
Derandomization from Worst-Case Assumptions: Error-correcting

codes and worst-case to average-case reductions.

April 3, 2006

From last time: We had the following assumption (called assumption 4 in that handout)

Definition: CCρ(f) ≥ s if s-sized circuits can compute f with probability at most ρ for a
random input. That is, for every circuit family {Cn} with |Cn| ≤ s(n), Prx←R{0,1}n [Cn(x) =
f(x)] < ρ. If CC1−1/(100n)(f) ≥ s we say that f is “mildly hard on the average” for s-sized
circuits (every circuit will fail on a 1/(100n) fraction of the inputs) and if CC1(f) ≥ s we say
that f is “worst-case hard” for s-sized circuits (every circuit will fail on at least one input).

Assumption 1: ∃f ∈ E such that CC1−1/(100n)(f) ≥ 2nε
. That is, for every large enough n

and 2nε
sized circuit C,

Pr
x←R{0,1}n

[C(x) = f(x)] ≤ 1− 1
100n

We showed (using Yao’s XOR Lemma + Nisan-Wigderson generator) that Assumption 1
implies BPP = QuasiP.

Today: We’ll prove that Assumption 1 is implied by a seemingly much weaker assumption on
worst-case hardness of functions. That is, we’ll prove the following theorem:

Theorem 1 (BFNW). If ∃f ∈ E such that CC(f) ≥ 2nε
for some ε > 0 then Assumption 1

holds. In particular, in this case ∃f ∈ E such that CC1−1/(100n)(f)geq2nε/100.

Aside: error correcting codes We’ll move now to a seemingly irrelevant topic, that is interest-
ing in its own right: the problem of error correcting codes:

Suppose Alice needs to record a string f ∈ {0, 1}n so that she’s able to retrieve it later, but
the medium she uses (e.g., magnetic/optical disk) is unreliable and as much as 10% of the
bits may be changed to an arbitrary value. How can she store f so that she’ll be able to
retrieve it later?

The basic idea is to use redundancy, but the obvious repetition idea does not really work:
that is, suppose Alice writes down the string f̂ ∈ {0, 1}10n where each bit in f is replicated 10
times in f̂ . When reading a corrupted version of f̂ one might hope that since only 10% of the
bits are changed, for every i ∈ [n] the majority of the 10 repetitions of the bit fi still contains
the right value fi. However, since the places where f̂ is corrupted are arbitrary, there is no
reason to believe this is true. Indeed, by only corrupting 10 bits, one may ensure that the
value of the first bit f1 is lost.

1

It may seem that this problem is hopeless, but Shannon showed that it may be in fact
actually solveable. He suggested the notion of an error correcting code, which is a func-
tion E : {0, 1}n → {0, 1}m satisfying the following notion: for every f 6= f ′ ∈ {0, 1}n,
dist(E(f), E(f ′)) ≥ 0.4 where dist(y, y′) is the fraction of i’s in [m] such that yi 6= y′i.

1

The idea is the simple: encode f using f̂ = E(m). Now, let g be a corrupted version of
f̂ with at most 10% corruption, that is dist(g, f̂) ≤ 0.1. Then, for every other f ′ 6= f ,
dist(g,E(f ′)) ≥ 0.3 since by the triangle inequality

dist(E(f), E(f ′)) ≤ dist(E(f), g) + dist(g,E(f ′))

and so f is the unique string such that dist(E(f), g) < 0.2 and thus at least in principle it
can be recovered from g.

Shannon showed that such a function E exists from {0, 1}n to {0, 1}10n using the probabilistic
method (in fact he calculated exactly the length of the output required as a function of the
input).2 This follows by essentially the Chernoff bounds that show that for such a random E
the probability that the distance of E(f) and E(f ′) is less than 0.4 is so small that we can
take a union bound over all the < 22n pairs f, f ′. However, as we know, such a function E will
have complexity 2n and for practical applications one needs a function E that is efficiently
(i.e., polynomial-time) computable. In fact, we need E to also be efficiently decodable which
means that we need an efficient algorithm that given g with dist(g,E(f)) < 0.1 finds f .

