
Behavioral Distance for Intrusion Detection

Debin Gao1, Michael K. Reiter2, and Dawn Song2

1 Electrical & Computer Engineering Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA

dgao@ece.cmu.edu
2 Electrical & Computer Engineering Department, Computer Science Department,

and CyLab, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{reiter, dawnsong}@cmu.edu

Abstract. We introduce a notion, behavioral distance, for evaluating
the extent to which processes—potentially running different programs
and executing on different platforms—behave similarly in response to a
common input. We explore behavioral distance as a means to detect an
attack on one process that causes its behavior to deviate from that of
another. We propose a measure of behavioral distance and a realization of
this measure using the system calls emitted by processes. Through an em-
pirical evaluation of this measure using three web servers on two different
platforms (Linux and Windows), we demonstrate that this approach holds
promise for better intrusion detection with moderate overhead.

Keywords: Intrusion detection, system call, behavioral distance.

1 Introduction

Numerous attacks on software systems result in a process’ execution deviating
from its normal behavior. Prominent examples include code injection attacks on
server processes, resulting from buffer overflow and format string vulnerabilities.
A significant amount of research has sought to detect such attacks through mon-
itoring the behavior of the process and comparing that behavior to a model of
“normal” behavior. Typically this model of “normal” is obtained either from the
process’ own previous behavior [10, 27, 9, 8, 13, 12, 37] or the behavior prescribed
by the source code or executable of the program it executes [35, 14, 15].

In this paper we present a new approach for detecting anomalous behavior of
a process, in which the model of “normal” is a “replica” of the process running
in parallel with it, operating on the same inputs. At a high level, our goal is to
detect any behavioral deviation between replicas operating on the same inputs,
which will then indicate that one of the replicas has been compromised. As
we will show, this approach will better detect mimicry attacks [36, 31] than
previous approaches. In addition, this approach has immediate application in
fault-tolerant systems, which often run replicas and compare their responses
(not behavior) to client requests to detect (e.g., [29, 3, 2]) or mask (e.g., [17, 25,
4, 39]) faults. When considering attacks, it is insufficient to simply compare the
responses to detect faults, because certain intrusions may not result in observable

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 63–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 D. Gao, M.K. Reiter, and D. Song

deviation in the responses (but may nevertheless go on to attack the interior
network, for example). Our method of detecting behavioral deviation between
replicas can significantly improve the resilience of such fault-tolerant systems by
detecting more stealthy attacks.

Monitoring for deviations between replicas would be a relatively simple task
if the replicas were identical. However, in light of the primary source of attacks
with which we are concerned—i.e., software faults and, in particular, code in-
jection attacks that would corrupt identical replicas identically—it is necessary
that the “replicas” be as diverse as possible. We thus take as our goal the task
of measuring the behavioral distance between two diverse processes, be they dis-
tinct implementations of the program (e.g., as in n-version programming [5]),
the same implementation running on different platforms (e.g., one Linux, one
Windows), or even distinct implementations on diverse platforms. In this paper,
we propose a method to measure behavioral distance between replicas and show
that our method can work with competing, off-the-shelf, diverse implementations
without modification.

We can measure behavioral distance using many different observable at-
tributes of the replicas. As a concrete example, the measure of “behavior” for
a replica that we adopt is the sequence of system calls it emits, since a process
presumably is able to affect its surroundings primarily through system calls. Be-
cause the replicas are intentionally diverse, even how to define the “distance”
between the system call sequences they induce is unclear. When the replicas
execute on diverse platforms, the system calls supported are different and not in
one-to-one correspondence. When coupled with distinct implementations there
is little reason to expect any similarity whatsoever between the system call se-
quences induced on the platforms when each processes the same request.

A key observation in our work, however, is that even though the system
call sequences might not be similar in any syntactic way, they will typically be
correlated in the sense that a particular system call subsequence emitted by
one replica will usually coincide with a (but syntactically very different) sub-
sequence emitted by the other replica. These correlations could be determined
either through static analysis of the replica executables (and the libraries), or
by first subjecting the replicas to a battery of well-formed (benign) inputs and
observing the system call sequences induced coincidentally. The former is poten-
tially more thorough, but the latter is more widely applicable, being unaffected
by difficulties in static analysis of binaries for certain platforms1 or, in the future,

1 For example, the complexity of static analysis on x86 binaries is well documented.
This complexity stems from difficulties in code discovery and module discovery [24],
with numerous contributing factors, including: variable instruction size (Prasad and
Chiueh claim that this renders the problem of distinguishing code from data unde-
cidable [22]); hand-coded assembly routines, e.g., due to statically linked libraries,
that may not follow familiar source-level conventions (e.g., that a function has a
single entry point) or use recognizable compiler idioms [26]; and indirect branch in-
structions such as call/jmp reg32 that make it difficult or impossible to identify
the target location [24, 22]. Due to these issues and others, x86 binary analysis tools
have strict restrictions on their applicable targets [24, 18, 26, 22].

Behavioral Distance for Intrusion Detection 65

of software obfuscated to render static analysis very difficult for the purposes of
digital rights management (e.g., [7]). So, we employ the latter method here.

1.1 Comparison with Related Work

Utilizing an intrusion detection system to monitor the system calls of a single
(non-replicated) process is a thoroughly explored alternative to the approach we
explore here for detecting software faults and code-injection attacks. However,
all such techniques of which we are aware are vulnerable to mimicry attacks,
whereby code injected by an attacker issues attack system calls within a longer
sequence that is consistent with normal behavior of the program [36, 31, 13]. In
the same fashion, independent system call monitoring of each of two diverse
replicas does not address this problem, provided that the code injected success-
fully into one replica uses mimicry. However, as we will show, the alternative we
consider here, in which replicas are monitored in a coordinated fashion, makes
such an attack far more difficult. The reason is that mimicry of any valid system
call sequence on a replica is not sufficient to avoid detection. Rather, to re-
main undetected, mimicry must induce a system call sequence that is typically
observed coincidentally with the sequence emitted by the other, uncorrupted
replica.

