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Abstract

Buffer overflow attacks are known to be the most com-
mon type of attacks that allow attackers to hijack a re-
mote system by sending a specially crafted packet to a
vulnerable network application running on it. A compre-
hensive defense strategy against such attacks should in-
clude (1) an attack detection component that determines
the fact that a program is compromised and prevents the
attack from further propagation, (2) an attack identifica-
tion component that identifies attack packets so that one
can block such packets in the future, and (3) an attack
repair component that restores the compromised applica-
tion’s state to that before the attack and allows it to con-
tinue running normally. Over the last decade, a significant
amount of research has been vested in the systems that
can detect buffer overflow attacks either statically at com-
pile time or dynamically at run time. However, not much
effort is spent on automated attack packet identification
or attack repair. In this paper we present a unified solu-
tion to the three problems mentioned above. We imple-
mented this solution as a GCC compiler extension called
DIRA that transforms a program’s source code so that
the resulting program can automatically detect any buffer
overflow attack against it, repair the memory damage left
by the attack, and identify the actual attack packet(s). We
used DIRA to compile several network applications with
known vulnerabilities and tested DIRA’s effectiveness by
attacking the transformed programs with publicly avail-
able exploit code. The DIRA-compiled programs were
always able to detect the attacks, identify the attack pack-
ets and most often repair themselves to continue normal
execution. The average run-time performance overhead
for attack detection and attack repair/identification is 4%
and 25% respectively.

1. Introduction

A control-hijacking attack overwrites some data struc-
tures in a victim program that affect its control flow, and
eventually hijacks the control of the program and possibly
the underlying system. A data structure that can affect the
control flow of a program is called a control-sensitive data
structure, examples of which include return address, func-
tion pointer, global offset table/import table, C++ virtual
functions table pointer, etc. Once an attacker grabs con-
trol of the victim program, she can invoke any operation
to which the victim program’s effective user is entitled.
Control-hijacking attacks are considered the most danger-
ous type of attacks because they exploit software bugs di-
rectly without requiring any user actions, and because ma-
licious computer worms use them as basic building blocks
to propagate themselves from one machine to another.

Over the last decade, a significant amount of research
has been invested in the detection of control-hijacking at-
tacks. Some are based on program analysis techniques
[38, 12, 19, 26, 32, 37] that statically determine whether
a given program contains buffer overflow vulnerability.
Others use program transformation techniques [8, 11, 10,
14, 36, 9] to convert applications into a form that can ei-
ther detect control-hijacking attacks [8, 10, 14, 9] or pre-
vent control-sensitive data structures from being modified
at run time [11]. Still others develop operating system
mechanisms that ensure that it is not possible to execute
code injected into the victim program [34, 27]. Regardless
of their approach, most if not all of these efforts could only
determine whether a program is under a control-hijacking
attack, but could not actively repair a victim program af-
ter it has been compromised. Typically, upon detecting an
attack, they simply terminate the victim application, and
restart another instance if necessary. While terminating a
compromised application helps prevent further propaga-
tion of the attack, it may lead to a denial of service at-
tack. For network applications with a substantial amount
of state such as a DNS sever, it takes some time for them
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Stackguard [10], RAD[8] + - -
Buttercup [29], Autograph [21] - + -
Flashback [33], IGOR [13] - - +
DIRA + + +

Table 1. Previous work addressing problems
of attack (D)etection, (I)dentification, and
(R)epair.

to re-acquire the necessary state at start-up in order to pro-
vide the full service. For these applications, abrupt termi-
nation is not an acceptable attack recovery strategy. More-
over, because existing control-hijacking attack detection
systems cannot prevent the same attacks from taking place
again, vulnerable applications may be repeatedly victim-
ized and re-started in the presence of recurring attacks as
in the case of worms. In the mean time, these applications
cannot render any useful service to their intended users.

To address the limitations of existing systems that focus
only on detection of control-hijacking attacks, this project
aims to develop a program transformation system called
DIRA that can automatically transform an arbitrary appli-
cation into a form that

• Can detect a control-hijacking attack when the
control-sensitive data structure it tampers with is ac-
tivated,

• Can identify the network packets that lead to the
control-hijacking attack, and send these packets to
a front-end content filter to prevent the same attack
from compromising the application again, and

• Can repair itself by erasing all the side effects of the
attack packets as if it never received them.

To the best of our knowledge, attack detection, repair
and identification have never been considered together
previously. Table 1 puts in perspective related projects
in each of these three areas. The main contribution of
this paper is the development of a unified solution to all
three problems. Even though on the surface attack detec-
tion, identification, and recovery appear to be completely
orthogonal functions, a careful examination reveals that
they can actually be unified into a single implementation
framework that is based on memory update logging. To
repair a program’s memory state, all updates to its ad-
dress space should be logged so that these updates can
be reversed. To detect a control-hijacking attack, the be-
fore image of a control-sensitive data structure should be
stored away, and checked at the time of activation to see
if any tampering took place. To trace back the packets re-
sponsible for a detected attack, the backward slice of the

corrupted control-sensitive data structure needs to be first
computed and then intersected with the incoming packets.
DIRA takes an application’s source code, and inserts ad-
ditional logging code so that the resulting application can
detect, identify, and recover from any control-hijacking
attacks in a way that is completely independent of the un-
derlying operating system and hardware.

The rest of this paper is organized as follows. Section
2 reviews previous research on detection and prevention
methods for control-hijacking attacks, as well as on pro-
gram rollback. Section 3 describes the logging algorithms
and data structures used in the DIRA compiler. In Section
4 we discuss the implementation details of the DIRA com-
piler. Section 5 presents the performance measurements
of a fully operational DIRA prototype and their analysis.
Section 6 concludes this paper with a summary of major
research contributions and a brief outline of the on-going
work.

2. Related Work

Our work is based upon previous work in three broad
areas of systems research: buffer overflow attacks detec-
tion, malicious code identification, and program rollback
and replay.

Approaches to detect buffer overflow attacks can be di-
vided into two groups: static techniques that detect po-
tential buffer overruns by examining program’s source
code and dynamic techniques that protect programs at run-
time. Wilander et. al. [39, 40] present a comprehensive
overview of tools of both types. Greiner [16] gives an
overview of manual code auditing techniques that help de-
tect potential vulnerabilities.

The real cause of buffer overflows is unchecked pointer
or array access. Jones and Kelly [20] and Austin et. al. [3]
propose to check each pointer access at run time to solve
this problem. This requires augmentation of the standard
pointer representation with additional fields such as the
extent of the memory region that the pointer is referring
to. Both systems are implemented as C compiler exten-
sions that instrument the source code of the program in
such a way that the modified program checks each pointer
access it performs at run-time. Purify [18] is a similar
tool that instruments program’s object code and therefore
does not require access to its source code. However, all
these tools suffer from a significant performance overhead
which can be more than 500% in some cases. CRED [31]
is a project that aims to provide a comprehensive mem-
ory access bounds checking at a reasonable cost. Unlike
other bounds checking projects, CRED checks the access
correctness for pointers to character strings only assuming
that improper string manipulation is responsible for most
buffer overflow attacks. The reported overhead of CRED
is less than 26%. Such a moderately high overhead indi-



cates a need for more lightweight and inexpensive protec-
tion mechanisms.