Larger alphabets How do we get such efficient codes? For starters, we’ll make our job easier,
and think of a larger alphabet of symbols than {0, 1}. That is, for some set F, we’ll ask for
a function E : Fn → Fm such that for every f 6= f ′ ∈ Fn, dist(E(f), E(f ′)) > 0.1 (dist is
again defined to be the fraction of i’s such that E(f)i 6= E(f ′)i). To see that this is an easier
problem, think of the case that |F| > 210: if we let bin(g) be the representation of g ∈ Fm as
a binary string in the obvious way, then we 10% of the bits by changing one bit in every one
of the log |F| bits that represent one symbol in g. Let’s call this changed string y. We get
that dist(bin(g), y) ≤ 0.1 but dist(g, bin−1(y)) = 1. (Note that we made the problem easier
by moving to outputs in Fm and appropriate distance definition. It wouldn’t have changed
anything if we considered inputs in {0, 1}log |F |n instead of Fn.)

Reed-Solomon codes We now define one of the most famous codes:

Choose F to be a field of size m (for m > n) and for every f ∈ Fn think of f = (f0, . . . , fn−1)
as defining a polynomial of degree n − 1 over F: that is, f(x) = f0 + f1x + · · · + fn−1x

n−1.
Define E(f) = f(0), . . . , f(m− 1).

The well known polynomial-lemma implies that dist(E(f), E(f ′)) ≥ 1− n−1
m . For example, if

m > 5n then this is more than 0.8. This code is definitely efficiently computable, and there’s
also an efficient decoding algorithm (that we’ll not show).

We’ll show a decoding algorithm for the somewhat easier case where we are given a g ∈ Fm

such that dist(g,E(f)) < 1
10n . In this case we choose at random x1, . . . , xn and look at the

values y1, . . . , yn where yi = g(xi). With probability ≥ 0.9, for all these values yi = f(xi).
In this case, we can use polynomial interpolation to recover the polynomial f by solving a
system of n linear equations (with the unknowns being the coefficients of the polynomial).

1Note that this condition really only refers to the image set of E(·). Thus, often in the coding literature a code is
defined not as a function from {0, 1}n → {0, 1}m but as a subset of {0, 1}m with cardinality at least 2n.

2We note that Shannon was more interested in everage errors, and the notion of worst-case errors we present here
is due to Hamming.

2

Reducing the alphabet Here’s an idea to reduce the alphabet of the code’s output: suppose you
have a code E1 from Fn to Fm and a code E2 from {0, 1}log |F| (which we can identify with |F|)
to {0, 1}k. Then we can define a code E : Fn → {0, 1}km as follows: let E(f) be the concate-
nation of E2(E1(f)i) for every i ∈ [m]. It’s not hard to show that dist(E) ≥ dist(E1)dist(E2)
(where dist(E) is defined as the minimum over all x 6= x′ of dist(E(x), E(x′))), and that at
least as far as encoding goes, E is efficient if E1 and E2 were.

However, this doesn’t seem to help us reduce alphabet to binary since it’s not clear where we
are supposed to get the code E2 in the first place! However, the crucial observation is that
we need E2 to have much shorter input length. For example, if E1 is the Reed-Solomon code
that maps Fn to F5n for |F| = 5n, we need E2 : {0, 1}log(5n) → {0, 1}k and thus it is enough
to have a code that runs in time exponential in its input.

We’ll now show such a code that was found very useful in many applications.

Hadamard code The Hadamard code H is a map from {0, 1}` to {0, 1}2`
defined as follows: for

x, y ∈ {0, 1}`, the yth bit of H(x) is 〈x, y〉 (mod 2). We’ve already seen before the claim
that dist(H) ≥ 0.5: that is, that for every x 6= x′, the probability over a random y that
〈x, y〉 6= 〈x′, y〉 or equivalently that 〈x⊕ x′, y〉 = 1 is 1

2 .

Thus, we can concatenate the Hadamard code with the Reed-Solomon code to obtain a code
mapping |F|n to {0, 1}O(n2) that can handle 10% corruption (actually this approach can get
us arbitrarily close to 25% corruptions). With a bit more work (using a different code than
Hadamard) we can have a code that maps {0, 1}n to {0, 1}O(n) with similar parameters.

Back to hardness amplifications What does any of the above have to do with hardness ampli-
fication? Think of what we’re trying to do:

We have a function f and we want to convert it to a function f̂ such that if someone solves f̂
on a 1− 1/(10n2) fraction of the inputs then we can solve f in the worst-case. An algorithm
that solves f̂ on such a fraction of the inputs can be thought of as giving us a corrupted
version of f̂ and so what we’re trying to do is decode it to obtain back the function f !

Local decoding The only problem in the above reasoning is that while naturally a decoding
procedure to obtain f from a corrupted version of f̂ takes poly(|f̂ |) time, this is something
we cannot afford in this context.