Viewed more broadly, our approach can be considered a form of intrusion
detection that seeks to correlate events from multiple distinct components of a
system. Often these events are themselves intrusion detection alerts (e.g., [33,
21]); in contrast, in our approach the events are system calls produced in the
course of the system running normally. As such, our work bears a conceptual
similarity to other efforts that correlate seemingly benign events across multiple
systems to identify intrusions (e.g., [30, 6, 38]). However, we are unaware of any
that demonstrate this capability at the system call level.

1.2 Contributions

In this paper we introduce the notion of behavioral distance for intrusion de-
tection, and detail the design, implementation and performance of a system for
dynamically monitoring the behavioral distance of diverse replicas. We detail
our measure of behavioral distance and our method for divining the correlated
system call subsequences of two replicas. We show through empirical analysis
with three different http server implementations and two different platforms
(Linux and Windows) that thresholds for behavioral distance can typically be
set so as to induce low false positive (i.e., false alarm) rates while detecting
even a minimal attack consisting of merely an open and a write—even if the
attacker knows that our defense is being used. Moreover, the false alarm rate
can be further reduced in exchange for some possibility of an attack going un-
detected (a false negative), though we believe that this tradeoff can be tuned to
detect the richer attacks seen in practice with virtually no false alarms. Perhaps
more importantly, as a first step in analyzing the behavioral distance of diverse
implementations and platforms, we believe this work can lay the framework for
future research to improve this tradeoff further.

66 D. Gao, M.K. Reiter, and D. Song

2 The Problem

The behavioral distance that we define should detect semantic similar-
ity/difference when replicas process the same input. That is, provided that
replicas process responses in the same way semantically, the behavioral distance
should be small. However, because the two replicas may be constructed dif-
ferently and may run on different operating systems, the two execution traces
will naturally differ syntactically. To bridge this apparent discrepancy, we use
the fact that since the replicas process the same input, during normal program
execution the two syntactically-different executions should represent the same
semantic action.

So, our problem is as follows: let s1 and s2 denote sequences of observed be-
haviors of two replicas, respectively. We need to define (and train) a distance
measure Dist(s1, s2) that returns a small value when the replicas operate seman-
tically similarly, and returns a large value when they semantically diverge. The
quality of the distance measure function Dist() directly impacts the false positive
and false negative rates of the system.

To the best of our knowledge, the problem of developing an accurate behav-
ioral distance measure for detecting software faults and intrusions has not been
studied before. Some techniques have been developed to evaluate the semantic
equivalence of two sequences of program instructions, though these techniques
are difficult to scale to large programs. Also, the problem of semantic equiva-
lence is different from the behavioral distance problem that we study here, since
diverse replicas may not behave in exactly the same way. We thus believe we are
the first to pose and explore this problem. We also believe that research on this
topic could lead to other applications.

There are many ways to monitor the “behavior” of a process. For example, one
could look at sequence of instructions executed, or patterns in which process’s
internal states change. In this paper, we propose a specific measure for behav-
ioral distance, by using system call sequences emitted by processes. A system
call is a service provided by the operating system and has been used in many
intrusion/anomaly detection systems [10, 27, 9, 8, 13, 12, 37, 35, 14, 15]. It is a re-
liable way of monitoring program behavior because in most modern operating
systems, a system call is the only way for user programs to interact with the
operating system. Also, system calls are natural places to intercept a program
and perform monitoring, since system calls often require a context switch. Thus,
system call monitoring could introduce lower overhead than intercepting the
program at other points for monitoring.

3 Behavioral Distance Using System Call Sequences

In this section, we describe how we construct the behavioral distance measure
using system call sequences. The goal is to design a quantitative measure such
that system call sequences resulting from the same/similar behavior on replicas
will have a small “distance” value, and system call sequences resulting from dif-
ferent behavior will have a large “distance” value. As pointed out in Section 1,

Behavioral Distance for Intrusion Detection 67

our objective is to develop such a distance measure without analyzing the pro-
gram source code or executable, i.e., the distance measure function Dist(s1, s2) is
defined by first subjecting the server replicas to a battery of well-formed (benign)
requests and observing the system call sequences induced.

3.1 Overview

Defining such a behavioral distance measure based on system call sequences is
non-trivial. A system call observed is simply an integer, which is the system call
ID used in the operating system and carries little meaning.2 The two replicas may
run on two different operating systems such as Linux and Windows; therefore
the same system call ID is likely to mean very different things on two different
operating systems. However, because the replicas process the same request and
generate the same response, there is a strong correlation on the semantics of the
system call sequences made by the replicas. Thus, we can evaluate the behav-
ioral distance by identifying the semantic correspondence of the syntactically
unrelated system call sequences.

The sequence of system calls made by a replica can be broken into subse-
quences of system calls, which we call system call phrases. A system call phrase
is a subsequence of system calls that frequently appear together in program exe-
cutions, and thus might correspond to a specific task on the operating system or
a basic block in the program’s source code. If we can learn the correspondence be-
tween these phrases, i.e., phrases on two replicas that perform the same/similar
task, we can then break sequences of system calls into phrases, and compare
the corresponding phrases to find the behavioral distance. A large behavioral
distance indicates an attack or a fault on one of the replicas.

Motivated by the above intuition, we propose to calculate the behavioral
distance as follows. We first obtain a distance table, which indicates the distance
between any two system call phrases from two replicas. Ideally, the distance
associated with two phrases that perform the same task is low, and otherwise is
high. Next, we break system call sequences s1 and s2 into sequences of system
call phrases. (Details are covered in Section 3.5.) The two sequences may have
different numbers of phrases, and the corresponding phrases (those that perform
similar tasks) might not be at the same location in the two sequences. We handle
this problem by inserting insertion/deletion phrases (denoted as I/D phrases or
σ in the following sections) to obtain two equal-length sequences of phrases
〈s1,1, . . . , s1,n〉 and 〈s2,1, . . . , s2,n〉. We then look up the distances between the
corresponding phrases in the distance table and compute the behavioral distance
as the sum of these distances:

∑
1≤i≤n dist(s1,i, s2,i).