The return address is the most common target of buffer
overflow attacks. Stackguard [10] is a system that pro-
tects the return address by placing a canary word on the
stack before the return address. It is based on the assump-
tion that overwriting the return address requires overwrit-
ing the part of the stack immediately preceding it. If the
canary word is found modified upon the function return
then an attack has taken place. RAD [8] takes a different
approach. It copies the return address to a buffer called
the return address repository which is protected from both
sides by applying mprotect() system call. Similarly, it
compares the return address on the stack with the saved
value and raises the red flag if the two values are differ-
ent. StackShield [36], ProPolice [11], and StackGhost
[14] are similar systems that protect other code pointers
such as function pointers and stack frame register in addi-
tion to the return address. FormatGuard [9] provides a set
of wrapper functions that protect a program from format
string attacks.

Another approach to buffer overflow prevention is pre-
sented by Baratloo et. al. [4]. They develop a dynamic
library called Libsafe that provides wrappers for common
libc functions that are prone to buffer overflows. This
library is transparently inserted at run-time between the
application being protected and libc using LD_PRELOAD

environment variable. The protection mechanism is based
on estimating the boundaries of the stack frame of the call-
ing function and assuming that no function can write be-
low that boundary.

A typical buffer overflow attack executes the injected
code on the stack. Therefore, making stack non-
executable will prevent any stack-based attack. PaX [34]
and Openwall [27] are two Linux kernel patches that im-
plement non-executable stacks. This approach has some
limitations, however. First, attacks that inject their code
into data segment as well as return-into-libc attacks will
still work. Second, Linux signal handlers and some func-
tional languages such as LISP require the stack to be exe-
cutable.

Essentially, the problem of detecting a buffer overflow
attack relies on a mechanism to monitor a particular mem-
ory location (such as a return address). A similar problem
exists in software debugging in which case a dynamically
monitored memory location is called a watch-point. Ex-
isting solutions of this problem can be divided into run-
time dynamic checking techniques [17, 18] and hardware-
based techniques [25, 30, 41].

The problem of automatic identification of malicious
code became increasingly important in the past few years
since worms epidemics started to happen more and more
frequently and at higher speeds. Given the speed of prop-

agation of the recent worms, it is hopeless to rely on a
human-based methods for signature generation as by the
time the proper signature is created and distributed among
computer users, the worm is likely to infect a significant
number of computer systems. Autograph [21] is a system
that generates worm signatures automatically by detect-
ing common byte sequences in suspicious network flows.
In this system, a network flow is considered suspicious
if it comes from a host that is believed to perform port
scanning. Toth and Kruegel [35] propose a system that
detects malicious code in packet payloads by performing
abstract execution of the payload data. Buttercup [29] is
a system aimed at preventing polymorphic worms with
known signatures from entering the system. It identifies
the ranges of possible return addresses for existing vul-
nerabilities and checks whether a network packet contains
such addresses.

Another approach to identifying malicious code is to
analyze the execution trace of a compromised program.
Given the address of the compromised control-sensitive
data structure, one can use dynamic slicing techniques
[24, 22, 23] to find out all statements of the program that
affected the value of this data structure. This allows one to
trace back the origin of the malicious data that was written
to this data structure to the point where it first appeared in
the program. Therefore, one can completely restore the
compromising network packet or user input. Agrawal and
Horgan [2] discuss several approaches for computing dy-
namic slices and introduce the notion of a dynamic depen-
dence graph.

Finally, yet another approach to malicious input iden-
tification it to use a technique similar to Perl taint mode.
The idea is to assign different tags to all user inputs and
propagate these tags along through all memory operations.
Upon discovering a compromised data structure, one can
identify the origin of the malicious data by looking at the
tag currently associated with that memory location.

System support for rollback and reverse execution is an-
other related area of systems research. Although not re-
lated directly to post-attack recovery, these mechanisms
can be readily adapted to rollback a program to a pre-
attack state. Systems that have a rollback capability rely
on one of the following techniques: they either keep the
execution history [1] or do periodic state checkpointing
[13, 28, 33]. For example, Igor [13] is a system that saves
modified memory pages at each checkpoint. RECAP [28]
and Flashback [33] use copy-on-writefork() system call
to checkpoint their execution state. Spyder [1] is based on
the notion of execution history. During its normal execu-
tion, Spyder records the program counter and the old val-
ues of all variables that the current instruction will change.
All these systems require specific support from the under-
lying OS.



An alternative way of bringing a compromised system
to the normal state is a complete restart. Candera et. al.
[7, 6] develop the concept of micro-reboots. According to
this concept, a complex system comprised of many indi-
vidual components (such as a large Internet service) can
be efficiently repaired in case of a fault or an attack by
performing a micro reboot of a single failed component
rather than that of the whole system. If the problem cannot
be fixed by micro-rebooting then it is deferred to human
operators.

3. Attack Detection, Identification, and Re-
pair

DIRA makes programs capable of attack detection,
identification and repair by using a combination of static
and dynamic techniques. At compile time, the DIRA com-
piler instruments the source code of a program in a num-
ber of ways. First, it inserts proper memory updates log-
ging code that allows the program to keep track of every
memory update it performs. Second, the DIRA compiler
inserts the code that checks every control-sensitive data
structure before it is used. Finally, a number of special
functions that allow the program to identify attack pack-
ets and repair itself are added to the program. At run
time, the instrumented program generates a memory up-
dates log which can be used to identify attack packets and
repair the program once an attack is detected. The logged
information is also used to check the control-sensitive data
structures at run time when they are about to be used. If a
control-sensitive data structure is found compromised, the
attack identification and repair functions are called.

The amount of logging information as well as the type
of information stored in the log depends on the mode in
which DIRA operates. There are three modes of oper-
ation: compilation to support attack detection only (D-
mode), compilation to support detection and identification
(DI-mode) and finally compilation to support detection,
identification, and repair (DIR-mode). Each successive
mode requires more information to be logged. In this sec-
tion we describe how memory update logging works and
how the logged information is used in attack detection,
identification, and repair.

3.1. Attack Detection

Most of the control-hijacking attacks modify some
control-sensitive data structures in the victim program,
such as a return address, a function pointer, or a jump ta-
ble, through buffer overflowing. Once the compromised
data structure is used in a control transfer, the attacker hi-
jacks the control of the application.

The approach to attack detection used by DIRA is
similar to that developed in RAD project [8]. To detect

control-hijacking attacks at run time, the DIRA compiler
maintains the original image of every control-sensitive
data structure, and at the time of control transfer compares
the current value of the associated control-sensitive data
structure with its original image to determine whether it
has been modified via buffer overflowing. Current ver-
sion of the DIRA compiler protects only return addresses
and function pointers as they are the most common attack
targets. In particular, the DIRA compiler instruments an
input program as follows:

• At the function prologue, the return address is stored
in the return address buffer. At the function epilogue,
the return address on the stack is compared with the
stored value in the return address buffer. If there is a
mismatch, the return address has been tampered with
and a control-hijacking attack is detected.

