintext of the message (i.e. the original unencrypted message) that

you sent in Part 3

You will receive the other group’s messages in return. Record them in your
lab report.

Armed with the ciphertext of both of the other group’s messages along with the plaintext
of one of the two messages, you should be able to deduce the keystream that was used to
encrypt both messages. Once you know the keystream, you can decrypt the second
message.

6. Using the plaintext and ciphertext that you received from the other group,

deduce the keystream that the other group used. Think about how you can
use both the plaintext and ciphertext that you know. Once you’ve deduced
the keystream, record it in your lab report.

7. Now that you know the keystream, decrypt the other group’s second message

and record it in your lab report.

8. It might seem unrealistic that you were told the plaintext of one of the other
group’s messages, but there are actually many situations in which an
attacker sees a message in encrypted form, and then later discovers the
plaintext that corresponds to it (without decrypting the message). What is
one such situation?