In the rest of this section, we first explain more formally how we calculate the
behavioral distance, and then describe how we obtain the distance table through
learning. Finally we briefly explain how we identify the system call phrases by
pattern extraction.

2 We could consider the arguments to system calls as well, which would supply addi-
tional information (e.g., [16]). However, we leave this to future work.

68 D. Gao, M.K. Reiter, and D. Song

3.2 Behavioral Distance Calculation

In this subsection, we first give the intuition behind our approach by explaining
a related problem in molecular biology and evolution. We then formally define
our behavioral distance calculation.

A related problem to behavioral distance has been studied in molecular bi-
ology and evolution. Roughly speaking, the problem is to evaluate evolutionary
change between DNA sequences. When two DNA sequences are derived from
a common ancestral sequence, the descendant sequences gradually diverge by
changes in the nucleotides. For example, a nucleotide in a DNA sequence may
be substituted by another nucleotide over time; a nucleotide may also be deleted
or a new nucleotide can be inserted.

To evaluate the evolutionary change between DNA sequences, Sellers [28] pro-
posed a distance measure called evolutionary distance, by counting the number of
nucleotide changes (including substitutions, deletions and insertions) and sum-
ming up the corresponding distances of substitutions, deletions and insertions.
The calculation is easy when nucleotides in the two sequences are aligned prop-
erly, i.e., corresponding nucleotides are at the same location in the two sequences.
However, it becomes complicated when there are deletions and/or insertions, be-
cause the nucleotides are misaligned. Therefore, the correct alignment needs to
be found by inferring the locations of deletions and insertions. Figure 1 shows
an example with two nucleotide sequences and a possible alignment scheme [20].

Our behavioral distance calculation is inspired by the evolutionary distance
method proposed by Sellers [28], where the evolutionary distance is calculated
as the sum of the costs of substitutions, deletions and insertions. In behavioral
distance calculations, we also have the “misalignment” problem. Misalignments
between system call phrases are mainly due to the diverse implementations or
platforms of the replicas. For example, the same task can be performed by dif-
ferent numbers of system call phrases on different replicas. Figure 2 shows an
example with two sequences of system call phrases observed when two replicas
are processing the same request. Due to implementation differences, s2 has an
extra system call phrase idle2 which does not perform any critical operation.

To calculate the behavioral distance, we thus need to perform an alignment
procedure by inserting I/D phrases (inserting an I/D phrase in one sequence is
equivalent to deleting a corresponding phrase from the other sequence) so that
system call phrases that perform similar tasks will be at the same position in
the two aligned sequences. Given a “proper” alignment, we can then calculate
the sum of the distances between the phrases at the same position (Section 3.3

Original Sequence Aligned Sequence

ATGCGTCGTT ATGC-GTCGTT
ATCCGCGAT AT-CCG-CGAT

Fig. 1. Example of two nucleotide sequences

Behavioral Distance for Intrusion Detection 69

s1 = 〈open1, read1, write1, close1〉
s2 = 〈open2, read2, idle2, write2, close2〉

Fig. 2. Example of system call sequences observed on two replicas

discusses how we obtain the distances between any two phrases) in the two
sequences and use this sum as the behavioral distance.

Given a pair of misaligned system call sequences, there are obviously more
than one way of inserting I/D phrases into the sequences. Different ways of
inserting them will result in different alignments and hence different behavioral
distances between the two sequences. What we are most interested in here is
to find the behavioral distance between two sequences when the phrases are
aligned “properly”, i.e., when phrases that perform similar tasks are aligned
to each other. Although it is not clear how to find such an alignment for any
given pair of sequences, we know that the “best” alignment should result in the
smallest behavioral distance between the two sequences, among all other ways
of inserting I/D phrases, because phrases that perform similar tasks have a low
behavioral distance, as explained in Section 3.3. Therefore, we consider different
alignments and choose the one that results in the smallest as the behavioral
distance between the two sequences.

Assume that a sequence of system calls s is given in the form of a sequence
of system call phrases. Let prs(s) denote the number of system call phrases in
the sequence. Given two sequences s1 and s2, we define Ext(si, n) as the set of
sequences obtained by inserting n − prs(si) I/D phrases into si, at any locations
(i ∈ {1, 2}). n = f1(prs(s1), prs(s2)) is the length of the extended sequences after
inserting I/D phrases. In order to give more flexibility in the phrase alignments,
f1() ensures that n > max(prs(s1), prs(s2)). (The definition of f1() used in our
experiments is shown in Section 3.6.)

We define the behavioral distance between two system call sequences s1 and
s2 as

Dist(s1, s2) = min
s′
1,s′

2

n∑

i=1

dist(s′1,i, s
′
2,i)

where

s′1 ∈ Ext(s1, n)
s′2 ∈ Ext(s2, n)

s′1,i is the ith phrase in s′1
s′2,i is the ith phrase in s′2.

The minimum is taken over all possible values of s′1 and s′2. dist() is the entry
in the distance table, which defines the distance between any two phrases from
the two replicas. (Section 3.3 discusses how we obtain the distance table. Here
we assume that the distance table is given.)

70 D. Gao, M.K. Reiter, and D. Song

For example, in the case where each phrase is of length one, the calculation
of Dist(s1, s2) from the example in Figure 2 may indicate that the minimum is
obtained when

s′1 = 〈open1, read1, σ, write1, close1〉
s′2 = 〈open2, read2, idle2, write2, close2〉.