• Every time a function pointer is modified in the pro-
gram, its newest value is stored in an existing or new
entry of the function pointer buffer. This includes the
case when a function pointer is passed as an input ar-
gument into a function. There are also other ways to
modify a function pointer, for example by overwrit-
ing it using memcpy() function. The current version
of the DIRA compiler supports only simplest kind
of function pointer modification when it is updated
through a direct assignment. Each entry of the func-
tion pointer buffer contains two fields: the address of
a function pointer variable and its value. Every time
a function pointer is about to be used in a function
call, its current value is checked against the function
pointer’s stored value. The mismatch of the two val-
ues is the indication of an attack taking place.

Because the return address buffer and the function pointer
buffer are supposed to contain the ground truth, they
should be well protected such that tampering via buffer
overflowing is impossible. Otherwise, if an attacker can
overflow both a control-sensitive data structure and its as-
sociated duplicate buffer, she can defeat this attack detec-
tion method. Towards this end, both the return address
buffer and the function pointer buffer are sandwiched in-
side a pair of read-only pages. Any attempts to modify
these two buffers via overflowing will result in protection
faults. An attacker might try to compromise the system
by guessing the address of such a buffer and writing to it
directly without having to go through the protected pages.
In order to reduce significantly the likelihood of a suc-
cessful attack, such a buffer can be allocated at a random
memory location. This technique is not implemented yet
in the current version of DIRA.

In theory, the DIRA compiler can also protect jump
tables in the same way as function pointers. However,
because there have never been any real control-hijacking



attacks that tamper with jump tables, for simplicity we
chose to ignore jump table protection in the current proto-
type.

3.2. Memory Updates Logging

The purpose of memory updates logging is to make it
possible to trace back incoming packets that are responsi-
ble for the detected attack, and to restore the victim pro-
gram back to the state before the attack packets were re-
ceived. Keeping a copy of a control-sensitive data struc-
ture for attack detection can be seen as a special form of
memory updates logging. To associate corrupted control-
sensitive data structures with incoming packets, for each
incoming packet it is necessary to compute all data vari-
ables that directly or indirectly depend on the incoming
packet. If a corrupted control-sensitive data structure is
data-dependent on an incoming packet, the packet is con-
sidered an attack packet and its contents will be used for
content filtering.

To allow a program to be rolled back to the state it
was in before receiving an attack packet, a snapshot of
the program’s state should be checkpointed every time
it receives a packet. However, the performance over-
head of this approach is too high to be feasible. Instead,
DIRA uses a fine-grained asynchronous checkpointing ap-
proach, which logs updates only to global or static vari-
ables, and performs these logging operations in an incre-
mental fashion rather than in one batch. When choos-
ing this approach, DIRA assumes that during the inter-
val between when a control-hijacking attack is detected
and when the corresponding attack packet is received, the
program will not be able to undo any file or network I/O
operations. Therefore, memory updates logging can only
erase attack’s side effects on the memory state of the pro-
gram, but not on its file system state.

Each record of the memory update log has four fields:
read_addr, write_addr, len, and data. We will de-
scribe the meaning of each field below.

Most if not all control-hijacking attacks use one or mul-
tiple network packets to overrun a buffer in the victim pro-
gram and eventually overwrite some control-sensitive data
structures. Therefore, the content of the corrupted control-
sensitive data structure is derived from the attack packets
through a series of memory copying operations. Memory
image of a program can be changed by either the program
itself or by a library function call made by the program. To
handle the updates of the former type, DIRA logs the ef-
fects of assignment statements of the following form: X =
Y, where X and Y are directly referenced variables, array
references (e.g., a[i]) or de-referenced variables (e.g.,
*(a+1)). The read address field contains the address of
the right-hand-side variable of the assignment operation,
in this case Y’s address. The write address field holds the

address of the left-hand-side variable being modified, in
this case X’s address. The length field is the size of the
modified variable, size of X in this case. The data field is
not used when DIRA operates in DI-mode. In DIR-mode,
this field stores the pre-image ofX, the variable being writ-
ten to. It is not always possible to uniquely identify the
read address, for instance if Y is a complex expression
containing a number of variables or a function call. In this
case the read address is set to “-1,” which indicates that
the data origin of this assignment is unknown.

The second source of memory image changes are stan-
dard library calls such as memcpy(). DIRA proxies
several libc functions that can change program’s mem-
ory state. Whenever a function that is proxied is called,
the corresponding proxy function also produces a mem-
ory updates log record that summarizes the side effects of
the function call. The fields of the memory updates log en-
try are set differently for different proxied functions. We
will discuss all the functions proxied by DIRA below.

Some programs provide an alternative implementation
of standard libc functions. Such functions will be com-
piled by DIRA thus providing necessary support for attack
detection, identification and repair as long as these func-
tions are written in standard C. If, however, the new libc
functions are implemented using inline assembly (for per-
formance reasons, for example), then DIRA will not be
able to instrument them.

The above memory update logging algorithm imple-
ments both state checkpointing and data dependency
tracking. Moreover, the DIRA compiler inserts logging
code for each assignment operation of the form specified
above without performing any sophisticated data or con-
trol flow analysis. As a result, the implementation com-
plexity of the DIRA compiler is greatly simplified.

To reduce memory updates logging overhead,
DIRA tries to avoid unnecessary logging operations.
In its default mode, DIRA does not log updates of the
form X=Y if X is a local variable referenced directly. The
reason behind this is the assumption that local variables
referenced directly are usually used as temp variables (for
example, as loop variables) and do not contain any data
coming from external sources. Although in general this
approach can miss certain dependencies, it turns out that
quite often enough information is logged to identify the
malicious input.

Figure 1 shows the abbreviated source code of a simpli-
fied network service application containing a buffer over-
flow vulnerability. To ensure that omitting local updates
logging is usually harmless, let us consider the logging
operations performed by the program compiled in DIR-
mode and determine that this information is sufficient to
identify the attack packet. Function do_packet() calls
function get_packet(), which receives a packet by call-



ing recv(). This is one of the functions proxied by
DIRA. The corresponding proxy function logs the pre-
image of buf by setting the write_addr field to the
value of buf. Then the control flow goes back to function
do_packet(). The assignment of the returned value to
variable last is not logged because last is a local vari-
able referenced directly. Function process_packet()

is called next taking last as its only argument. The as-
signment of buf to packet is not logged either because
packet is also a local variable referenced directly. Next
there is a call to function strcpy() which is also proxied
by DIRA. This function copies some data from packet

into a limited-space buffer name without checking the
length of packet->name, and thus represents an attack
target. The read_addr field of the corresponding log
record is set to the address of packet->name. To summa-
rize, the memory update log contains two entries relevant
to the packet being processed. None of the intermediate
assignment operations are logged. Nevertheless, it is still
possible to identify the packet that should be held respon-
sible when an attack is detected. Indeed, variable packet
of function process_packet() contains the same ad-
dress as variable buf of function get_packet(). All in-
termediate assignments transfer the value of the pointer
that points to the buffer containing the attack packet.

Memory updates log contains additional information
when DIRA works in the DIR-mode. This mode requires
storing additional information in the log such as marks
that indicate function boundaries and potential restart
points. We call such records tags. There are several types
of tags. The tag type is stored in the field read_addr.
The remaining fields are used differently for each tag. We
will describe each tag type one by one in Section 3.4.

