In this sequence of exercises you are going to show an alternative proof for the alphabet reduction lemma:

Lemma 1 (Alphabet reduction). Recall that in a CSP problem p, the size (i.e., number of clauses) of p is denoted by $|p|$, the number of queries (i.e., the size of each clause) by $q = q(p)$, the alphabet size is denoted by $\sigma = \sigma(p)$, and the maximum fraction of satisfied clauses by $\mu = \mu(p)$.

There exists a polynomial-time function alph-red and absolute constant q_0 such that for every 2-query CSP p we have:

- **Linear blowup** $\text{alph-red}(p)$ is a q_0-query CSP with alphabet $\{0, 1\}$, and size less than $C|p|$ for some $C = C(\sigma(p))$.

- **Completeness** If $\mu(p) = 1$ then $\mu(\text{alph-red}(p)) = 1$.

- **Limited loss** There’s an absolute constant D (not depending on p or σ) such that if $\mu(p) \leq 1 - \epsilon$ then $\mu(\text{alph-red}(p)) \leq 1 - \epsilon/D$.

Exercise 1 (22 points). For a set S define the long-code of S to be the following function $\mathcal{LC} : S \rightarrow \{0, 1\}^{2|S|}$: for every $s \in S$ and a function $f : S \rightarrow \{0, 1\}$ (note that we think of f also as a string of length $|S|$ and a number in $[2^{|S|}]$), the f^{th} position of $\mathcal{LC}(s)$ (denoted by $\mathcal{LC}(s)_f$) is $f(s)$.

1. For every $s \in S$, one can think of the output of the long-code on s as itself a function from $\{0, 1\}^{|S|}$ to $\{0, 1\}$. That is, we think of $\mathcal{LC}(s)$ as the function that maps $f : \{0, 1\}^{|S|} \rightarrow \{0, 1\}$ to $\{0, 1\}$ in the following way $\mathcal{LC}(s)(f) = f(s)$. Prove that for every s, $\mathcal{LC}(s)$ is a linear function.

2. Prove that for any s, the fraction of f’s such that $f(s) = 1$ is half. (Hint, this is equivalent to proving that $\Pr_f[f(s) = 1] = 1/2$ for a random function $f : S \rightarrow \{0, 1\}$).

3. Prove that \mathcal{LC} is an error-correcting code with distance half. That is, for every $s \neq s' \in S$, the hamming distance of $\mathcal{LC}(s)$ and $\mathcal{LC}(s')$ is half.

4. Prove that for any $s \in S$, $\mathcal{LC}(s)$ is equal to $\mathcal{H}(e^s)$ where \mathcal{H} is the Hadamard code from $\{0, 1\}^{|S|}$ to $\{0, 1\}^{2|S|}$ (i.e., $\mathcal{H}(x)_y = \langle x, y \rangle \pmod{2}$) and $e^s \in \{0, 1\}^S$ is the standard basis vector corresponding to s. That is, the i^{th} position of e^s is 0 for $i \neq s$ and 1 for $i = s$.

Exercise 2 (22 points). Prove that \(\mathcal{LC} \) is self-correctible. That is, show an algorithm \(A \) and constants \(C, D \) such that given oracle access to a string \(L \) that is within fractional distance \(\epsilon \) to \(\mathcal{LC}(s) \), and a function \(f : S \rightarrow \{0, 1\} \), \(A^L(f) \) should output \(\mathcal{LC}(s)_f \) with probability \(1 - C\epsilon \) while making at most \(D \) queries to \(L \). Note that \(A^L(f) \) should output \(\mathcal{LC}(s)_f \) with high probability even if \(L(f) \neq \mathcal{LC}(s)_f \).

Note that here (in the rest of the exercises) we don’t care about the running time of the algorithm but only that it makes at most a constant number of queries to its oracle.

Exercise 3. In this exercise you’ll prove in stages that \(\mathcal{LC} \) is locally testable.