3.3 Learning the Distance Table

The calculation of behavioral distance shown in Section 3.2 assumes that the
distances between any two system call phrases are known. In this subsection,
we detail how we obtain the distance table by learning. To make the explana-
tions clearer, we assume that the two replicas are running Linux and Microsoft
Windows3 operating systems.

One way to obtain the distance table is to analyze the semantics of each
phrase and then manually assign the distances according to the similarity of the
semantics. There are several difficulties with this approach. First, this is labor
intensive. (Note that the set of system call phrases is likely to be different for
different programs.) Second, the information may not be available, e.g., most
system calls are not documented in Windows. Third, even if they are well doc-
umented, e.g., as in Linux, the distances obtained in this way will be general to
the operating system, and might not be able to capture any specific features of
the program running on the replicas.

Instead, we propose an automatic way for deriving the distance table by
learning. As pointed out in Section 1, our objective is to find the correlation
between system call phrases by first subjecting the server replicas to a battery
of well-formed (benign) requests and observing the system calls induced. We use
the pairs of system call sequences (i.e., system call sequences made by the two
replicas when processing the same request) in the training data to obtain the
distance table, which contains distances between any two system call phrases
observed in the training data. To do that, we first initialize the distance table,
and then run a number of iterations to update the entries in the distance table.
The iterative process stops when the distance table converges, i.e., when the
distance values in the table change by only a small amount for a few consecutive
iterations. In each iteration, we calculate the behavioral distance between any
system call sequence pairs in the training data (using the modified distance
values from the previous iteration), and then use the results of the behavioral
distance calculation to update the distance table. We explain how we initialize
and update the distance table in the following two subsections.

Initializing the Distance Table. The initial distance values in the distance
table play an important role in the performance of the system. Improper values
3 System calls in Microsoft Windows are usually called native API or system services.

In this paper, however, we use the term “system call” for both Linux and Microsoft
Windows for simplicity.

Behavioral Distance for Intrusion Detection 71

might result in converging to a local minimum, or slower convergence. We in-
troduce two approaches to initialize these distances. We use the first approach
to initialize entries in the distance table that involve system calls for which we
know the behavior, and use the second approach for the rest. Intuitively, distance
between phrases that perform similar tasks should be assigned a small value.

The First Approach. The first approach to initialize these distances is by ana-
lyzing the semantics of individual system calls in Linux and Windows. We first
assign similarity values to each pair of system calls in Linux and Windows. Let
CL and CW be the set of system calls in Linux and Windows, respectively. We
analyze each Linux system call and Windows system call and assign a value to
sim(cL

i , cW
j), where cL

i ∈ CL for all i ∈ {1, 2, . . . , |CL|} and cW
j ∈ CW for all

j ∈ {1, 2, . . . , |CW |}. System calls that perform similar functions are assigned a
small similarity value. We then initialize the distances between two system call
phrases based on these similarity values.

Let PL and PW be the set of Linux system call phrases and Windows sys-
tem call phrases observed, respectively. We would like to calculate dist(pL

i , pW
j),

i.e., the distance between two phrases where pL
i ∈ PL and pW

j ∈ PW . (Let
dist0(pL

i , pW
j) denote the initial distance.) We use len(p) to denote the number

of system calls in a phrase p. dist0(pL
i , pW

j) can now be calculated as

dist0(pL
i , pW

j)

=f2
(
{sim(pL

i,k, pW
j,l) | k ∈ {1, 2, . . . , len(pL

i)}; l ∈ {1, 2, . . . , len(pW
j)}}

)

where

pL
i,k ∈ CL is the kth system call in phrase pL

i

pW
j,l ∈ CW is the lth system call in phrase pW

j .

Intuitively, if system calls in the two phrases have small similarity values with
each other, the distance between the two phrases should be low. (The definition
of f2() used in our experiments is shown in Section 3.6.)

The main difficulty of this approach is that Windows system calls are not well
documented. We have managed to obtain the system call IDs of 94 exported Win-
dows system calls with their function prototypes [19].4 We then assign distances
to these 94 Windows system calls and the Linux system calls by comparing their
semantics. Since we do not know the system call IDs and semantics of the rest of
the Windows system calls, we propose a second method to initialize the distance
table for phrases that involve the rest of the system calls.

The second approach. The second approach to initialize the distance between two
phrases is to use frequency information. Intuitively, if two system call phrases
perform similar tasks on two replicas, they will occur in the system call sequences
4 Nebbett [19] lists 95 exported Windows system calls, but we only managed to find

94, which are not exactly the same as those listed by Nebbett.

72 D. Gao, M.K. Reiter, and D. Song

in the training data with similar frequencies. We obtain the frequency informa-
tion when the phrases are first identified by a phrase extraction algorithm and
a phrase reduction algorithm; see Section 3.5. The phrase extraction algorithm
analyzes system call sequences from sample executions, and outputs a set of sys-
tem call phrases. The phrase reduction algorithm takes this result and outputs
a subset of the system call phrases that are necessary to “cover” the training
data, in the sense described below.

The phrase reduction algorithm runs a number of rounds to find the mini-
mal subset of system call phrases identified by the phrase extraction algorithm
that can cover the training data. Each round in the phrase reduction algorithm
outputs one system call phrase that has the highest coverage (number of occur-
rences times length of the phrase) in the training data. After the phrase with the
highest coverage is found in each round, the system call sequences in the training
data are modified by removing all occurrences of that phrase. The phrase reduc-
tion algorithm terminates when the training data becomes empty. Let cnt(pL

i)
and cnt(pW

j) denote the number of occurrences of phrases pL
i and pW

j in the
training data when they are identified and removed by the phrase reduction al-
gorithm, and let cnt(PL) and cnt(PW) denote the total number of occurrences
of all phrases. The frequency with which phrases pL

i and pW
j are identified can

be calculated as cnt(pL
i)

cnt(P L) and
cnt(pW

j)
cnt(P W) , respectively.