3.3. Attack Identification

Upon detecting a control-hijacking attack, we assume
that the corrupted control-sensitive data structure is com-
promised by some data that might have been read from the
console by a gets() call or from a network socket by a
recv() call. In these cases, it is important to identify the
source of corruption and take proper measures to prevent
the same compromise from happening again. Of course,
it is also possible that the control-sensitive data structure
was actually overwritten due to a mistake in the program’s
internal logic. In this case, the program should be just ter-
minated since no automatic repairing can stop the same
compromise from recurring.

To identify the data item read from the network or a
file that is responsible for the corruption of a control-
sensitive data structure, we need to trace back the depen-
dency graph, starting from the corrupted control-sensitive
data structure. This tracing relies on the read address and
write address fields of the memory updates log entries.

Let MA (modified address) be the address of a corrupted
control-sensitive data structure, i.e., a return address or a
function pointer. In most cases, it was tampered with as a
result of an unchecked array-to-array copy operation such
as strcpy(). Each of such modifications leaves a record
in the memory updates log. Therefore, the tracing begins
with the most recent memory updates log entry whose
write address is equal to MA, and uses the read address
field of this entry as a key to search the memory updates
log to find the most recent log entry whose write address
matches it, etc. This process continues iteratively until
reaching a memory updates log entry whose read address
is set to one of the special values described below, which
means that the data written to the write address of that en-
try comes from an external source. The above trace-back
algorithm is formally described in Figure 2.

To support attack identification, the following classes
of libc functions need to be “proxied”: copy-
ing/concatenation functions such as strcpy(), network
I/O functions such as recv(), file I/O functions such as
read() (which can also read data from network), and
format string functions such as sprintf(). The com-
plete list of functions proxied by DIRA including those
required for post-attack recovery only is presented in Ta-
ble 2.

Copying/concatenation Functions. Each proxy func-
tion from this group generates a log record. For instance,
a log record for a strcpy(a, b) function call contains
the address of b in its read_addr field, the address of
a in its write_addr field, strlen(b) in its len field.
The data field is set to NULL as no data is required for
the traceback algorithm. After generating a log record the
proxy function calls the corresponding libc function and
returns its result.

Network I/O and File I/O Functions. These proxy
functions also generate one log record each time they are
called. The read_addr field of these records is set to a
special value indicating the external source of the data be-
ing logged. In addition, they make use of data field of the
log record. This field stores the post-image of the mem-
ory buffer, that is, the data that was actually read from the
network or a file. This data is the malicious network or
file data that can lead to a buffer overflow attack. It is pre-
sented as the result of the traceback algorithm if a buffer
overflow attack is detected. This data can be sent to a
front-end intrusion-detection system, which can then use
it to prevent the same attack from reaching internal hosts
again. This automatic attack packets extraction capabil-
ity protects an enterprise from worm-like attacks, where
attacking or compromised hosts tend to send out attack
packets that are largely the same.



void do_packet() { packet_t *get_packet() { void process_packet(char *buf) {

packet_t *last; char *buf=malloc(PACKSZ); char name[10];

last=get_packet(); recv(sock, buf, PACKSZ, 0); packet_t *packet;

process_packet(last); return buf; packet=(packet_t*)buf;

} } strcpy(name, packet->name);

}

Figure 1. An example of a program vulnerable to a buffer overflow attack.

cur_addr=MA;
while (more_log_entries && cur_addr�=0)

ent=get_prev_log_entry();
if ent.write_addr≤cur_addr && ent.write_addr+ent.len>cur_addr

then cur_addr=ent.read_addr+(cur_addr-ent.write_addr);
end;
if (cur_addr�=0)

{ printf(“Can’t find source of attack\n”); exit(0); }
/* ent is the required log entry */

Figure 2. The traceback algorithm used to locate the source of a buffer overflow attack based on
a corrupted control-sensitive data structure.

3.4. Attack Repair

Although DIRA’s attack detection mechanism can suc-
cessfully prevent a control-hijacking attack from taking
over a victim application, the application itself may need
to be terminated as a result of such an attack. This “ter-
minate and restart” approach to recover from a control-
hijacking attack is not always desirable. Instead, it is bet-
ter if the victim application can simply erase the effects
of the attack packets as if these packets never happened.
There are two issues involved in this program state repair
process: (1) From which state should a victim program
restart? (2) How to restart a victim program without spe-
cial OS support?

Because DIRA logs only updates to global and array-
like variables, it can only restart a program from the en-
try point of a function. The proper function f_restart

turns out to be the least common ancestor of the function
in which the attack was detected and the function in which
the malicious external data was read in. We will call the
function called from f_restart, which eventually led to
malicious data read operation f_read and the function
that eventually led to the attack f_attack (both can be
the same function or even f_restart). The reason be-
hind choosing f_restart the way we described it above
is the fact that the stack frame of the dynamic parent of
f_restart has not changed between the point when the
malicious data was read in and the point when an attack
was detected whereas the stack frame of any other func-
tion called after f_restart as well as f_restart itself
might have changed between the two moments. Since we

do not track any local variable updates we will not be
able to bring the program back to a consistent state older
than the state in which it was right before f_restartwas
called. There is an exception from this rule, however. If
there are no local variable updates in f_restart between
the point after f_read returns and before f_attack be-
gins, we can safely restart the execution from f_read in-
stead of f_restart.

Sometimes, it is still possible that the whole pro-
gram will need to be restarted. Indeed, this happens if
f_restart turns out to be function main() and there are
some local variable updates made between when f_read
returns and f_attack begins. While evaluating DIRA we
have encountered one such program. One way to avoid
this problem is to track all variable updates including lo-
cal ones, but that may significantly increase the run-time
overhead. If the repair algorithm finds that the program
needs to be restarted from the beginning, the program is
simply terminated and restarted afterwards.

Identifying the function that reads in the malicious ex-
ternal data is a part of attack identification process and
therefore does not incur any extra run-time overheadwhile
the program is running normally. Figure 3 illustrates how
the restart point is chosen with a typical buffer overflow
attack scenario. In this case, either f2() or f1() can be
chosen as the new restart point. The decision depends on
whether there are any local variable updates in f1() after
return from f2() until the call to f4().

DIRA does not require any system support for program
restart. Instead, it uses inter-procedural jump functions



setjmp() and longjmp() to implement this functional-
ity.

