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Abstract. We introduce, analyze and demonstrate a recursive hierarchical generalization of the widely used
hidden Markov models, which we name Hierarchical Hidden Markov Models (HHMM). Our model is motivated by
the complex multi-scale structure which appears in many natural sequences, particularly in language, handwriting
and speech. We seek a systematic unsupervised approach to the modeling of such structures. By extending the
standard Baum-Welch (forward-backward) algorithm, we derive an efficient procedure for estimating the model
parameters from unlabeled data. We then use the trained model for automatic hierarchical parsing of observation
sequences. We describe two applications of our model and its parameter estimation procedure. In the first
application we show how to construct hierarchical models of natural English text. In these models different levels
of the hierarchy correspond to structures on different length scales in the text. In the second application we
demonstrate how HHMMs can be used to automatically identify repeated strokes that represent combination of
letters in cursive handwriting.
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1. Introduction

Hidden Markov models (HMMs) have become the method of choice for modeling stochas-
tic processes and sequences in applications such as speech and handwriting recognition
(Rabiner & Juang, 1986, Nag et al., 1985) and computational molecular biology
(Krogh et al., 1993, Baldi et al., 1994). Hidden Markov models are also used for natu-
ral language modeling (see e.g. (Jelinek, 1985)). In most of these applications the model’s
topology is determined in advance and the model parameters are estimated by an EM proce-
dure (Dempster et al., 1977), known as the Baum-Welch (or forward-backward) algorithm
in this context (Baum & Petrie, 1966). Some recent works has explored the inference of the
model structure as well (Stolcke & Omohundro, 1994). In most of the above applications,
however, there are difficulties due to the multiplicity of length scales and recursive nature
of the sequences. Some of these difficulties can be overcome using stochastic context free
grammars (SCFG). The parameters of stochastic grammars are difficult to estimate since
typically the likelihood of observed sequences induced by a SCFG varies dramatically with
small changes in the parameters of the model. Furthermore, the common algorithm for
parameter estimation of SCFGs, called the inside-outside algorithm (Lari & Young, 1990),
has a cubic time complexity in the length of the observed sequences.
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In this paper we present a simpler alternative to SCFGs that utilizes the self-similar and
hierarchical structure of natural sequences, namely, the hierarchical hidden Markov model.
Our primary motivation is to enable better modeling of the different stochastic levels and
length scales that are present in the natural language, whether speech, handwriting, or text.
Another important property of such models is the ability to infer correlated observations
over long periods in the observation sequence via the higher levels of the hierarchy. We show
how to efficiently estimate the model parameters through an estimation scheme inspired
by the inside-outside algorithm. The structure of the model we propose is fairly general
and allows an arbitrary number of activations of its submodels. This estimation procedure
can be efficiently approximated so that the overall computation time is only quadratic in
the length of the observations. Thus long time correlations can be captured by the model
while keeping the running time reasonable. We demonstrate the applicability of the model
and its estimation procedure by learning a multi-resolution structure of natural English text.
The resulting models exhibit the formation of “temporal experts” of different time scales,
such as punctuation marks, frequent combinations of letters, and endings of phrases. We
also use the learning algorithm of hierarchical hidden Markov models for unsupervised
learning of repeated strokes that represent combinations of letters in cursive handwriting.
We then use submodels of the resulting HHMMs to spot new occurrences of the same letters
combination in unlabeled data.

The paper is organized as follows: In Section 2 we introduce and describe the hierarchical
hidden Markov model. In Section 3 we derive the estimation procedure for the parameters
of the hierarchical hidden Markov model. In Section 4 we describe and demonstrate two
applications that utilize the model and its estimation scheme. Finally, in Section 5 we
discuss related work, describe several possible generalizations of the model, and conclude.
In order to keep the presentation simple, most of the technical details are deferred to the
technical appendices. A summary of the symbols and variables used in the paper is given
in Appendix C.

2. Model description

Hierarchical hidden Markov models (HHMM) are structured multi-level stochastic pro-
cesses. HHMMs generalize the standard HMMs by making each of the hidden states an
“autonomous” probabilistic model on its own, that is, each state is an HHMM as well.
Therefore, the states of an HHMM emit sequences rather than a single symbol. An HHMM
generates sequences by a recursive activation of one of the substates of a state. This substate
might also be composed of substates and would thus activate one of its substates, etc. This
process of recursive activations ends when we reach a special state which we term a pro-
duction state. The production states are the only states which actually emit output symbols
through the usual HMM state output mechanism: an output symbol emitted in a production
state is chosen according to a probability distribution over the set of output symbols. Hidden
states that do not emit observable symbols directly are called internal states. We term the
activation of a substate by an internal state a vertical transition. Upon the completion of
a vertical transition (which may include further vertical transitions to lower level states),
control returns to the state which originated the recursive activation chain. Then, a state
transition within the same level, which we call a horizontal transition, is performed. The
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set of states and vertical transitions induces a tree structure where the root state is the node
at the top of the hierarchy and the leaves are the production states. To simplify notation we
restrict our analysis to HHMMs with a full underlying tree structure, i.e., all the leaves are
at the same distance from the root state. The analysis of HHMMs with a general structure is
a straightforward generalization of the analysis presented here. The experiments described
in this paper were performed with a general topology.

We would like to note in passing that every HHMM can be represented as a standard
single level HMM. The states of the HMM are the production states of the corresponding
HHMM with a fully connected structure, i.e., there is a non-zero probability of moving from
any of the states to any other state. The equivalent HMM lacks, however, the multi-level
structure which we exploit in the applications described in Section 4.