The idea is that system call phrases identified with similar frequencies in the
training data are likely to perform the same task, and therefore will be assigned
a lower distance.

dist0(pL
i , pW

j) = f3

(
cnt(pL

i)
cnt(PL)

,
cnt(pW

j)
cnt(PW)

)

.

f3() compares the frequencies with which phrases pL
i and pW

j are identified and
assigns a distance accordingly. (The definition of f3() that we use in our experi-
ments is shown in Section 3.6.) Distances between a system call phrase and the
I/D phrase σ are assigned a constant. dist(σ, σ) is always zero.

Iteratively Updating the Distance Table. In this subsection, we show how
we use the system call sequences in the training data to update the distance
table iteratively. We run a number of iterations. The distances are updated in
each iteration, and the process stops when the distance table converges, i.e.,
when the distance values in the table change by only a small amount in a few
consecutive iterations. In each iteration, we first calculate the behavioral distance
between any pairs of system call sequences (i.e., system call sequences made by
the two replicas when processing the same request) in the training data, using
the updated distance values from the previous iteration, and then use the results
of the behavioral distance calculation to update the distance table.

Note that the result of the behavioral distance calculation not only gives the
minimum of the sum of distances over different alignment schemes, but also the
particular alignment that results in the minimum. Thus, we analyze the result

Behavioral Distance for Intrusion Detection 73

of the behavioral distance calculation to find out the frequencies with which two
phrases are aligned to each other, and use this frequency information to update
the corresponding value in the distance table.

Let occz(pL
i , pW

j) denote the total number of times that pL
i and pW

j are aligned
to each other in the results of the behavioral distance calculation in the zth

iteration. We then update dist(pL
i , pW

j) as

distz+1(pL
i , pW

j) = f4
(
distz(pL

i , pW
j), occz(pL

i , pW
j)

)
.

Intuitively, the larger occz(pL
i , pW

j) is, the smaller distz+1(pL
i , pW

j) should be.
(The definition of f4() used in our experiments is shown in Section 3.6.)
dist(pL

i , σ) and dist(σ, pW
j) are updated in the same way, and dist(σ, σ) = 0.

After the distances are updated, we start the next iteration, where we cal-
culate the behavioral distances between system call sequences in the training
data using the new distance values. The process of behavioral distance calcu-
lation and distance table updating repeats until the distance table converges,
i.e., when the distance values in the table change by a small amount for a few
consecutive iterations.

3.4 Real-Time Monitoring

After obtaining the distance table by learning, we use the system for real-time
monitoring. Each request from a client is sent to both replicas, and such a request
results in a sequence of system calls made by each replica. We collect the two
system call sequences from both replicas in real time and calculate the behavioral
distance between the two sequences. If the behavioral distance is higher than a
threshold, an alarm is raised.

3.5 System Call Phrases

Before we start calculating the behavioral distance, we need to break a system
call sequence into system call phrases. System call phrases have been used in
intrusion/anomaly detection systems [37, 13]. Working on system call phrases
significantly improves the performance of behavioral distance calculation, since
a relatively long system call sequence is recognized as a short sequence of system
call phrases.

We use the phrase extraction algorithm TEIRESIAS [23] and the phrase re-
duction algorithm in [37], which are also used in intrusion/anomaly detection
systems [37, 13], to extract system call phrases. The TEIRESIAS algorithm ana-
lyzes system call sequences from sample executions, and outputs a set of system
call phrases that are guaranteed to be maximal [23]. Maximal phrases (the num-
ber of occurrences of which will decrease if the phrases are extended to include
any additional system call) capture system calls that are made in a fixed se-
quence, and therefore intuitively should conform to basic blocks/functions in
the program source code. The phrase reduction algorithm takes the result from
TEIRESIAS and outputs a subset of the system call phrases that are neces-
sary to cover the training data. Note that other phrase extraction and reduction
algorithms can be used.

74 D. Gao, M.K. Reiter, and D. Song

For any given system call sequence, there might be more than one way of
breaking it into system call phrases. Here we consider all possible ways of break-
ing it for the behavioral distance calculation and use the minimum as the result.
We also group repeating phrases in a sequence and consider only one occurrence
of such phrase. The objective is not to “penalize” requests that require longer
processing. For example, http requests for large files normally result in long
system call sequences with many repeating phrases.

3.6 Parameter Settings

The settings of many functions and parameters may affect the performance of
our system. In particular, the most important ones are the four functions f1(),
f2(), f3() and f4(). There are many ways to define these functions. Good defini-
tions can improve the performance, especially in terms of the false positive and
false negative rates. Below we show how these functions are defined in our ex-
periments. We consider as future work to investigate other ways to define these
functions, in order to improve the false positive and false negative rates.

These functions are defined as follows in our experiments:

f1(x, y) = max(x, y) + 0.2 min(x, y)
f2(X) = m avg(X)

f3(x, y) = m(|x − y|)
f4(x, y) = m(0.8x + 0.2m′y)

where m and m′ are normalizing factors used to keep the sum of the costs in the
distance table constant in each iteration.

4 Evaluations and Discussions

In this section we evaluate an implementation of our system. We show that the
system is able to detect sophisticated mimicry attacks with a low false positive
rate. We also show that the performance overhead of our system is moderate.

4.1 Experimental Setup

We setup a system with two replicas running two webservers and one proxy
to serve http requests. Replica L runs Debian Linux on a desktop computer
with a 2.2 GHz Pentium IV processor, and replica W runs Windows XP on a
desktop computer with a 2.0 GHz Pentium IV processor. We use another desktop
computer with a 2.0 GHz Pentium IV processor to host a proxy server P. All the
three machines have 512 MB of memory. The Linux kernel on L is modified such
that system calls made by the webserver are captured and sent to P. On W,
we develop a kernel driver to capture the system calls made by the webserver.
A user program obtains the system calls from the kernel driver on W and sends
them to P.