Figure 4 shows the algorithm that DIRA uses to find the
least common dynamic ancestor between the function that
detects an attack or a corruption of some control-sensitive
data structure, and the function that inputs the malicious
data from the memory updates log. Logically, the algo-
rithm traverses the memory updates log backwards to find
the first function whose function entry tag is earlier than
the function entry tag of both functions. The algorithm
includes two steps. The purpose of the first step is to find
out the depth of f_read with respect to the least com-
mon dynamic ancestor of f_read and f_attack. In or-
der to determine this depth the memory updates log is tra-
versed in backwards direction. The traversal starts from
the last log entry and continues until the function entry
tag of f_read is reached. Variable depth is a loop in-
variant and has the following meaning. It contains the rel-
ative depth of the function which the current log record
belongs to with respect to the greatest dynamic ancestor
function of f_attack seen so far. It is obvious that the
traversal will sooner or later go through a log entry that be-
longs to the least common dynamic ancestor of f_read
and f_attack because the control flow should have re-
turned to this function at least once between the point
when f_read was called and the point when f_attack

was called. Therefore, depth will eventually contain the
relative depth of f_readwith respect to the least common
dynamic ancestor. At each loop iteration, variable depth
is updated as follows. If the tag of the current log record
is a function entry tag and the depth equals 0 then the
next log record to be traversed corresponds to a dynamic
parent of the current function, and therefore it becomes
the current greatest dynamic ancestor in which case the
value of depth does not need to be changed. If, however,
the tag of the current log entry is a function exit tag then
the function which that log entry belongs to was called
from the current function. Therefore, we need to increase
depth by one. Finally, if the tag of the current log entry is
a function entry tag and the depth is greater than zero then
we need to decrement depth by one as this means that
the current function is a dynamic child of the greatest an-
cestor function. To summarize, at the end of the first step
variable depth equals the relative depth of f_read with
respect to the least common dynamic ancestor. All we
need to do after that is to traverse the log backwards until
we reach a function whose relative depth with respect to
the least common ancestor is zero. The beginning of this
function is the beginning of the least common dynamic
ancestor of f_read and f_attack.

Finding a restart point requires augmentation of the
memory updates log with several types of tags which are
inserted to the log when the program runs normally. These

tags are function entry tag, function exit tag, jump buffer
tag, and first local update tag. Upon entering a function
DIRA inserts a function entry tag into the memory updates
log. Similarly, when the function returns a function exit
tag is inserted. When a function call is made, DIRA in-
serts a call to setjmp(buf) where buf is the data field
of a memory log record. The read_addr of this record is
set to the jump buffer tag. This makes the point preceding
the function call a potential restart point. At repair time,
the control can be transfered to this point by performing
longjmp(buf). Finally, the first local update tag is in-
serted to the log when the first update to a local variable
is encountered after a function call. These tags are used at
repair time to determine the actual restart point, which can
be either f_read if no such tags are found in f_restart
between the call to f_read and the call to f_attack, or
f_restart if at least one local update tag was found.

Once the restart point is determined, the memory state
of the program needs to be rolled back to the state corre-
sponding to the new execution point. To do so, the attack
recovery module needs to traverse the memory updates
log in the reverse direction until it reaches the restart point,
undoing each global variable update along the way. After
the undo, the recovery module performs a longjmp() us-
ing the jmp_buf corresponding to the restart point.

To restore the memory image of the program the com-
plete pre-image of each memory update should be stored
in the data field of the corresponding log record. The
same is also true about libc functions proxied by DIRA.
For instance, strcpy(a, b) call needs to store the pre-
image of buffer a of length strlen(b) in the data field
of memory updates log record. In addition, several
other classes of libc functions need to be proxied. They
are: memory management functions, privilege manage-
ment functions, process management functions, and inter-
procedural jumps functions. The complete list of proxied
functions is presented in Table 2. Below we will consider
each group of functions in more detail.

Memory Management Functions. Each function in
this group is proxied for the following reason: at re-
pair time, the program needs to be able to undo not only
global memory changes, but also memory manipulation
functions it called before. The proxy_malloc() calls
malloc() first and stores the address of the newly allo-
cated object in the memory updates log. At repair time if
this record needs to be rolled back, this memory object is
freed.

During repair time we also need to reallocate objects
that were previously deallocated. This is achieved by
proxying free(). A straightforward way to restore the
object that was deallocated is to allocate it again with
malloc(). However, the new object may be created at
a new memory locations and all earlier references to it in
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Figure 3. An example illustrating how to identify the least common dynamic ancestor in the
function call graph and use it as the restart point. The right-hand side shows the memory updates
log where f1–f5 are the same functions as those on the left-hand side. The ovals correspond to
function boundaries. The depth values are the values of depth variable that is defined in Figure 4.

f_read — function in which malicious data was read in;
ent_beg=first log entry of f_read (function entry tag);
depth=0;
ent=last_log_entry();
while (ent!=ent_beg)

if (ent.tag is function entry tag) then depth−−;
if (ent.tag is function exit tag) then depth++;
if (depth<0) then depth=0;
ent=get_prev_log_entry();

end;
/* second phase */
while (depth≥0)

if (ent.tag is function entry tag) then depth--;
if (ent.tag is function exit tag) then depth++;
ent=get_prev_log_entry();

end;

Figure 4. Algorithm for finding the least common dynamic ancestor in the function call graph.

Function class Libc functions
Copying/concatenation memcpy(), mempcpy(), memmove(), strcpy(),

strncpy(), strcat(), strncat(), bcopy()
Network I/O readv(), recv(), recvfrom()
Inter-procedural jumps setjmp(), longjmp()
Memory management malloc(), calloc(), realloc(), free(), strdup()
Privilege management seteuid(), setreuid(), setegid(), setregid()
Process creation fork()
File I/O read(), fread(), scanf(), vscanf(), fscanf(),

vfscanf(), gets(), fgets()
Format string sprintf(), snprintf(), vsprintf(), vsnprintf(),

Table 2. The set of functions that DIRA needs to proxy to support attack identification and repair.



the memory updates log will need to be remapped. In-
stead, we use a deferred free() approach. When the pro-
gram calls free(), the proxy_free() function just puts
the address of the object into the log without freeing up the
object. At repair time, we do not need to do anything to
restore the original object since it is kept in the memory.

Finally, the proxy_realloc() function saves the orig-
inal pointer in the buffer, replaces the original realloc()
call with a malloc() call and saves the pointer to the
newly allocated memory as well. Then it copies the data
to the newly allocated buffer. The length of the data being
copied is obtained from the memory buffer header that is
preceding the data itself. At repair time, the newly allo-
cated object is deallocated.

The description above suggests that during its normal
execution the program will never free up the memory it
allocates. However, since the capacity of the memory up-
dates log is limited, its records are used in a circular fash-
ion. A single record can be reused if the program runs
long enough. When a record is reused, its previous con-
tent is cleaned up and the recovery of that operation be-
comes impossible. A part of the clean up procedure for a
proxy_free() buffer entry is the free() operation that
was deferred before.

Inter-procedural Jump Functions. Function
longjmp() performs an inter-procedural jump to one
of the dynamic ancestors of the current function. To
keep the memory updates log consistent, we need to
add a proper number of function exit tags to the log.
This number equals the number of functions skipped by
longjmp(). To determine it at run time, we proxy both
setjmp(jmp_buf) and longjmp(jmp_buf, state).
The proxy_setjmp() function logs the address of the
jmp_buf variable. The proxy_longjmp() function
searches the memory updates log for a log entry corre-
sponding to setjmp() call that filled in the jmp_buf

used in proxy_longjmp(). Once it finds the proper
log entry, it can find out the nesting level of the current
function with respect to the target function and thus
compute the required number of function exit tags to be
added.