The reason is that the function f , as a string, is of length 2n, and so f̂ will be of at least this
size. This means that polynomial in |f̂ | is 2O(n) time which is not very interesting: of course
we can compute f if we were given that much time!

it may seem that we’re back to square one and this really wasn’t such a good way to think
about functions, but in fact, this approach can still be salvaged: the idea is to use local
decoding. A lcoal decoding procedure is a procedure that does not try to recover all of f
in one shot, but rather is given an index i ∈ |f | and computes fi given oracle access to a
corrupted version of f̂ = E(f) and only runs in time polylog(|f̂ |). One can see that a local
decoding procedure is exactly what we need: it means that given black-box access to some
algorithm that computes f̂ on a good fraction of the inputs, we can actually come up with
an algorithm of similar efficiency that computes f on every input.

Note that we don’t need to encoding algorithm E to be local: polynomial in |f | is enough,
since we can afford to have f̂ computable in 2O(n) (after all, all we need is to have f̂ ∈ E). In
fact it can be shown that an encoding algorithm can not be local and needs to have bits of

3

the output depend on many bits of the input (which is one reason why we haven’t been able
to prove similar results for lower complexity classes such as NP).

The actual construction We’re now ready to show how we can convert a function f ∈ E that
is hard on the worst case for s sized circuits, to a function f̂ ∈ E that is hard to solve on a
1−1/(10n2) fraction of its inputs for circuits of size s′ = s/poly(n). We’ll follow the approach
above by using first a code with non-binary output (not Reed-Solomon but a related cousin)
and then combine this with Hadamard to get a function with binary output.

Multilinear extension Let f : {0, 1}n → {0, 1} be some function. Let F be some field. Since
any function can be represented as a polynomial of some degree, we can find an n-variable
polynomial f̂ : Fn → F such that for every x1, . . . , xn ∈ {0, 1}, f̂(x1, . . . , xn) = f(x1, . . . , xn).
In fact, since for every x ∈ {0, 1} and k ≥ 1, xk = x, we can find such a polynomial that is
multilinear : that is the degree of each variable xi in the polynomial is at most one.

We Choose |F| = 2n and make the following claim

Lemma 2. If there’s an s′ sized circuit C that computes f̂(x1, · · · , xn) with probability ≥
1 − 1/(10n) over x1, . . . , xn then there’s s = s′poly(n) circuit C ′ that computes f on every
input.

Proof. We’ll make the following stronger claim: if there’s a circuit C like that then we actually
have a circuit C ′ that computes f̂ on every input. Since f̂ agrees with f on inputs in {0, 1}n
this proves the lemma. (This property that we can correct a typically successful algorithm
for f̂ to an always successful algorithm is called self correction.)

We’ll show a probabilistic algorithm that computes f̂(~x) for every ~x ∈ Fn with probability at
least 0.9. This can be converted into a deterministic circuit in the standard way (as in the
proof that BPP ⊆ P/poly.

Let ~x ∈ Fn. We’ll choose ~y ←R Fn, and for i = 0, 1, . . . , n + 1 (we treat these as elements
of F with 0 being the zero element of F), let ~xi = ~x + i~y. Note that ~x0 = ~x and that for
every i 6= 0, ~xi is distributed uniformly over Fn. For every i ∈ {1, . . . , n + 1}, we compute
~yi = C ′(~xi). Then, by the union bound with probability 0.9 ~yi = f̂(~xi) for all i = 1, . . . , n+1
(let’s call this event GOOD).

Now, considering ~x and ~y as fixed, consider the function p : F → F defined as follows:
p(i) = f̂(~x + i~y). This function is a degree ≤ n polynomial in i. Hence, from the values
p(1), . . . , p(n + 1) we can recover, using polynomial interpolation, all the coefficients of p(·)
and in particular recover p(0) = f̂(~x). We see that if GOOD happens (which is the case with
≥ 0.9 probability) we manage to obtain f̂(~x).

Binary output As mentioned above, to get a function with binary input from f̂ : Fn → F we
define f̃(~x, r) = 〈f̂(~x), r〉 (mod 2). That is, f̃ : Fn × {0, 1}log |F | → {0, 1}.
We’ll show that if CC1−1/(10n)(f̂) ≥ s(n) then CC1−1/(100n)(f̃) ≥ s(n)/poly(|F|).

That is, we need to show that if C̃ computes f̃ with probability better than 1 − 1/(100n)
then there’s a circuit Ĉ with |Ĉ| ≤ poly(|F|)|C̃| that computes f̂ with probability at least
1− 1/(10n).

We’ll define Ĉ as follows: to compute f̂(~x), compute C̃(~x, r) for every r ∈ {0, 1}log |F | to
obtain a string ~z ∈ {0, 1}|F |. Now, for every a ∈ F, let ~wa be the Hadamard encoding of a.