We now give a formal description of an HHMM. LetΣ be a finite alphabet. We denote
by Σ∗ the set of all possible strings overΣ. An observation sequence is a finite string from
Σ∗ denoted byŌ = o1o2 · · · oT . A state of an HHMM is denoted byqdi (d ∈ {1, . . . , D})
wherei is the state index andd is the hierarchy index. The hierarchy index of the root is
1 and of the production states isD. The internal states need not have the same number
of substates. We therefore denote the number of substates of an internal stateqdi by |qdi |.
Whenever it is clear from the context, we omit the state index and denote a state at leveld
by qd. In addition to its model structure (topology), an HHMM is characterized by the state
transition probability between the internal states and the output distribution vector of the
production states. That is, for each internal stateqdi (d ∈ {1, . . . , D − 1}), there is a state

transition probability matrix denoted byAq
d

= (aq
d

ij ), whereaq
d

ij = P (qd+1
j |qd+1

i ) is the
probability of making a horizontal transition from theith state to thejth, both of which are
substates ofqd. Similarly, Πqd = {πqd(qd+1

i )} = {P (qd+1
i |qd)} is the initial distribution

vector over the substates ofqd, which is the probability that stateqd will initially activate
the stateqd+1

i . If qd+1
i is in turn an internal state, thenπd(qd+1

i ) may also be interpreted
as the probability of making a vertical transition: entering substateqd+1

i from its parent
stateqd. Each production stateqD is solely parameterized by its output probability vector
Bq

D

= {bqD (k)}, wherebq
D

(k) = P (σk|qD) is the probability that the production state
qD will output the symbolσk ∈ Σ. The entire set of parameters is denoted by

λ = {λqd}d∈{1,...,D} = {{Aqd}d∈{1,...,D−1}, {Πqd}d∈{1,...,D−1}, {Bq
D}} .

An illustration of an HHMM with an arbitrary topology and parameters is given in Figure 1.

To summarize, a string is generated by starting from the root state and choosing one of
the root’s substates at random according toΠq1

. Similarly, for each internal stateq that is
entered, one ofq’s substates is randomly chosen according toq’s initial probability vector
Πq. The operation proceeds with the chosen substate which recursively activates one of
its substates. These recursive operations are carried out until a production state,qD, is
reached at which point a single symbol is generated according to a state output probability
vector,Bq

D

. Then control returns to the state activatedqD. Upon the completion of a
recursive string generation, the internal state that started the recursion chooses the next
state in the same level according to the level’s state transition matrix and the newly chosen
state starts a new recursive string generation process. Each level (excluding the top) has
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Figure 1. An illustration of an HHMM of four levels. Gray and black edges respectively denote vertical and
horizontal transitions. Dashed thin edges denote (forced) returns from the end state of each level to the level’s
parent state. For simplicity, the production states are omitted from the figure.

a final state, denotedqdend, which is the actual means of terminating the stochastic state
activation process. When a final state is reached, control returns to the parent state of the
whole hierarchy. The top level (root state) is the only level which does not have a final
state. Thus, the generation of the observation sequence is completed when control of all
the recursive activations is returned to the root state. Then the root state can initiate a new
stochastic string generation. We assume that all states can be reached by a finite number of
steps from the root state, that is, the model is strongly connected.

3. Inference and learning

As in the case with HMMs, three natural problems typically arise in applications that use
HHMMs:

Calculating the likelihood of a sequence:Given an HHMM and its parameter setλ =
{λqd}, find the probabilityP (Ō|λ) of a sequencēO to be generated by the modelλ.

Finding the most probable state sequence:Given an HHMM, its parameter setλ =
{λqd}, and an observation sequenceŌ, find the single state activation sequence that is
most likely to generate the observation sequence.
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Estimating the parameters of a model: Given the structure of an HHMM and one or
more observation sequences{Ōt}, find the most probable parameter setλ? of the
model,λ? = arg maxλ P ({Ōt}|λ).

Solutions for the above problems for HHMMs are more involved than for HMMs, due to
the hierarchical structure and multi-scale properties. For instance, the most probable state
sequence given an observation sequence is a multi-resolution structure of state activations
instead of a simple sequence of indices of the mostly probable states to be reached. We
now present the solutions to these problems, starting with the simplest. We will be using
the following terminology: we say that stateqd started its operation at timet if the (pos-
sibly empty) sub-sequenceo1 · · · ot−1 was generated beforeqd was activated by its parent
state, and the symbolot was generated by one of the production states reached fromqd.
Analogously, we say that stateqd finished its operation at timet if ot was the last symbol
generated by any of the production states reached fromqd, and control was returned toqd

from qd+1
end.

3.1. Calculating the likelihood of a sequence

Since each of the internal states of an HHMM can be viewed as an autonomous model
which can generate a substring of the observation using its substates, an efficient likelihood
evaluation procedure should be recursive. For each stateqd we calculate the likelihood
of generating a substringω, denoted byP (ω|λ, qd). Assume for the moment that these
probabilities are provided except for the the root stateq1. Let ī = (i1, i2, . . . , il) be the
indices of the states at the second level that were visited during the generation of the
observation sequencēO = o1, o2, . . . , oT of lengthT . Note that the last state entered
at the second level isq2

end, thus q2
il

= q2
end. Let τj be the temporal position of the

first symbol generated by stateq2
ij

, and let the entire list of these indices be denoted by
τ̄ = (τ1, τ2, . . . , τl). Sinceq2

i1
was activated byq1 at the first time step andq2

end was
the last state from the second level that was activated, we haveτ1 = 1 andτl = T . The
likelihood of the entire sequence given the above information is,

P (Ō|τ̄ , ī, λ) =

πq
1
(q2
i1) P (o1 · · · oτ2−1|q2

i1 , λ)aq
1

i1i2
P (oτ2 · · · oτ3−1|q2

i2 , λ)aq
1

i2i3

· · ·P (oτl−2 · · · oτl−1−1|q2
il−2

, λ)aq
1

il−2il−1
P (oτl−1 · · · oT |q2

il−1
, λ) aq

1

il−1 end .