Privilege Management Functions. Many programs
change their effective user ID and group ID values for se-
curity reasons. At repair time, the proper values need to be
restored to give the program same access rights as those it
had at the chosen restart point. This is achieved by proxy-
ing functions such as seteuid() and setegid(). These
functions save the original value of uid or gid in the data
field of a memory updates log record. The read_addr

field holds the proper proxy function tag that allows the
repair procedure to identify such log records and call ap-
propriate privilege management functions with the val-
ues stored in the data field. A privileged process calling

setuid() can replace its effective user ID with a nonzero
effective user ID in which case the old effective user ID
can never be restored. In this case, there is no way for the
recovery process to restore the original effective user ID
without explicit system support.

Process Management Functions. When a program
compiled by DIRA forks a new process, the two processes
can access their memory updates logs concurrently be-
cause of the copy-on-write semantics of fork() system
call. In this case, two versions of the log are created auto-
matically by the OS. However, if a buffer overflow attack
is detected in one of the processes then the repair proce-
dure might require the program to be rolled back to the
point before a new process was forked. The current ver-
sion of DIRA does not consider the problem of cascading
rollback. Instead, if the overflow was detected in the par-
ent process then all child processes that have been forked
after the new restart point are killed. However, if an at-
tack is detected in the child process and the restart point
is chosen to be before the point where it was forked, the
process is terminated without affecting the parent process
in any way. The proxy_fork() function inserts special
tags in both parent’s and child’s process logs to facilitate
this process.

3.5. Limitations

The memory updates logging algorithm currently used
in the DIRA compiler is designed for simplicity, and thus
has much room for performance optimization. For ex-
ample, because the current DIRA compiler only tracks
data dependencies carried by simple assignment opera-
tions and proxied functions, it cannot identify dependen-
cies that involve any arithmetic expressions, e.g., B=A+C.
This means that DIRA’s recovery module may not be able
to trace a corrupted control-sensitive data structure back to
a malicious network packet if the former is derived from
the latter through any form of transformation other than
assignment operations. It is possible to generalize the cur-
rent memory updates logging algorithm by leveraging in-
formation from data flow analysis techniques that allow
DIRA to identify and log those and exactly those state-
ments that may be data dependent on the network packets.

Data/control flow analysis can also improve the effi-
ciency of state checkpointing. Ideally, the pre-image of
each global or static variable needs to be recorded ex-
actly once for each logical checkpoint. However, because
a function may be called from different places and the cur-
rent DIRA compiler does not perform inter-procedural
control flow analysis, the pre-image of each global or
static variable used in a function is recorded at least once
per invocation of that function. Furthermore, due to alias-
ing, the pre-image of the same global or static variable
may be logged multiple times within a function invoca-



tion. Data/control flow knowledge can help eliminate un-
necessary recording of pre-images, e.g., when a global
variable is repeatedly updated within a loop.

The current version of DIRA can only handle concur-
rent accesses to the memory updates log from processes
that are launched through fork() system call. However,
it does not recognize other forms of fork such as vfork().
In these cases, some form of locking mechanism is re-
quired to provide exclusive access to the memory updates
log. It is also possible that a program performs some file
or network I/O operations between the point when the at-
tack packets were read in and when the attack was de-
tected. In this case, restoring the memory image of the
program without restoring the underlying file system state
might lead to an inconsistent state of the program. Ideally,
both memory and file system repair should be performed.
The current DIRA prototype does not support file system
repair.

Signals are frequently used in network daemons as
a means of scheduling exceptional events. Currently,
DIRA’s repair mechanism does not support undo of sig-
nals. Ideally, all signals that were set after the new restart
point need to be canceled.

4. Implementation Issues

4.1. Source Code Instrumentation

The current DIRA prototype is implemented as an ex-
tension to GCC 3.3.3. When compiling a program, GCC
converts the source code to a number of representations.
First, it translates the program into an Abstract Syntax
Tree (AST). Then, the AST representation is converted
into a Register Transfer Language (RTL) representation.
Finally, the RTL code is converted into the machine code
for the target platform. DIRA instruments the source
code at two levels: AST level and machine language level.
The latter is used to generate special prologue/epilogue
code that supports return address defense as well as in-
serts function entry/exit tags. Currently, DIRA supports
only the IA-32 platform.

The code required to support memory updates log-
ging is inserted to the source code directly when
it is represented as an AST. DIRA converts each
tree of type MODIFY_EXPR representing an assign-
ment operation X=Y into a compound tree of type
COMPOUND_EXPR that is equivalent to the following C
code: (log(X,Y,sizeof(Y)), X=Y);. Such a trans-
formation can be inserted at any place in the source code.

All unary arithmetic operations (such as ++ and --)
contained in the original expression are stripped off when
the logging call is made to avoid repeated variable modi-
fication.

To proxy necessary function calls DIRA checks all

CALL_EXPR trees in the original program. If the func-
tion name of the function call is one of those that need
to be proxied, DIRA replaces the original function name
with the proxied function name. In order to support restart
points, DIRA replaces the original CALL_EXPR with a
COMPOUND_EXPR that first makes a call to setjmp() to
insert a restart point and then makes the original function
call.

4.2. Transparent Library Compilation

Often programs need to be linked with several non-
standard libraries. At the same time, same libraries can
be reused by multiple applications. Some applications
(typically server-side applications) might need DIRA sup-
port whereas others (typically client-side applications)
will most likely not. Therefore, both instrumented and
uninstrumented versions of some libraries should exist in
the system. A naive approach would be to have two ver-
sions of the same library under different names. However,
in this case one will have to go through all the Makefiles
of the program and change every occurrence of the name
of the old library to that of the instrumented library if the
program needs DIRA support. Another drawback of this
approach is the fact that a program would not be able to
switch from one version of the library to another without
being recompiled.

A better solution of this problem is to duplicate the
code of every function in all the source files that consti-
tute the library. The first copy of the function is instru-
mented whereas the second one is left intact. DIRA in-
serts an if-statement in the beginning of each function and
makes the two copies of the original function its then and
else branches. The if-statement checks whether the fol-
lowing condition is true or not: need_logging==NULL

or *need_logging==0, where int *need_logging is
a special variable inserted by DIRA to the original pro-
gram. If the condition is true, then the unmodified version
of the code is executed. Otherwise, the control flow is
transfered to the instrumented version. When an applica-
tion that does not require DIRA support is linked with a
DIRA-compiled library, the control will always be trans-
fered to the uninstrumented version of the code since the
application is not aware of the need_logging variable
which is set to NULL by default.

This code duplicating approach introduces several im-
plementation issues. The first issue is related to code gen-
eration for switch statements. GCC creates a set of labels
(trees of type CASE_LABEL) for each case expression of
the switch statement. When the second copy of the func-
tion is compiled, these labels are reused instead of being
recreated. As a result, the control is transfered to the first
version of the code that was compiled before. The solu-
tion to this problem is to recreate the labels each time a



switch statement is processed regardless of whether they
were created before or not. The second issue is related
to a common optimization performed by GCC. When it
generates RTL code for a complex AST expression, GCC
wraps this AST into a tree of type SAVE_EXPR, which in-
dicates that there is an RTL code available for the original
AST expression and there is no need to process it again.
However, DIRA requires that all ASTs be processed twice
since otherwise the logging code might not be generated
for the second copy of the AST. To ensure that this is
the case, DIRA wraps the trees of type SAVE_EXPR into
the trees of type UNSAVE_EXPR and nullifies the effect of
SAVE_EXPR.