Behavioral Distance for Intrusion Detection 75

P accepts client http requests and forwards them to both L and W. Af-
ter processing the requests, L and W send out responses and the system call
sequences made by the server programs. P calculates the behavioral distance be-
tween the two system call sequences, raising an alarm if the behavioral distance
exceeds a threshold, and forwards the response to the client if responses from L
and W are the same.

4.2 Behavioral Distance Between System Call Sequences

We run our experiments on three different http server programs: Apache [11],
Myserver [1] and Abyss [32]. We choose these servers mainly because they work
on both Linux and Windows. A collection of html files of size from 0 to 5 MB are
served by these http servers. Training and testing data is obtained by simulating
a client that randomly chooses a file to download. The client sends 1000 requests,
out of which 800 are used as training data and the remaining 200 are used as
testing data.

We run two sets of tests. In the first set of tests we run the same server
implementation on the replicas, i.e., both L and W run Apache, Myserver or
Abyss. Training data is used to learn the distances between system call phrases,
which are then used to calculate the behavioral distance between system call
sequences in the testing data. Results of the behavioral distance calculations on
the testing data are shown in Figure 3 in the form of cumulative distribution
functions (x-axis shows the behavioral distance, and y-axis shows the percentage
of requests with behavioral distance smaller than the corresponding value on
x-axis.). Figure 3 clearly shows that legitimate requests result in system call
sequences with small behavioral distance.

In the second set of tests, we run different servers on L and W. Figure 4(a)
shows the results when L is running Myserver and W is running Apache, and
Figure 4(b) shows results when L is running Apache and W is running Myserver.
Although the behavioral distances calculated are not as small as those obtained
in the first set of tests, the results are still very encouraging. This set of tests
shows that our system cannot only be used when replicas are running the same
servers on different operating systems, but also be used when replicas are running
different servers. Our approach is thus an alternative to output voting for server

0 5 10
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(a) Apache

0 5 10
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(b) Myserver

0 1 2 3 4 5 6 7
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(c) Abyss

Fig. 3. CDF of behavioral distances when replicas are running the same server

76 D. Gao, M.K. Reiter, and D. Song

0 5 10
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(a) Myserver (L) and Apache (W)

0 5 10 15
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(b) Apache (L) and Myserver (W)

Fig. 4. CDF of behavioral distances when replicas are running different servers

implementations that do not always provide identical responses to the same
request (c.f., [4]).

4.3 Resilience Against Mimicry Attacks

Section 4.2 shows that legitimate requests to the replicas result in system call
sequences with small behavioral distances. In this section, we show that at-
tack traffic will result in system call sequences of large behavioral distances.
However, our emphasis is not on simple attacks which can be detected by intru-
sion/anomaly detection systems on individual replicas. (We did try two known
attacks on an Abyss webserver, and results show that they are detected by iso-
lated anomaly detection systems [37] on any one of the replicas.) Instead, we
focus on more sophisticated attacks, namely mimicry attacks [36, 31].

An attack that injects code into the address space of a running process, and
then causes the process to jump to the injected code, results in a sequence of
system calls issued by the injected code. In a mimicry attack, the injected code is
crafted so that the “attack” system calls are embedded within a longer sequence
that is consistent with the program that should be running in the process. As
shown in [36, 13], mimicry attacks are typically able to evade detection by host-
based intrusion/anomaly detection systems that monitor system call sequences.

We analyze a very general mimicry attack, in which the attacker tries to make
system call open followed by system call write, when the vulnerable server is
processing a carefully crafted http request with attack code embedded. This
simple attack sequence is extremely common in many attacks, e.g., the addition
of a backdoor root account into the password file. We assume that the attacker
can launch such an attack on only one of the replicas using a single request; i.e.,
either the vulnerability exists only on one of the replicas, or if both replicas are
vulnerable, an attacker can inject code that makes system calls of his choice on
only one of the replicas. To our knowledge, there is no existing code-injection
attacks that violate this assumption, when the replicas are running Linux and
Microsoft Windows; nor do we know how to construct one except in very spe-
cialized cases.

We perform two tests with different assumptions. The first test assumes that
the attacker is trying to evade detection by an existing anomaly detection tech-

Behavioral Distance for Intrusion Detection 77

Table 1. Behavioral distance of mimicry attacks

Server on L Apache Abyss Myserver Myserver Apache
Server on W Apache Abyss Myserver Apache Myserver

Mimicry on L (test 1) 10.283194 9.821795 26.656983 6.908590 32.764897
99.9093 % 100 % 100 % 99.4555 % 100 %

Mimicry on W (test 1) 6.842813 5.492936 9.967780 13.354194 5.280875
99.4555 % 99.9093 % 99.4555 % 100 % 99.4555 %

Mimicry on L (test 2) 3.736 1.828 13.657 2.731 13.813
98.9111 % 99.8185 % 100 % 98.9111 % 100 %

Mimicry on W (test 2) 2.65 2.687 2.174 2.187 2.64
98.7296 % 99.8185 % 98.0944 % 98.9111 % 97.8221 %

nique running on one of the replicas. In particular, the anomaly detection tech-
nique we consider here is one that uses variable-length system call phrases in
modeling normal behavior of the running program [37]. In other words, the first
test assumes that the attacker does not know that we are utilizing a behavioral
distance calculation between replicas (or indeed that there are multiple replicas).
In the second test, we assume that the attacker not only understands that our
behavioral distance calculation between replicas is being used, but also has a
copy of the distance table that is used in the behavioral distance calculation.
This means that an attacker in the second test is the most powerful attacker,
who knows everything about our system. In both tests, we exhaustively search
for the best mimicry attack. In the first test, the “best” mimicry attack is that
which makes the minimal number of system calls while remaining undetected.
In the second test, the “best” mimicry attack is that which results in the small-
est behavioral distance between system call sequences from the two replicas.
We assume that the mimicry attack in both cases results in a request to the
uncorrupted replica that produces a “page not found” response.