In order to calculate the unconditioned likelihood we need to sum over all possible switching
timesτ and state indicesI. Clearly this is not feasible since there are exponentially many
such combinations. Fortunately, the structure of HHMMs enables us to use dynamic pro-
gramming to devise a generalized version of the Baum-Welch algorithm. The generalized
forward probabilities,α(·), are defined to be

α(t, t+ k, qdi , q
d−1) = P (ot · · · ot+k, qdi finished att+ k | qd−1 started att) .

That is, α(t, t + k, qdi , q
d−1) is the probability that the partial observation sequence

ot · · · ot+k was generated by stateqd−1 and thatqdi was the last state activated byqd−1
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during the generation ofot · · · ot+k. Note that the operation of each substateqd−1 does
not necessarily end at timet+k and thatot · · · ot+k can be a prefix of a longer sequence
generated byqd−1. To calculate the probability that the sequenceot · · · ot+k was generated
by qd−1, we need to sum over all possible states at leveld ending atqd−1

end ,

P (ot · · · ot+k|qd−1) =
|qd−1|∑
i=1

α(t, t+ k, qdi , q
d−1) aq

d−1

i end .

Finally, the likelihood of the whole observation sequence is obtained by summing over all
possible starting states (called by the root stateq1),

P (Ō|λ) =
|q1|∑
i=1

α(1, T, q2
i , q

1) .

The definition of the generalizedα variables for the states at levelD − 1, α(t, t +
k, qDi , q

D−1), is equivalent to the definition of the forward variableαt+k(i) of an HMM
that consists of only this level and whose output probability vectors are defined by the
production statesqDi . The evaluation of theα variables is done in a recursive bottom-up
manner such that theα values calculated for the substates of an internal stateq are used to
determine theα values ofq.

In summary, for each internal stateqwe need to calculate itsα value for each possible sub-
sequence of the observation sequence using a recursive decomposition of each subsequence
based on theα values ofq’s substates. Therefore the time complexity of evaluating theα
values for all states of an HHMM isO(NT 3), whereN is the total number of states and
T is the length of the observation sequence. In a similar manner, a generalized backward
variableβ is defined,

β(t, t+ k, qdi , q
d−1) = P (ot · · · ot+k| qdi started att, qd−1 finished att+ k) .

A detailed description of the calculation ofα andβ is provided in Appendix A.

3.2. Finding the most probable state sequence

The most probable state sequence is a multi-scale list of states: if stateq had generated
the stringoi · · · oj , then its parent state generated the stringok · · · ol, such thatk ≤ i
and j ≤ l. Thus the stringoi · · · oj is subdivided by the substates of stateq to non-
overlapping subsequences. This list can be computed efficiently following the same line of
reasoning used to derive theα variables, replacing summation by maximization. Since the
process which finds the most probable state sequence for HMMs is known as the Viterbi
algorithm (Viterbi, 1967), we term the modified algorithm for HHMMs the generalized
Viterbi algorithm.

Similar to the definition of theα variables we defineδ(t, t + k, qdi , q
d−1) to be the

likelihood of the most probable (hierarchical) state sequence generatingot · · · ot+k given
thatqd−1 was entered at timet, its substateqdi was the last state to be activated byqd, and
control returned toqd at timet+k. Since we are interested in the actual hierarchical parsing
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of the sequence into states we also maintain two additional variables:ψ(t, t + k, qdi , qd)
is the index of the most probable state to be activated byqd−1 before activatingqdi , and
t′ = τ(t, t+k, qdi , qd) (t ≤ t′ ≤ t+k) is the time whenqdi was activated byqd. Given these
two variables the most probable hierarchical state sequence is obtained by scanning the lists
ψ andτ from the root state to the production states. If a breadth-first-search is used for
scanning then the states are listed by their level index from top to bottom. If a depth-first-
search is used then the states are listed by their activation time. Since we simply replaced
summation with maximization the time complexity of the generalized Viterbi algorithm is
the same as the time of the generalized Baum-Welch, namelyO(NT 3). The pseudo-code
describing this algorithm is given in Appendix B.

We have also devised a heuristic that finds an approximation to the most probable state
sequence inO(NT 2) time. This heuristic assumes that the distributions over sequences in-
duced by the different states are substantially different from each other. Hence the influence
of the horizontal transitions on finding the most probable state sequence is negligible. We
therefore conduct an approximated search that ignores the transition probabilities. In other
words, we treat each stateqd of the HHMM as an autonomous model ignoring the influence
of the neighboring states ofq at leveld. Therefore, only one maximization operation is
performed at each internal node, reducing the overall running time toO(NT 2). Although
there is no theoretical justification for this approximation, we found in our experiments
that the most probable state sequence found by the approximated search greatly resembles
the state sequence found by the exact generalized Viterbi algorithm (see the experiments
described in Section 4).