Sometimes, a program needs to be linked with a library
which source code is not available. In this case, DIRA will
still be able to compile and link the program, but all mem-
ory manipulations that happen inside the uninstrumented
library will not be tracked. As a result, it might not be
possible to detect an attack if one of the uninstrumented
functions is responsible for it or to identify it since the
variable dependency chain might be broken because of a
call to an uninstrumented function. Also, it will be impos-
sible to undo the side effects of such functions at repair
time which can lead to memory leaks or even worse to an
inconsistent memory state of the program.

5. Evaluation of DIRA

5.1. Performance Overhead

In this section we present the evaluation of DIRA. We
are interested in its compilation time overhead, executable
code size increase, and several run-time characteristics
such as the amount of log information generated and the
performance overhead when a program is compiled in
three different modes of DIRA: D-mode, DI-mode, and
DIR-mode. We also describe our experiences with at-
tempts to compromise programs compiled by DIRA and
discuss whether repairing the programs is worthwhile at
all or restarting them from the beginning is a better strat-
egy.

We used a test suite of five network daemons in our ex-
periments: ghttpd 1.4 — an http server, drcatd 0.5.0
— a remote cat daemon, named 8.1 — DNS daemon
which is a part of BIND program, qpopper 4.0.4 — a
POP3 server, and proftpd 1.2.9 — an FTP server. We
used several exploit programs for the three programs of
our test suite: named, ghttpd, and drcatd available at
Fyodor’s Remote Exploit Archive [15] and Securiteam’s
website [5]. Our experiments proved that the instrumented
versions of these programs can detect attacks, identify at-
tack packets and continue their execution normally after
repair (the latest is true for 2 out of 3 programs that we
tried to compromise).

Program Log records Log size, KB
ghttpd 457 32
drcatd 4,000 408
named 832 39
qpopper 27,000 586
proftpd 70,000 2073

Table 4. Number of log records generated for
a single client request as described in Table
3 as well as the total log size (KB) generated
per client request.

The hardware setup used in the performance experi-
ments is as follows. The network daemon being tested was
running on a server machine with a Pentium-4M 1.7GHz
processor and 512 MB of RAM. There were two client
machines with AMD Athlon 1.7GHz processors equipped
with 512 MB of RAM each. All machines were running
the Linux 2.4.19 kernel. The machines were located in the
same 100 Mbps local network. All programs were com-
piled on the server machine with options -g -O.

To measure several run-time characteristics of the in-
strumented server programs, the client machines were
running special programs that were simultaneously send-
ing a number of requests to the server machine. The de-
scription of the performance tests is given in Table 3.

The left table in Figure 5 presents the measurements of
compilation time overhead, and shows that the compile
time overhead varies significantly from program to pro-
gram and can be between 130% and 550%.

The right table in Figure 5 shows the difference between
the executable file size produced by DIRA and that by the
original GCC compiler. Since DIRA duplicates the code
of each function, one might expect that the executable pro-
duced by DIRA will be twice as large as the executable
produced by standard GCC. This turns out to be the case
for small programs such as ghttpd and drcatd, but
does not hold for larger program. Most likely, this hap-
pens because a binary usually contains a number of sec-
tions such the data section, PLT section, symbol table sec-
tion, etc. and the code section is just one of them. Also,
GCC performs several optimizations to reduce the output
binary size. This explains why the increase in binary size
for larger programs is only 20-40% instead of expected
100%.

We conducted several series of experiments to measure
different run-time characteristics of instrumented pro-
grams. First, we measured the number of memory updates
log records as well as the total size of memory updates log
(in KB) for a single client request as described in Table 3.
The results are presented in Table 4. As the results sug-
gest, the dependency between the number of log records



Program Type Client request Repeated, times
ghttpd HTTP server fetch a 10KB HTML page 5,000
drcatd remote cat daemon fetch a 10KB file 1,000
named DNS server lookup of a domain name 10,000
qpopper POP3 server fetch a 1KB message 200
proftpd FTP server fetch a 40KB file 100

Table 3. Test programs and corresponding performance tests.

Program GCC DIRA Overhead, %
ghttpd 0.82 3.77 359
drcatd 1.30 4.50 246
named 33.38 79.72 138
qpopper 11.58 26.73 130
proftpd 25.88 169.88 555

Program GCC DIRA Overhead, %
ghttpd 87145 174778 100
drcatd 70126 156229 123
named 1452030 2036324 40
qpopper 1371275 1654643 21
proftpd 2257744 3113267 38

Figure 5. Increase in compilation time, sec (left) and the executable file size, bytes (right).

and the actual amount of data written to the log is not lin-
ear. The reason behind this is the fact that different log
records have different actual size. The typical log records
types are as follows. The size of a single variable update
log record is 16 bytes (4 bytes for read address, 4 bytes for
write address, 4 bytes for data length and 4 bytes the ac-
tual payload). A potential restart point log record has the
size of 160 bytes because it contains a jmp_buf buffer
used by setjmp() and longjmp(). Log records gen-
erated by proxied string manipulation and network libc
functions can have different sizes. Typically, their length
varies from several bytes to 1 KB.

The goal of our second series of experiments was to
measure the run-time performance overhead of the instru-
mented programs which is certainly the most important
performance metric of DIRA compiler. We compiled all
five programs in three compilation modes that DIRA pro-
vides: D-mode that supports attack detection only, DI-
mode that supports attack detection and identification, and
DIR-mode that supports program repair in addition to at-
tack detection and identification. The measurements from
these experiments are presented in Figure 6 and suggest
that the run-time overhead can vary significantly depend-
ing on the programs’ memory access behavior and can
range from 8% to 60% for programs that support attack
detection, identification, and recovery.

The experiments showed that the run-time overhead of
programs compiled in D-mode varies from 0% to 15%.
We believe that this overhead is mostly affected by the fre-
quency of function calls because it mainly comes from ad-
ditional code in the function prologue and epilogue. That
is, if functions are relatively long and called infrequently,
then there is not much to do for the return address defense
mechanism and the overhead can be close to zero percent.
If, however, the program contains lots of small functions

that call each other then the overhead can be much higher.
The run-time overhead of the programs compiled in DI-

mode is much higher than that of the programs compiled
in D-mode and is between 7% and 50%. Such a difference
can be explained by the fact that a program needs to log
certain information about its memory state changes such
as the read address, the write address, and the length of
the data being written. Programs compiled in DI-mode
make use of proxy functions to track changes performed
by standard libc calls. However, the pre-image of the data
being modified is not saved in DI-mode and this is its only
difference from DIR-mode.

The measured overhead of programs running in DIR-
mode turns out to be pretty close to that of programs
running in DI-mode due to the reason described above
— there are relatively few differences between the two
modes. In addition to saving the pre-image of data being
modified, programs in DIR mode insert potential restart
points by making setjmp() calls and also insert first lo-
cal update tags.