4

If there’s an a such dist(~wa, ~z) < 0.25 then output a (otherwise output something arbitrary).
Note that by the distance of the Hadamard code, there’ll be at most one such a.

To prove that Ĉ works note that by our assumption on C̃, there must be at least a 1−1/(10n)
of the ~x’s such that C̃(~x, r) = f̃(~x, r) with probability ≥ 9/10 over r. For every such ~x, Ĉ
will return the right value.

Recap We’ve by now proved the following theorem: If ∃f ∈ E and ε > 0 with CC(f) ≥ 2nε
then

BPP ⊆ QuasiP. This follows from the following three steps:

• Using error-correcting codes (specifically multilinear extension and Hadamard) we moved
from a function f that is hard for subexponential circuits to compute in the worst case,
to a function f̃ that is hard for such circuits to compute with probability better than
1− 1/(100n).

• Using the XOR lemma we moved from such a function f̃ into a function f that is hard
for subexponential circuits to compute with probability better than 1

2 + 2−nε′
for some

constant ε′ > 0.

• The NW generator uses such a function f to contruct a 2O(`)-time generator that maps
` bits to 2`ε′′

bits and is indistinguishable by 2`ε′′
-size circuits. To derandomize a time-t

algorithm A on input x, convert r 7→ A(x, r) to a circuit C of size t2, set t = 2`ε′′
and

you’ll get an 2O(`) = 2polylog(t) time derandomization.

Getting to BPP = P There are several approaches to get to BPP = P. One interesting ap-
proach is to skip the XOR Lemma and get using error correcting codes directly from a
function f that is worst case hard for 2εn-sized circuits to a function f̂ that is 1

2 + 2ε′n-hard
for 2ε′n circuits.

However, it may seem quite strange that we’re able to get even to a function that is 0.6-hard
using error correcting codes. The reason is that if we go back to the coding analogy, one can
see that if we want a code with at most a polynomial expansion then the code’s distance must
be at least 0.5 (in fact, the distance needs to be at most 0.5− ε for some constant ε > 0, and
if we want any non-trivial code, even allowing exponential or double exponential expansion
we cannot go to, say, distance 0.51).

If we take a code E : {0, 1}n → {0, 1}m with distance ≤ 0.5 and take two strings x 6= x′ such
that dist(E(f), E(f ′)) ≤ 0.5 then we can find g ∈ {0, 1}m such that dist(E(f), g) ≤ 0.25 and
dist(g,E(f ′)) ≤ 0.25 (on half the bits E(f) and E(f ′) do not agree, take g to agree with E(f)
and on the other take g to agree with E(f ′)). This means that in general, given a string g,
there’s no unique f such that E(f) is in 75% agreement with g.

This seems to imply that we won’t be able to transform an algorithm computing f̂ = E(f)
with 75% success into an algorithm computing f on all inputs. However, it turns out that
this is not the case: the reason is that even though, for a g agreeing with f̂ on 75% of the
inputs there may be other inputs f1, . . . , fk that have similar agreement with g, there can’t
be too many of them!. In fact, we have the following theorem:

Theorem 3. Let E : {0, 1}n → {0, 1}m be a code with dist(E) ≥ 1/2 − δ. Then, for every
ρ > 2δ, and g ∈ {0, 1}m there exist at most k = O(1/ρ2) distinct inputs f1, . . . , fk with
dist(fi, g) ≤ 1/2− ρ

5

An algorithm that given g outputs this list of potential decodings f1, . . . , fk is called a list
decoding algorithm. In recent years (motivated by complexity theory), people found efficient
list decoding algorithms for a variety of popular codes including the Reed-Solomon code (by
Sudan) and the Hadamard code (by Goldreich and Levin, this is known in cryptography as
the hard-core bit theorem). We also have a notion of local list decoding which is that given
oracle access to a g that agrees with f̂ = E(f), we can compute the function i, x 7→ fi(x)
where there is some i ∈ [k] with fi = f (in fact, this is what the Goldreich-Levin theorem
provides for the Hadamard code, and using the Reed-Solomon list decoding, one can provide
such an algorithm for multilinear extension and other related codes). How do we make a
circuit for f out of this? the answer is to simply use non-uniformity to“hardwire” into the
circuit the right value of i. Using more efficient codes than multilinear extension (with only
polynomial expansion) and setting ρ = 2εn/100 yields the right result.