3.3. Estimating the parameters of an HHMM

The maximum-likelihood parameter estimation procedure for HHMMs is a generalization
of the Baum-Welch algorithm since we also need to consider stochastic vertical transitions
which recursively generate observations. Therefore, in addition to the path variablesα
andβ which correspond to ‘forward’ and ‘backward’ transitions, we add additional path
variables which correspond to ‘downward’ and ‘upward’ transitions. The variables used in
the expectation step are as follows:

ξ(t, qdi , q
d
j , q

d−1) is the probability of performing a horizontal transition fromqdi to qdj ,
both substates ofqd−1, at timet after the production ofot and before the production of
ot+1,

ξ(t, qdi , q
d
j , q

d−1) = P (o1 · · · ot, qdi −→ qdj , ot+1 · · · oT | λ) .

Based onξ we define two auxiliary variablesγin andγout which simplify the re-estimation
step:

γin(t, qdi , q
d−1) is the probability of performing a horizontal transition to stateqdi beforeot

was generated.γin is calculated usingξ by summing over all substates ofqd−1 which
can perform a horizontal transition toqdi ,

γin(t, qdi , q
d−1) =

|qd−1|∑
k=1

ξ(t− 1, qdk, q
d
i , q

d−1) .
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γout(t, qdi , q
d−1) is the probability of leaving stateqdi by performing a horizontal transition

to any of the states in the same leveld after the generation ofot. Analogous toγin,
γout is calculated usingξ by summing over all substates ofqd−1 that can be reached
from qdi by a single horizontal transition,

γout(t, qdi , q
d−1) =

|qd−1|∑
k=1

ξ(t, qdi , q
d
k, q

d−1) .

The path variable used to estimate the probability of a vertical transition isχ.

χ(t, qdi , q
d−1) is the probability that stateqd−1 was entered at timetbeforeotwas generated

and initially chose to activate stateqdi ,

χ(t, qdi , q
d−1) = P (o1 · · · ot−1,

qd−1

↓
qdi

, ot · · · oT | λ) .

Based on the above path variables and given the current set of parameters, the following
expectations are calculated:∑T−1
t=1 ξ(t, qdi , q

d
j , q

d−1): the expected number of horizontal transitions fromqdi toqdj , both
are substates ofqd−1.∑T

t=2 γin(t, qdi , q
d−1) =

∑|qd−1|
k=1

∑T
t=2 ξ(t− 1, qdk, q

d
i , q

d−1): the expected number of hor-
izontal transitions to stateqdi from any of its neighboring substates in leveld.∑T−1

t=1 γout(t, qdi , q
d−1) =

∑|qd−1|
k=1

∑T−1
t=1 ξ(t, qdi , q

d
k, q

d−1): the expected number of hor-
izontal transition out of stateqdi to any of its neighboring substates in leveld.∑T

t=1 χ(t, qdi , q
d−1): the expected number of vertical transitions fromqd−1 to qdi .∑|qd−1|

i=1

∑T−1
t=1 χ(t, qdi , q

d−1): the expected number of vertical transitions fromqd−1 to
any of its substates in leveld.∑T

t=1 χ(t, qDi , q
D−1) +

∑T
t=2 γin(t, qDi , q

D−1) =
∑T−1
t=1 γout(t, qDi , q

D−1) the expected
number of vertical transitions to the production stateqDi from stateqD−1.

A complete derivation ofξ, γin, γout, andχ is given in Appendix A. After the above
expectations are calculated from the current parameters, a new set of parameters is re-
estimated as follows:

π̂q
1
(q2
i ) = χ(t, q2

i , q
1) , (1)

π̂q
d−1

(qdi ) =
∑T
t=1 χ(t, qdi , q

d−1)∑|qd−1|
i=1

∑T
t=1 χ(t, qdi , qd−1)

(2 < d < D) , (2)

âq
d−1

ij =

∑T
t=1 ξ(t, q

d
i , q

d
j , q

d−1)∑|qd−1|
k=1

∑T
t=1 ξ(t, q

d
i , q

d
k, q

d−1)
=

∑T
t=1 ξ(t, q

d
i , q

d
j , q

d−1)∑T
t=1 γout(t, q

d
i , q

d−1)
, (3)

b̂q
D−1

qD
i

(vk) =

∑
ot=vk

χ(t, qDi , q
D−1) +

∑
t>1,ot=vk

γin(t, qDi , q
D−1)∑T

t=1 χ(t, qDi , qD−1) +
∑T
t=2 γin(t, qDi , qD−1)

. (4)
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In order to find a good set of parameters we iterate of the expectation step that calculates
τ , χ, and the auxiliary path variables, and then we use Equ. (1)-(4) to find a new estimate
of the parameters. Although tedious, it is fairly simple to verify that the above steps in
this iterative procedure correspond to the Expectation and Maximization steps of the EM
algorithm. Hence, this procedure is guaranteed to converge to a stationary point (typically
a local maximum) of the likelihood function.

4. Applications

In this section we discuss and give two examples of the use of HHMMs and their parameter
estimation for the following complex sequence modeling tasks: building a multi-level
structure for English text, and unsupervised identification of repeated strokes in cursive
handwriting.

4.1. A multi-level structure for English text

One of the primary goals in stochastic analysis of complex sequences such as natural
text is to design a model that captures correlations between events appearing far apart in
the sequence. Observable Markov models have been widely used for such tasks (see for
instance (Ron et al., 1996) and the references therein). Since the states of these models are
constructed based on observable sub-sequences, however, they cannot capture implicit long-
distance statistical correlations. Here we suggest an alternative approach based on HHMMs
and give some experimental evidence that this approach is able to partly overcome the above
difficulty.