Results of both tests are shown in Table 1. For each individual test, Table 1
shows the behavioral distance of the best mimicry attack, and the percentage of
testing data (from Section 4.2) that has a smaller behavioral distance. That is,
the percentage shown in Table 1 indicates the true acceptance rate of our system
when the detection threshold is set to detect the best mimicry attack. As shown,
these percentages are all very close to 100%, which means that the false alarm
rate of our technique is relatively low, even when the system is configured to
detect the most sophisticated mimicry attacks. Moreover, by comparing results
from the two sets of tests, we can also see the trade-off between better detection
capability and lower false positive rate. For example, by setting the threshold
to detect any mimicry attacks that could have evaded detection by an isolated
intrusion/anomaly detection system on one of the replicas (results in test 1), our
system will have a much lower false positive rate (between 0% and 0.5%).

4.4 Performance Overhead

Section 4.2 and Section 4.3 show that our method for behavioral distance is
more resilient against mimicry attacks than previous approaches and has low

78 D. Gao, M.K. Reiter, and D. Song

false positive rate. In this section, we evaluate the performance overhead of our
implementation of the behavioral distance calculation by measuring the through-
put of the http servers and the average latency of the requests. The performance
evaluation shows that the performance overhead is moderate. Also note that our
current implementation is unoptimized, so the performance overhead will be
even lower with an optimized implementation.

We run two experiments to evaluate our performance overhead. First, we
evaluate the performance degradation of a single server due to the overhead of
having to extract and send the system call information to another machine to
compute the behavioral distance. Second, we show our performance overhead in
comparison to a fault-tolerant system that compares the responses from replicas
before returning the response to the client (“output voting”).

Performance Overhead of Extracting and Sending System Call Infor-
mation. In this experiment, we run two different tests on one single server
running Windows operating system (with a 2.0 GHz Pentium IV processor and
512 MB memory). In both tests, we utilize the static test suite shipped with
WebBench 5.0 [34] to test the throughput and latency of the server when the
server is fully utilized. In the first test, the machine simply runs the Abyss X1
webserver. In the second test, the machine runs the same webserver and also
extracts and sends out the system call information to another machine for the
behavioral distance calculation (though this calculation is not on the critical
path of the response). We compared the difference in throughput and latency
between the two tests. Our experiment results show that the second test has a
6.6% overhead in throughput and 6.4% overhead in latency compared to the first
test. This shows that intercepting and sending out system call information causes
very low performance overhead on a single server in terms of both throughput
and latency.

Performance Overhead Compared to Output Voting. We perform three
tests to measure the performance overhead of our implementation of the behav-
ioral distance on a replicated system with Abyss X1 webservers. The experi-
mental setup is the same as shown in Section 4.1, except that we use another
machine T (with a 2.0 GHz Pentium IV processor and 512 MB memory) to
generate client requests, and in one of the tests we also have yet another ma-
chine C to perform the behavioral distance calculation. We use the benchmark
program WebBench 5.0 [34] in all the three tests. All tests utilize the static test
suite shipped with WebBench 5.0, except that we simulate 10 concurrent clients
throughout the tests. Each test was run for 80 minutes with statistics calculated
at 5-minute intervals. Results are shown in Figure 5.

In the first test, replicas L and W only serve as webservers, without the
kernel patch (on Linux) or kernel driver (on Windows) to capture the system
call sequences. Proxy P does output voting, which means that responses from L
and W are compared before being sent to the client T. This test is used as the
reference in our evaluation.

In the second test, besides output voting on P, replicas L and W capture the
system calls made by the webservers and send them to machine C, which does

Behavioral Distance for Intrusion Detection 79

0 20 40 60 80
Test time (min)

0

0.5

1

1.5

2

2.5

T
hr

ou
gh

pu
t (

M
by

te
/s

)

P: output voting
L&W: serve requests
P: output voting
L&W: serve requests + send syscall sequences to C
P: output voting + behavioral distance calculation
L&W: serve requests + send syscall sequences to P

(a) Throughput

0 20 40 60 80
Test time (min)

0

4

8

12

L
at

en
cy

 (
m

se
c)

P: output voting
L&W: serve requests
P: output voting
L&W: serve requests + send syscall sequences to C
P: output voting + behavioral distance calculation
L&W: serve requests + send syscall sequences to P

(b) Latency

Fig. 5. Performance overhead

the behavioral distance calculation. Note that in this test the behavioral distance
calculation is not on the critical path of responding to the client. The purpose of
this test is to show the overhead for capturing the system call information (and
analyzing it off-line). As seen from Figure 5, this results in very small overhead:
3.58% in throughput and 0.089 millisecond in latency on average.

In the last test, output voting and the behavioral distance calculation are both
performed on the proxy P on the critical path of responding to the client, i.e.,
the response is sent to the client only after the behavioral distance calculation
and output comparison complete. To improve performance, P caches behavioral
distance calculations, so that identical calculations are not performed repeatedly.
Figure 5 shows that the proxy needs about 50 minutes to reach its optimal
performance level. After that, clients experience about a 24.3% reduction in
throughput and 0.848 millisecond overhead in latency, when compared to results
from the first test.

The results suggest that we need to use a slightly more powerful machine for
the proxy, if we want to do behavioral distance calculation on the critical path
of server responses, for servers to remain working at peak throughput. However,
even in our tests the overhead in latency is less than a millisecond.

5 Conclusion

In this paper, we introduce behavioral distance for evaluating the extent to which
two processes behave similarly in response to a common input. Behavioral dis-
tance can be used to detect a software fault or attack on a replica, particularly
one that does not immediately yield evidence in the output of the replica. We
propose a measure of behavioral distance and a realization of this measure us-
ing the system calls emitted by processes. Through an empirical evaluation of
this measure using three web servers on two different platforms (Linux and Win-
dows), we demonstrate that this approach is able to detect sophisticated mimicry
attacks with low false positive rate and moderate overhead.