List decoding in practice List decoding turns out to be very useful in practical applications
as well. Indeed, it’s often the case that given a few candidates to the uncorrupted version,
it’s easy to find the right one (perhaps there’s only one input in the list that makes sense,
or satisfies some integrity check). Thus, list decoding algorithms enable also practical error
recovery from a much larger fraction of errors that was previously thought possible.

Black-box proofs Examining all the proofs so far, we see that they only use the assumed hard
function in a black-box way. This turns out to be important for several applications:

• We can get that for any oracle A, if EXP = DTIME(2poly(n)) can not be computed
by subexponential circuits that have additional “oracle gates” that compute A, then
with have a pseudorandom generator against such circuits. In particular, setting A to
be 3SAT , we can use such a pseudorandom generator to show that if EXP can not be
computed by subexponential circuits with 3SAT -gates then AM = MA = NP.

• Thinking of f as a function that comes from a high entropy distribution, similar reasoning
can show that the NW generator applied to f will yield an output that is statistically
indistinguishable from uniform. This has been used to construct randomness extractors.
(See web site and book for more info.)

Obtaining a uniform result If EXP 6* P/poly then we get a subeponential derandomization of
BPP. As mentioned before, we can actually obtain some partial derandomization from the
much weaker and uniform assumption that BPP 6= EXP. Namely, we get a subexponential
derandomization that works for infinitely many input lengths and may fail for some inputs,
but it’s infeasible for a polynomial algorithm to find these inputs.

This result was obtained by Impagliazzo and Wigderson in 98. The idea is the following (see
also a different proof by Vadhan and Trevisan):

• If EXP ⊆ P/poly then such a result already follows from what we’ve seen, and so we
assume that EXP ⊆ P/poly but EXP 6= BPP.

• A basic component is the fact that EXP has a multi-prover interactive proof in which
the prover algorithm can also be implemented in EXP. This will follow from a variant
of the PCP theorem.

• This implies that EXP = MA since for any L ∈ EXP, Merlin can prove that x ∈ L
by sending to Arthur the polynomial-sized circuit C for computing the provers strategy

6

in the multi-prover proof for L. Arthur can then run these circuits on his own and be
convinced.

• In particular, since MA is in the polynomial hierarchy, because of Toda’s theorem we
get that the permanent is complete for EXP. We’ll now run the NW generator using
the permanent as a hard function.

• The two nice properties we use about the permanent are the following: (both properties
are shown in the book chapter on interactive proofs)

– It is randomly self reducible: if you can solve it on a random input you can solve it
on all inputs. (This follows from the fact it’s a low degree polynomial.) Thus, if it’s
hard on the worst-case it’s also hard on the average.

– It is downward self reducible: given polynomial-time nad access to an oracle that
solves it on inputs of size < n you can solve it on inputs of size n. (This follows
from a formula, similar to determinant, that reduces computing the permanent of
an n by n matrix A to computing the pernmanent of n submatrices of A of size
n− 1× n− 1.)

• To get rid of the (seemingly quite inherent) non-uniformity in the proof of the NW
generator, we do the following:

– If there’s a t-time algorithm P that breaks the generator, then, instead of trying
to come up with a poly(t)-time algorithm to solve the permanent, we’ll use P to
solve the following seemingly easier task: Given a circuit Cn−1 that computes the
permanent for n− 1 by n− 1 matrices, find, in a uniform way, a circuit Cn of size
poly(t(n)) circuit that computes the permanent for n by n matrices. Note that the
size of the circuit Cn does not depend on the size of Cn−1 and so if we can solve
this task, running this procedure recursively, we can actually solve the permanent
in polynomial-time.

– The idea is to look at the proof of the NW generator: the only place where we
needed non-uniformity was to obtain values of the hard function on some fixed
inputs. However, since the permanent is downard self-reducible, we can obtain these
values using the circuit Cn−1. Once we obtained them, we hardwire these values
(and not the description of the circuit) to follow the proof of the NW generator and
obtain from P a circuit that computes the permanent with a noticeable advantage.
We then use the random self-reducibility of the permanent to obtain a circuit that
computes the permanent on all inputs.

Derandomization implies lower bounds The above reasoning might lead us to hope that we
can forget about circuits, and perhaps get an unconditional result that, say, BPP 6= EXP.
However, it turns out that this result would imply circuit lower bounds: see the survey by
Kabanets and the papers by Impagliazzo-Kabanets-Wigderson and Impagliazzo-Kabanets for
more information.

More resources There are many areas of derandomization and pseudorandomness we did not
cover. The Kabanets survey, the book, and the links on the web site contain pointers to
many of these. I encourage you to take a look.

7