We built two HHMMs and trained them on natural text consisting of classical English
stories. The observation alphabet included the lower and upper case letters, blanks, and
punctuation marks. For training we used approximately5000 sentences of an average length
of 50 characters. We trained the two HHMMs on exactly the same text. The HHMMs were
as follows:

• A shallow HHMM consisting of two levels. The root state of this HHMM had4
substates. Each of the states at the second level had7 substates which were all production
states. Thus, all the production states were at the same level. The structure of this
HHMM is shown at the top part of Figure 3.

• An unbalanced HHMM consisting of three levels. This HHMM had a variable number
of substates at each internal state. The structure of this HHMM was unbalanced as
it had production states at all levels. Illustrations of the second HHMM are given in
Figure 2 and the bottom part of Figure 3.

We applied the generalized Baum-Welch parameter estimation procedure to the above
HHMMs. We found that after training the distributions over strings induced by the substates
of the first HHMM greatly resembled the distribution induced by a standard HMM trained on
the same data. In contrast, the distribution induced by the second HHMM was substantially
different and revealed several interesting phenomena. First, the distribution induced by the
second HHMM greatly varied across its different substates. The sets of strings which are
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most probable to be produced by the each of the states turned to have very little overlap.
Second, we observed a multi-scale behavior of the states. Specifically, we found that the
most probable strings to be produced by the deep states roughly correspond to phonetic
units, namely, strings such asing, th, wh, andou. Going up the hierarchy, the states
at the second and third level produce strings which are frequent words and phrases such
as: is not, will andwhere. Finally, at the top of the hierarchy, the root state induced a
distribution that corresponds to a sentence scale. For instance, the strings produced by the
root state (and hence the entire HHMM) are likely to end with a punctuation mark. We also
found that the horizontal transition probabilities at the end of training of the unbalanced
HHMM got highly peaked. This reflects strong Markov dependencies between states at the
same level. Thus, not only is the distribution induced by each state highly concentrated
on few strings, but also the set of strings that can be generated by recursive activations
of the deep HHMM is strongly biased towards syntactic structures that frequently appear
in natural texts. As we demonstrate in the next application, the trained HHMM or any
of its submodels can be now used as a building block in more complex tasks such as text
classification. These highly biased distributions are illustrated in Figures 2 and 3. In
Figure 2 we give the horizontal transition probabilities at the beginning and the end of the
training. In Figure 3 we list the most probable strings produced by each substate of the two
HHMMs: the deep unbalanced HHMM at the bottom and the shallow balanced HHMM at
the top. It is clear from the figure that the richer model developed a much larger variety of
strings which include whole words and fragments of sentences.

4.2. Unsupervised learning of cursive handwriting

In (Singer & Tishby, 1994), a dynamic encoding scheme for cursive handwriting based on
an oscillatory model of handwriting was proposed and analyzed. This scheme performs an
inverse mapping from continuous pen trajectories to strings over a discrete set of symbols
which efficiently encode cursive handwriting. These symbols are named motor control
commands. The motor control commands can be transformed back into pen trajectories
using a generative model, and the handwriting can be reconstructed without the noise that is
eliminated by the dynamic encoding scheme. Each possible control command is composed
of a Cartesian product of the formx×y wherex,y ∈ {0, 1, 2, 3, 4, 5}, hence the alphabet
consists of 36 different symbols. These symbols represent quantized horizontal and vertical
amplitude modulation and their phase-lags.

Different Roman letters map to different sequences over the above symbols. Moreover,
since there are different writing styles and due to the existence of noise in the human motor
system, the same cursive letter can be written in many different ways. This results in
different encodings that represent the same cursively written word. A desirable first step
in a system that analyzes and recognizes cursive scripts is to build stochastic models that
approximate the distribution of the sequences that correspond to complete cursive pen-
trajectories. We used the motor control commands as the observation alphabet and built
HHMMs corresponding to different cursive words in the training set. For example, we used
60 examples of the wordmaintain to estimate the parameters of an HHMM which had five
levels. This HHMM had an unbalanced structure and it had production states at all levels.
In the design of the topology of the HHMMs we took into account additional knowledge
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Figure 2. The transition distribution at the beginning (top) and the end of the training for an unbalanced HHMM
of depth3 that was trained on English texts. While the initial distribution is almost uniform, the final distribution
is sharply peaked around different states at different levels.
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Figure 3. The most probable strings to be generated at each state for two different HHMMs.
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Figure 4. The HHMM used in the cursive handwriting spotting experiments. The full model was trained on
complete words. The submodel denoted by a dotted line was used to locate the occurrences of the letter combination
ai.

such as repetitions of letters and combination of letters in cursively written words. The
structure of the HHMM used for the wordmaintain is shown in Figure 4. We used the
generalized Baum-Welch algorithm to estimate the parameters of the HHMM. We then
used the trained HHMM to identify repeated strokes that represent combination of letters
in cursive handwriting.

In order to verify that the resulting HHMMs indeed learned the distribution and the internal
structure of the words, we used the generalized Viterbi algorithm for HHMMs to perform
multi-scale segmentation of the motor control sequences. An example result of such a
segmentation is given in Figure 5. In the figure the cursive wordmaintain, reconstructed
from the motor control commands, is shown together with its hierarchical segmentation.
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Figure 5. Hierarchical segmentation of the wordmaintain obtained by the Viterbi algorithm for HHMMs. The
temporal segmentation according to the first two levels of the HHMM is shown. The word was reconstructed from
its encoded dynamical representation.