1. Given an oracle to a function \(L : \{0, 1\}^{|S|} \rightarrow \{0, 1\} \), consider the following test: choose \(f \) at random from \(\{0, 1\}^{|S|} \) and if \(L(f) = 1 \) accept. Otherwise, (if \(L(f) = 0 \)), choose \(g \) to be a random subset of \(f \). That is, for every \(s \) such that \(f(s) = 0 \) choose \(g(s) = 0 \) and for every \(s \) with \(f(s) = 1 \) choose \(g(s) = 1 \) with probability \(1/2 \) (otherwise choose \(g(s) = 0 \). Accept iff \(L(g) = 0 \). Prove that if \(L \) is a longcode codeword (i.e., \(L = \mathcal{LC}(s) \) for some \(s \)) then it passes this test with probability 1.

2. Prove that if \(L \) is a long-code codeword, then for every \(f : \{0, 1\}^{|S|} \), \(L(f) \neq L(\overline{f}) \) where \(\overline{f} \) is the negation of \(f \) (i.e., \(\overline{f}(s) = 1 - f(s) \) for every \(s \in S \)).

3. Let \(L : \{0, 1\}^{|S|} \rightarrow \{0, 1\} \) be a non-zero linear function. That is, there exists some non-zero string \(\ell \in \{0, 1\}^{|S|} \) such that for every \(f \in \{0, 1\}^{|S|} \), \(L(f) = (\ell, f) \mod 2 \). We say that \(L \) is a longcode codeword if \(L = \mathcal{LC}(s) \) for some \(s \in S \), or equivalently, \(\ell = e^s \) for some \(s \). Prove that if \(L \) is not a longcode code word then it will fail the test from 1 with probability at least 1/100.

4. Prove that \(\mathcal{LC} \) is locally testable. That is, show that there exist constants \(C, D \) and an algorithm \(T \) such that for any \(\epsilon \geq 0 \) given oracle access to an oracle \(L \) that of distance at least \(\epsilon \) from \(\mathcal{LC}(s) \) for every \(s \), \(T^L \) will reject with probability at least \(\epsilon/C \) and will make at most \(D \) queries. The test should be complete in the sense that \(T^L \) should accept with probability one for every \(L \) that is a longcode codeword. You can use without proof the result stated in class on linearity testing.

5. Show that this implies that there is such an algorithm with \(C = 1/100 \).

Exercise 4 (22 points). Let \(c : S \times S \rightarrow \{0, 1\} \) be some function. Show an algorithm \(T \) that given oracle access to \(L_1, L_2, L_3 \) where \(L_1, L_2 \) are functions from \(\{0, 1\}^{|S|} \rightarrow \{0, 1\} \) and \(L_3 \) is a function from \(\{0, 1\}^{|S|^2} \rightarrow \{0, 1\} \) makes at most a constant number of queries to its oracles and satisfies the following properties:

1. If \(L_1 = \mathcal{LC}(s) \), \(L_2 = \mathcal{LC}(s') \), and \(L_3 = \mathcal{LC}(s \circ s') \) for \(s, s' \) that satisfy \(c(s, s') = 1 \) then \(T \) will accept with probability 1.

2. If \(L_1 = \mathcal{LC}(s) \), \(L_2 = \mathcal{LC}(s') \) and \(L_3 = \mathcal{LC}(s'') \) with \(s'' \neq s \circ s' \) then \(T \) will reject with probability at least 0.99.

3. If \(L_1 = \mathcal{LC}(s) \), \(L_2 = \mathcal{LC}(s') \), and \(L_3 = \mathcal{LC}(s \circ s') \) for \(s, s' \) that satisfy \(c(s, s') = 0 \) then \(T \) will reject with probability at least 0.99.

Exercise 5 (22 points). Prove Lemma 1 using the above exercises. See footnote for hint\(^1\)

\(^1\)Hint: if we let \(S \) denote the alphabet of the original problem \(P \) then in the new problems we’ll have \(n_2^{|S|} \) new Boolean variables that are supposed to be longcode encodings of each variable in the original formula and \(n_2^{|S|^2} \) new Boolean variables that for every 2-query constraint \(c(x_i, x_j) \) are supposed to be longcode encoding of \(x_i \circ x_j \).