80 D. Gao, M.K. Reiter, and D. Song

References

1. Myserver. http://www.myserverproject.net .
2. L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection for Byzan-

tine quorum systems. IEEE Transactions on Parallel Distributed Systems, 12(9),
September 2001.

3. R. W. Buskens and Jr. R. P. Bianchini. Distributed on-line diagnosis in the presence
of arbitrary faults. In Proceedings of the 23rd International Symposium on Fault-
Tolerant Computing, pages 470–479, June 1993.

4. M. Castro, R. Rodrigues, and B. Liskov. Base: Using abstraction to improve fault
tolerance. ACM Transactions on Computer Systems (TOCS), 21(3):236–269, 2003.

5. L. Chen and A. Avizienes. n-version programming: A fault-tolerance approach to
reliability of software operation. In Proceedings of the 8th International Symposium
on Fault-Tolerant Computing, pages 3–9, 1978.

6. S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, J. Rowe,
S. Staniford-Chen, R. Yip, and D. Zerkle. The design of GrIDS: A graph-based
intrusion detection system. Technical Report CSE-99-2, Computer Science Depart-
ment, U.C. Davis, 1999.

7. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proceedings of the ACM Symposium on Principles
of Programming Languages, January 1998.

8. H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In Proceedings of the 2004
IEEE Symposium on Security and Privacy, 2004.

9. H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, 2003.

10. S. Forrest and T. A. Langstaff. A sense of self for unix processes. In Proceedings
of the 1996 IEEE Symposium on Security and Privacy, 1996.

11. The Apache Software Foundation. Apache http server. http://httpd.apache.org.
12. D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graph for

anomaly detection. In Proceedings of the 11th ACM Conference on Computer &
Communication Security, 2004.

13. D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly
detection. In Proceedings of the 13th USENIX Security Symposium, 2004.

14. J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams.
In Proceedings of the 11th USENIX Security Symposium, 2002.

15. J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection.
In Proceedings of Symposium on Network and Distributed System Security, 2004.

16. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In Proceedings of the 8th European Symposium on Research
in Computer Security (ESORICS 2003), 2003.

17. L. Lamport. The implementation of reliable distributed multiprocess systems. In
Computer Networks 2, 1978.

18. X. Lu. A Linux executable editing library. Master’s thesis, Computer and Infor-
mation Science Department, National Unviersity of Singpaore, 1999.

19. G. Nebbett. Windows NT/2000 Native API Reference. Sams Publishing, 2000.
20. M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford University

Press, 2000.

http://www.myserverproject.net
http://httpd.apache.org

Behavioral Distance for Intrusion Detection 81

21. P. Ning, Y. Cui, and D. S. Reeves. Analyzing intensive intrusion alerts via cor-
relation. In Recent Advances in Intrusion Detection (Lecture Notes in Computer
Science vol. 2516), 2002.

22. M. Prasad and T. Chiueh. A binary rewriting defense against stack based buffer
overflow attacks. In Proceedings of the USENIX Annual Technical Conference,
June 2003.

23. I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biological se-
quences. Bioinformatics, 14(1):55–67, 1998.

24. T. Romer, G. Voelker, D. Lee, A. Wolman, W.Wong, H. Levy, B. Bershad, and
B. Chen. Instrumentation and optimization of win32/intel executables using etch.
In Proceeding of the USENIX Windows NT Workshop, August 1997.

25. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

26. B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited.
In Proceeding of the Working Conference on Reverse Engineering, pages 45–54,
2002.

27. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, 2001.

28. P. H. Sellers. On the theory and computation of evolutionary distances. SIAM J.
Appl. Math., 26:787–793.

29. K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine faults in a
distributed computing system. In Proceedings of the 17th International Symposium
on Fault-Tolerant Computing, pages 55–60, 1987.

30. S. R. Snapp, S. E. Smaha, D. M. Teal, and T. Grance. The DIDS (Distributed
Intrusion Detection System) prototype. In Proceedings of the Summer USENIX
Conference, pages 227–233, 1992.

31. K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal
to the normal and beyond. In Proceedings of the 5th International Workshop on
Information Hiding, October 2002.

32. Aprelium Technologies. Abyss web server. http://www.aprelium.com.
33. A. Valdes and K. Skinner. Probabilistic alert correlation. In Recent Advances in

Intrusion Detection (Lecture Notes in Computer Science vol. 2212), 2001.
34. VeriTest. Webbench. http://www.veritest.com/benchmarks/webbench/

default.asp
35. D. Wagner and D. Dean. Intrusion detection via static analysis. In Proceedings of

the 2001 IEEE Symposium on Security and Privacy, 2001.
36. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.

In Proceedings of the 9th ACM Conference on Computer and Communications
Security, 2002.

37. A. Wespi, M. Dacier, and H. Debar. Intrusion detection using variable-length audit
trail patterns. In Proceedings of the 2000 Recent Advances in Intrusion Detection,
2000.

38. Y. Xie, H. Kim, D. O’Hallaron, M. K. Reiter, and H. Zhang. Seurat: A pointillist
approach to anomaly detection. In Recent Advances in Intrusion Detection (Lecture
Notes in Computer Science 3224), pages 238–257, September 2004.

39. J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating
agreement from execution for Byzantine fault tolerant services. In Proceedings of
the 19th ACM Symposium on Operating System Principles, 2003.

http://www.aprelium.com
http://www.veritest.com/benchmarks/webbench/default.asp
http://www.veritest.com/benchmarks/webbench/default.asp

	Introduction
	Comparison with Related Work
	Contributions

	The Problem
	Behavioral Distance Using System Call Sequences
	Overview
	Behavioral Distance Calculation
	Learning the Distance Table
	Real-Time Monitoring
	System Call Phrases
	Parameter Settings

	Evaluations and Discussions
	Experimental Setup
	Behavioral Distance Between System Call Sequences
	Resilience Against Mimicry Attacks
	Performance Overhead

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