We used the trained HHMM of depth five whose structure is shown in Figure 4 to segment
the word.

In Figure 5 we show the temporal segmentation into states from the first two hierarchies
of the HHMM. It is clear from the figure that the generalized Viterbi algorithm assigned
different states of the HHMM to different cursive strokes. Furthermore, the same state
is consistently used to generate strokes that represent the same letter combination. For
instance, state3 in the first hierarchy is responsible for producing the combinationai.
Its substates further split the lettersai into sub-strokes: the first substate, denoted by31,
generates the first part of the cursive lettera, the second,32, generates the middle part (the
articulated stroke connecting the lettersa andi), and the third,33, generates the letteri.
Similar phenomena can also be observed in other states of the HHMM.

A common question that arises in stochastic modeling of sequences such as speech sig-
nals and handwritten text is what are the ‘natural’ units that constitute the sequences. A
widely used approach is to manually define these units, e.g. phonemes in spoken language,
letters in written text, etc. There are several drawbacks to this approach: it requires a
manual segmentation and it does not take into account the temporal interaction (such as
co-articulation in speech) between consecutive ‘units’. We now propose and briefly demon-
strate an alternative approach that uses the substates of a trained HHMM to provide a partial
answer to the above question. Due to the self-similar structure of HHMMs we can use each
substate as an autonomous model. We used the substates at the second level of the HHMM
described above and calculated the probabilities they induce for each sub-sequence of an
observation sequence. We also defined a simple HMM that induce a uniform distribution
over all the possible symbols. This simple model, denoted byU , serves as a null hypothesis
and competes against submodels that were pulled out from the full HHMM. The probability
of a subsequencēO to be generated by a submodelM compared to the null hypothesis (as-
suming an equal prior for the alternatives) is,P (M |Ō) = P (Ō|M)

P (Ō|M)+P (Ō|U)
. High values of

P (M |Ō) indicate the occurrence of the letters that correspond to the pulled-out modelM .
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-1.3

-4.1

Figure 6. Spotting the occurrences of the lettersai in the sentencewe maintained a chain of pointers.
The submodel corresponding to this combination of letters was pulled out from the HHMM shown in Figure 5
which was built for the wordmaintain. Occurrences of the letters are found by letting the model compete against
a null hypothesis that induces a uniform distribution over all possible symbols.

Hence, thresholding this value can be used to identify the locations of combination of letters
in unsegmented data. An example result of letter combination spotting using an HHMM
is given in Figure 6. In the figure we show the logarithm of the conditional probability
P (M |Ō) normalized by the length of the string|Ō|. This probability was calculated over
all possible start locations. The submodelM corresponding to the combinationai, that is,
the submodel rooted at state3, denoted by a dotted line in Figure 4, was pulled out from the
HHMM which was constructed for the wordmaintain. Clearly, all the occurrences of the
lettersai were correctly located. The combination of lettersoi in the wordpointers also
received a high likelihood. This and other ambiguities can be resolved by further refining
the set of submodels and by employing a higher level stochastic language model.

5. Conclusions

Hierarchical hidden Markov models are a generalization of HMMs which provide a par-
tial answer to two fundamental problems that arise in complex sequence modeling. First,
HHMMs are able to correlate structures occurring relatively far apart in observation se-
quences, while maintaining the simplicity and computational tractability of simple Markov
processes. Second, they are able to handle statistical inhomogeneities common in speech,
natural language, and other complex sequences. For instance, hidden Markov models have
been recently used to analyze neuro-physiological data (Gat et al., 1997). The hierarchical
hidden Markov model may provide a better tool for modeling the multiple levels of cortical
activities in the various segments of the recordings.

The maximum likelihood parameter estimation procedure and the Viterbi most probable
state decoding, are both naturally generalized to this richer structure. However, there is still
a missing component: HHMMs lack the ability to adapt their topology, that is, to allow



56 S. FINE, Y. SINGER AND N. TISHBY

for self-organized merging and growth of the submodels. There are also several natural
generalization of HHMMs. For instance, using the framework introduced by Bengio and
Frasconi (1995) for input-output HMMs, hierarchical HMMs can be generalized to describe
input-output mappings between strings over two different alphabets.

The experiments with HHMMs described in this paper are an initial step towards a better
understanding of hierarchical stochastic models for natural complex sequences. There are
other models, such as factorial hidden Markov models (Ghahramani & Jordan, 1997) and
alternative parameter estimation techniques (Singer & Warmuth, 1997) that can be used.
Understanding the connections between these different approaches and conducting a formal
analysis of hierarchical stochastic modeling is an important research direction that is now
in progress.

Appendix A

Generalized Baum-Welch algorithm

To remind the reader, we calculate four path variables in the expectation step:α, β, χ,
andξ, which informally correspond to ‘forward’,‘backward’, ‘downward’, and ‘upward’
stochastic transitions in the given HHMM. The variablesα andβ are calculated in a bottom-
up manner since the probability induced by a stateq depends only on the substates that belong
to the tree (submodel) rooted atq. Given the variablesα andβ, the variablesχ andξ are
calculated in a top-down manner. To simplify the derivation of the path variables, we also
define two auxiliary variables,ηin andηout. We now give a detailed derivation of these
variables.