The main conclusion from these experiments is that the
run-time overhead depends on the programming style in
which the program was written. There are certain things
that can increase the run-time overhead such as breaking
up the program into a large number of small functions and
using pointer arithmetic extensively. These results also
suggest a strong need for a more intelligent checkpoint-
ing mechanism that can help reduce the overhead. Instead
of saving the data pre-image upon each update, one can
save the pre-image of the whole data structure once upon
function start.

We have also measured the relative frequency of each
type of log records written to the memory updates log
during a performance benchmark run. The results are pre-
sented in Figure 6. Although there seems to be no direct
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Figure 6. Run-time overheads for different modes of compilation (left) and the relative frequency
of different types of log records (right).

correlation between the frequency of types of log records
and the run-time overhead, these results still suggest that
programs with higher overhead (such as qpopper) insert
more records for variable updates and first local update
tags. Indeed, these two types of records account for 90%
of all records that qpopper) had written to the log. These
results suggest once again a need for a more sophisticated
checkpointing algorithm that can help reduce the number
of variable update log records as well as a more intelligent
mechanism for choosing the restart points. The current
mechanism relies on information about local updates to
determine where restart points are, and consequently re-
quires generating a lot more first local update records than
necessary. Ideally, such a mechanism should use depen-
dency analysis techniques such as slicing to find out points
in the program that can eventually lead to a function that
reads external data. Only those points can be program’s
potential restart points.

In our next series of experiments we measured the
amount of file and network I/O activity performed by the
programs from our test suite. This information can help
answer the question of whether the file system and net-
work undo is indeed required for the repair process or
the programs can be repaired and continue their execu-
tion without file system and network undo. The results
are presented in Table 5. The results showed that 3 out
of 5 programs that we tested do not perform any file out-
put operations when serving a single client request. Our
analysis of the source code of the remaining two programs
showed that the file output operations performed by those
programs are used to create temp files and write logging
information. We believe that this information is not a crit-
ical part of program’s state and therefore leaving it after

Program File IN File OUT Net IN Net OUT
ghttpd 45 0 1 49
drcatd 319 0 3 320
named 0 0 1 1
qpopper 41 80 5 7
proftpd 13 63 11 61

Table 5. Network and file I/O activity for a
single client request as described in Table 3.

an attack will not bring the program into an inconsistent
state. The network output operations performed by the
programs are related to communicating with the client that
initiated the connection only. Therefore, if that client turns
out to be malicious there is no need to undo the effects of
network operations for such a client. These observations
allow us to conclude that file system and network undo
support is not really required for the network daemons that
we have studied.

5.2. Experiences

We tried to compromise named, ghttpd, and
drcatd compiled in DIR-mode by using malicious code
from public databases [15, 5]. All these attempts failed
because the programs were able to detect and identify the
attacks. Moreover, two out of three programs could re-
pair themselves to the extent that allowed them to continue
normal execution. Below we describe our experiences of
applying DIRA to each of these programs in more detail.

BIND named inverse query vulnerability. BIND
named version 8.1 has a bug in its inverse DNS query pro-



cessing function allowing the attacker to gain root con-
trol of the vulnerable system. Malicious code available to
us exploited this vulnerability by sending a single packet
and waiting for response. It did not try to run a remote
shell on the victim machine. For this particular program,
the repair procedure determined that function f_restart
is function main() of named. However, it turned out
that there were no local variable updates from f_read to
f_attack, and therefore the execution could be restarted
from f_read (which was function evGetNext() in this
case).

Format string vulnerability in ghttpd. There is a
format string vulnerability in function Log(). The re-
pair procedure determined that for this particular program
functions f_restart and f_read is the same function
serverconnection(). However, since there were a
number of local variable updates between the point where
the data was read and the point where Log() was called,
the execution restarted from the beginning of function
f_restart. Still, the initial connection was kept open.
The exploit program that we used continued sending pack-
ets to the same port as where the initial malicious packet
was sent to. These subsequent packets were treated as in-
valid requests by the survived program. It sent the “bad
request” HTML page back to the exploit program in re-
sponse.

Format string vulnerability in drcatd. There is a
similar vulnerability in the logging function of drcatd.
However, in this case function main() turned out to be
f_restart. In addition, there were a number of local
variable updates between f_read and f_attack. There-
fore, the whole program needed to be restarted in case of
an attack. This problem can be solved in two ways. The
first is to reorganize the source code manually by putting
potentially vulnerable parts of the code into a separate
function so that the execution can be restarted from it in
case of attack. However, this solution requires some un-
derstanding of the source code of the program and there-
fore is not suitable for automatic program protection. The
second solution is to log all memory updates including lo-
cal ones. However, current version of DIRA cannot tell
automatically whether tracking global updates only will
be sufficient or not. Currently, this option can be turned on
and off manually. When compiled with this option turned
on drcatd can repair itself and continue normal execu-
tion. However, even if it turns out that the whole program
needs to be restarted the program can still detect the attack
and identify it.

The analysis presented above shows that it is not always
possible to repair a program automatically and that even
when it is, the restart point may be quite close to the begin-
ning of the program. This raises the question as to whether
automated attack repair is useful in practice. We believe

automated attack repair is indeed useful for the following
reasons. First, with attack repair, dynamic attack detection
is now as effective as static analysis in protecting vulner-
able applications at run time without suffering from the
latter’s false positive problems. More concretely, even if a
vulnerable application is compromised, DIRA ensures the
application can continue as if the vulnerability does not
exist in the first place. Second, automated attack repair
is essential to provide protection among clients of single-
threaded or event-based network applications. In these ap-
plications, requests from multiple clients are processed in
the same process. Therefore, terminating an application of
this type upon detecting an attack from some client is not
acceptable as it also disrupts the service to other clients
as well. Finally, DIRA’s automated attack repair can be
used together with other types of attack detection meth-
ods such as system call argument monitoring, which can
detect attacks that could damage a victim application’s ad-
dress space without hijacking its control. For these types
of attacks, the automated attack repair mechanism can still
repair the damaged address space even long after the at-
tack takes place.

6. Conclusion

In this paper we presented the first known compiler that
can transform arbitrary programs to a form that can detect
control hijacking attacks, identify the malicious input and
repair the compromised program, all without human in-
tervention. In addition, the performance overhead of these
transformations is shown to be quite modest, even without
any aggressive optimizations.

There are a number of ways in which the DIRA pro-
totype can be improved. First, we aim to improve the
efficiency of the memory updates logging mechanism by
employing control flow analysis. Currently, DIRA tracks
every update to any global variable, even though in theory
only the first one needs to be logged. Another problem
with the current logging mechanism is that it may miss
certain data dependencies, for example, when a local vari-
able is used to transfer information between two global
variables. Comprehensive data dependency analysis is re-
quired to improve the accuracy of attack identification.

We are going to address multi-threading issues in more
detail in the next version of DIRA. Multiple threads of
the same program can concurrently access the memory
updates log and other global data structures, and thus
introduce additional data dependencies. At repair time,
DIRA needs to determine which threads should be rolled
back, restore the state of each such thread to the corre-
sponding pre-attack state, and resume its execution. We
are also planning to broaden the scope of the repair pro-
cess by including support for file system undo. Although
not common among network applications, file system



undo can help erase the side effects of an attack on a file
system such as temp files.
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