Definition:

α(t, t+ k, qdi , q
d−1) = P (ot · · · ot+k, qdi finished att+ k | qd−1 started att)

Estimation:

α(t, t, qDi , q
D−1) = πq

D−1
(qDi ) bq

D−1
i (ot)

α(t, t+ k, qDi , q
D−1) =

|qD−1|∑
j=1

α(t, t+ k − 1, qDj , q
D−1) aq

D−1

ji

 bq
D−1
i (ot+k)

α(t, t, qdi , q
d−1) = πq

d−1
(qdi )

 |qdi |∑
s=1

α(t, t, qd+1
s , qdi ) a

qdi
s end


α(t, t+ k, qdi , q

d−1) =

k−1∑
l=0

|qd−1|∑
j=1

α(t, t+ l, qdj , q
d−1) aq

d−1

ji


 |qdi |∑
s=1

α(t+ l + 1, t+ k, qd+1
s , qdi ) a

qdi
s end
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+ πq
d−1

(qdi )

 |qdi |∑
s=1

α(t, t+ k, qd+1
s , qdi ) a

qdi
s end



Definition:

β(t, t+ k, qdi , q
d−1) = P (ot · · · ot+k| qdi started att, qd−1 finished att+ k)

Estimation:

β(t, t, qDi , q
D−1) = bq

D−1
i (ot) a

qD−1

i end

β(t, t+ k, qDi , q
D−1) = bq

D−1
i (ot)

|qD−1|∑
j 6=end

aq
D−1

ij β(t+ 1, t+ k, qDj , q
D−1)


β(t, t, qdi , q

d−1) =

 |qdi |∑
s=1

πq
d
i (qd+1

s ) β(t, t, qd+1
s , qdi )

 aq
d−1

i end

β(t, t+ k, qdi , q
d−1) =

k−1∑
l=0

 |qdi |∑
s=1

πq
d
i(qd+1

s )β(t, t+ l, qd+1
s , qdi )


|qd−1|∑

j=1

aq
d−1

ij β(t+ l + 1, t+ k, qdj , q
d−1)


+

 |qdi |∑
s=1

πq
d
i (qd+1

s )β(t, t+ k, qd+1
s , qdi )

 aqd−1

i end

Definition:

ηin(t, qdi , q
d−1) = P (o1 · · · ot−1, q

d
i started att| λ)

Estimation:

ηin(1, q2
i , q

1) = πq
1
(q2
i )

ηin(t, q2
i , q

1) =

|q1|∑
j=1

α(1, t− 1, q2
j , q

1) aq
1

ji (1 < t)

ηin(1, qdi , q
d−1
l ) = ηin(1, qd−1

l , qd−2) πq
d−1
l (qdi )

ηin(t, qdi , q
d−1
l ) =

t−1∑
t′=1

ηin(t′, qd−1
l , qd−2)

|qd−1
l
|∑

j=1

α(t′, t− 1, qdj , q
d−1
l ) a

qd−1
l
ji


+ ηin(t, qd−1

l , qd−2)πq
d−1
l (qdi ) (1 < t)
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Definition:

ηout(t, q
d
i , q

d−1) = P (qdi finished att, ot+1 · · · oT | λ)

Estimation:

ηout(t, q
2
i , q

1) =

|q1|∑
j=1

aq
1

ij β(t+ 1, T, q2
j , q

1) (t < T )

ηout(t, q
d
i , q

d−1
l ) =

T∑
k=t+1

|qd−1
l
|∑

j=1

a
qd−1
l
ij β(t+ 1, k, qdj , q

d−1
l )

 ηout(k, q
d−1
l , qd−2)

+ a
qd−1
l
i end ηout(t, q

d−1
l , qd−2) (t < T )

ηout(T, q
d
i , q

d−1
l ) = a

qd−1
l
i end ηout(T, q

d−1
l , qd−2)

Definition:

ξ(t, qdi , q
d
j , q

d−1) = P (qdi finished att, qdj started att+ 1|λ, Ō)

= P (o1 · · · ot, qdi −→ qdj , ot+1 · · · oT |λ, Ō)

Estimation:

ξ(t, q2
i , q

2
j , q

1) =
α(1, t, q2

i , q
1) aq

1

ij β(t+ 1, T, q2
j , q

1)

P (Ō|λ)
(t < T )

ξ(T, q2
i , q

2
j , q

1) =
α(1, T, q2

i , q
1) aq

1

ij

P (Ō|λ)

ξ(t, qdi , q
d
j , q

d−1
l ) =

1

P (Ō|λ)

[
t∑

s=1

ηin(s, qd−1
l , qd−2)α(s, t, qdi , q

d−1
l )

]
a
qd−1
l
ij[

T∑
e=t+1

β(t+ 1, e, qdj , q
d−1
l ) ηout(e, q

d−1
l , qd−2)

]
(t < T )

ξ(t, qdi , q
d
end, q

d−1
l ) =

1

P (Ō|λ)

[
t∑

s=1

ηin(s, qd−1
l , qd−2)α(s, t, qdi , q

d−1
l )

]
a
qd−1
l
i end ηout(t, q

d−1
l , qd−2) (t < T )
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Definition:

χ(t, qdi , q
d−1) = P (qdi started att|λ, Ō)

= P (o1 · · · ot−1,
qd−1

↓
qdi

, ot · · · oT | λ, Ō)

Estimation:

χ(1, q2
i , q

1) =
πq

1
(q2
i ) β(1, T, q2

i , q
1)

P (Ō|λ)

χ(t, qdi , q
d−1
l ) =

ηin(t, qd−1
l , qd−2)πq

d−1
l (qdi )

P (Ō|λ)[
T∑
e=t

β(t, e, qdi , q
d−1
l ) ηout(e, q

d−1
l , qd−2)

]
(2 < d)

Appendix B

Generalized Viterbi algorithm

To remind the reader, for each pair of states(qd−1, qdi ) we keep three variables:

• δ(t, t + k, qdi , q
d−1) is the likelihood of the most probable state sequence generating

ot · · · ot+k assuming it was solely generated by a recursive activation that started at
time stept from stateqd−1 and ended atqdi which returned toqd−1 at time stept+ k.

• ψ(t, t + k, qdi , q
d−1) is the index of the most probable state to be activated byqd−1

beforeqdi . If such a state does not exist (ot · · · ot+k was solely generated byqdi ) we set

ψ(t, t+ k, qdi , q
d−1) def= 0.

• τ(t, t + k, qdi , q
d−1) is the time step at whichqdi was most probable to be called by

qd−1. If qdi generated the entire subsequence we setψ(t, t+ k, qdi , q
d−1) = t.

To simplify our notation, we define the functionalMAX whose parameters are a function
f and a finite setS,

MAX l∈S {f(l)} def=
(

max
l∈S
{f(l)}, arg max

l∈S
{f(l)}

)
.

The generalized Viterbi algorithm starts from the production states and calculateδ, ψ, and
τ in a bottom up manner as follows.

Production states:

1. Initialization:

δ(t, t, qDi , q
D−1) = πq

D−1
(qDi ) bq

D
i (ot) ψ(t, t, qDi , q

D−1) = 0 τ(t, t, qDi , q
D−1) = t
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2. Recursion:(
δ(t, t+ k, qDi , q

D−1), ψ(t, t+ k, qDi , q
D−1)

)
=

MAX1 ≤ j ≤ |qD−1|
{
δ(t, t+ k − 1, qDj , q

D−1) aq
D−1

ji bq
D
i (ot+k)

}
τ(t, t+ k, qDi , q

D−1) = t+k

Internal states:

1. Initialization:

δ(t, t, qdi , q
d−1) = max

1 ≤ j ≤ |qdi |

{
πq
d−1

(qdi ) δ(t, t, qd+1
r , qdi ) a

qdi

r end

}
ψ(t, t, qdi , q

d−1) = 0 τ(t, t, qdi , q
d−1) = t

2. Recursion:

(A) For t′ = t+ 1, . . . , t+ k set:

R = max
1≤r≤|qd

i
|

{
δ(t′, t+ k, qd+1

r , qdi ) a
qdi

r end

}
(
∆(t′),Ψ(t′)

)
= MAX 1≤j≤|qd−1|

{
δ(t, t′ − 1, qdj , q

d−1) aq
d−1

ji R
}

(B) For t set:

∆(t) = πq
d−1

(qdi ) max
1≤r≤|qd−1

i
|

{
δ(t, t+ k, qd+1

r , qdi ) a
qdi

r end

}
Ψ(t) = 0

(C) Find the most probable switching time:(
δ(t, t+ k, qdi , q

d−1), τ(t, t+ k, qdi , q
d−1)

)
= MAX t≤t′≤t+k ∆(t′)

ψ(t, t+ k, qdi , q
d−1) = Ψ

(
τ(t, t+ k, qdi , q

d−1)
)

Finally, the probability of the most probable state sequence is found as follows,(
P ?, q2

last
)

= MAX q2
i

{
δ(1, T, q2

i , q
1)
}
,

and the most probable states sequence itself is found by scanning the listsψ andτ starting
from τ(1, T, q2

last, q
1) andψ(1, T, q2

last, q
1).
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Appendix C

Table C.1.List of symbols and variables

Symbol Definition Section

Σ finite alphabet 2

Ō = o1o2 . . . oT (oi ∈ Σ) observation sequence 2

d ∈ {1, . . . , D} hierarchy depth 2

qdi theith substate at leveld 2

Πq
d

= {πd(qd+1
i )} initial substate distribution 2

= {P (qd+1
i |qd)}

Aq
d

= {aq
d

ij } substate transition probabilities 2

= {P (qd+1
j |qd+1

i )}

Bq
D
i = {bqDi (k)} output probability distribution 2

= {P (σk|qDi )}

λ = {{Aqd}{Πqd}{BqD}} HHMM’s set of parameters 2

α(t, t+ k, qdi , q
d−1) P (ot · · · ot+k, qdi finished att+ k | 3.1

qd−1 started att)

β(t, t+ k, qdi , q
d−1) P (ot · · · ot+k| qdi started att, 3.1

qd−1 finished att+ k)

ξ(t, qdi , q
d
j , q

d−1) P (o1 · · · ot, qdi −→ qdj , ot+1 · · · oT | λ) 3

γin(t, qdi , q
d−1)

∑|qd−1|
k=1

ξ(t− 1, qdk, q
d
i , q

d−1) 3

γout(t, qdi , q
d−1)

∑|qd−1|
k=1

ξ(t, qdi , q
d
k, q

d−1) 3

χ(t, qdi , q
d−1) P (o1 · · · ot−1,

qd−1

↓
qdi

, ot · · · oT | λ) 3

ηin(t, qdi , q
d−1) P (o1 · · · ot−1, qdi started att| λ) A

ηout(t, qdi , q
d−1) P (qdi finished att, ot+1 · · · oT | λ) A

δ(t, t+ k, qdi , q
d−1) value (δ), state-list (ψ), transition times (τ ) B

ψ(t, t+ k, qdi , q
d−1) of the most probable generation ofot · · · ot+k

τ(t, t+ k, qdi , q
d−1) started byqd−1 at t and ended byqdi at t+ k
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