
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #22
Scribe: Siun-Chuon Mau May 2, 2006

Portfolio Selection

In this lecture, we consider the problem of maximizing the wealth of an investment
portfolio in the framework of on-line learning model. Since the price sequence in this
framework is considered non-statistical, our results can be regarded as for the worst-
case, in the sense that our results apply even for the “worst” price sequence that
could have been designed by an adversary.

In the first part of the lecture, we will use Bayes’ algorithm and its associated
bound to guarantee that the performance (the resulting log wealth) of Bayes’ algo-
rithm is not much worse than that of the best stock picked in hindsight. In the second
part, an improved strategy, dubbed universal portfolios ( [1] and references therein;
however, see [2] for an opposing view), that applies Bayes’ algorithm to an ensemble
of constantly rebalanced portfolios is discussed.

Note that the active discussions occurred during the lecture contained a few crit-
icisms of the approaches presented here. Some of these criticisms will be discussed in
this note.

1 Assumptions, Model, and Notations

Here is the list:

– There are N (fixed) investments (say stocks) available to fill the portfolio with.

– The wealth of the portfolio is reinvested each time period (say time period =
day) labeled by t = 1, 2, . . . , T .

– The price relative for stock i on day t is defined as:

pt(i) ,
Price of stock i at the end of day t

Price of stock i at the beginning of day t
. (1)

– St denotes total wealth at the start of day t.

– And, wt(i) labels the fraction of wealth invested in stock i at the start of day t.

Therefore:

– The amount of wealth in stock i at the beginning of day t is Stwt(i),

– The amount of wealth in stock i at the end of day t is Stwt(i)pt(i).



– The wealth at the beginning of day t + 1 is:

St+1 =

N∑

i=1

Stwt(i)pt(i) = St wt · pt . (2)

– And, the final wealth is:

ST+1 = S1

T∏

t=1

wt · pt . (3)

Without loss of generality, we set

S1 = 1, or equivalently, ST+1 =
T∏

t=1

wt · pt . (4)

1.1 Log-Wealth Maximization

Our goal is to choose wt to maximize final wealth:

max
wt

ST+1 ≡ max
wt

T∏

t=1

wt · pt ≡ min
wt

T∑

t=1

− ln (wt · pt)
︸ ︷︷ ︸

log loss

. (5)

Hence, our portfolio selection problem is equivalent to the online learning problem of
choosing the weights wt, for all t = 1, 2, · · · , T , to minimize the total log-loss function,
where − ln (wt · pt) is regarded as the log-loss at time t. In particular, we would like
an portfolio-selection algorithm whose performance is not much worse than the best
performing stock in hindsight.

Again, the price-relative sequence is modeled to be deterministic. Although it is
possible to design algorithms with better performance if a good stochastic model is
used for the time-sequence of price relatives, the deterministic-sequence approach has
the advantage of being simpler and providing a worst-case performance bound even
for highly volatile price sequences whose stochastic model could be poorly understood.

2 Bayes’ Algorithm Approach

To map our problem to an online algorithm we start by normalizing all price relatives
to their maximum over both t and i. Let

C , max
t,i

pt(i) , (6)

and pt(i) ∈ [0, C], ∀t = 1, 2, · · · , T , and ∀i = 1, 2, · · · , N . Next, we define the outcome
set for each letter of the associated time sequence as X = {0, 1}, and the prediction
of expert i at time t as:

pt,i(xt) ,

{
pt(i), if xt = 1
C − pt(i), if xt = 0

(7)
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In order for the expert pt,i (xt) to predict pt(i) always, i.e,

pt,i (xt) = pt(i), ∀t = 1, 2, · · · , T, (8)

we set

xt = 1, ∀t = 1, 2, · · · , T (9)

and identify the (normalized) weights over experts with those over stocks:

wt,i = wt(i), ∀t, ∀i, with
N∑

i=1

wt,i = 1. (10)

The prediction of the master algorithm is therefore

qt(xt) = qt(1) =

N∑

i=1

wt,i pt,i = wt · pt, ∀t. (11)

A lower bound for the final wealth can be obtained by the upper bound for the
total-loss function in Bayes’ algorithm (assuming that initial weights wt(i) are all
identically 1/N):

T∑

t=1

− ln qt (xt) ≤ min
i=1,2,··· ,N

T∑

i=t

− ln pt,i (xt) + ln N . (12)

Since the total-loss function is related to the final wealth
∏T

t=1 wt · pt via

T∑

t=1

− ln qt(xt) = − ln

(
T∏

t=1

wt · pt

)

, (13)

the Bayes’ algorithm bound in Eq. (12) implies

T∏

t=1

wt · pt

︸ ︷︷ ︸

algorithm wealth

at T

≥
1

N
max

i

T∏

t=1

pt(i)

︸ ︷︷ ︸

wealth at T

if invested

solely in stock i

. (14)

That is,

(wealth of Bayes’ algorithm at T ) ≥
1

N
× (wealth of the best stock at T ) , (15)

which indicates that the portfolio growth rate managed by the Bayes’ algorithm is as
good as that of the best stock in hindsight.
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It is known that the weight update rule of Bayes’ algorithm is:

wt+1(i) =
wt(i) pt(i)

normalization
, ∀t and ∀i . (16)

As it implies no trading over the course of the algorithm (except for the initial buying
to populate the portfolio), the Bayes’ algorithm is effectively prescribing the buy-and-
hold strategy. This fact can be used to derive the above bound directly:

(wealth of algorithm at T ) =

N∑

i=1

1

N
× (wealth of stock i) (17)

≥
1

N
× (wealth of the best stock at T ) (18)

It is well known that improvements over the buy-and-hold strategy exists. One
option is to use switching experts as described in the last lecture. However, we will
consider universal portfolios ( [1] and references therein) instead.

3 Universal Portfolios

3.1 Why Rebalance a Portfolio?

The advantage of portfolio rebalancing can be illustrated by a toy example. The
portfolio consists of only two stocks with the following properties. The price of stock 1
never changes, and the price of stock 2 doubles on odd days and halves on even days.
That is,

pt(1) = 1, ∀t (19)

pt(2) =

{
2, t = odd
1/2, t = even

(20)

Suppose the portfolio starts with unit wealth equally distributed among the two
stocks. Clearly, buy-and-hold does not grow portfolio wealth over time. However,
constantly rebalancing does, as illustrated below:

S1

S2 = S1

(
1

2
· 1 +

1

2
·
1

2

)

=
3

4
S1

S3 = S2

(
1

2
· 1 +

1

2
· 2

)

=
3

2
S2 =

9

8
S1

...

S5 =
9

8
S3

...

We can see that wealth increases exponentially by a factor of 9/8 every two days.
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3.2 Constant Rebalanced Portfolios and The Universal Port-

folio Algorithm

The central idea in universal portfolios is to apply Bayes’ algorithm to find the opti-
mum weighted average of an ensemble of constant rebalanced portfolios (CRP’s) so
that the portfolio does almost as well as the best CRP in hindsight. Initial wealth is
divided equally among all (infinite number of) CRP’s, then the buy-and-hold strategy
is used on the ensemble of CRP’s (no trading of one CRP for another).

Since the normalized weight vector b = (b1, b2, . . . , bN) of a CRP is a constant by
definition, each CRP can be labeled by its own b. We will use both CRPb and b to
denote the CRP indexed by b. In order to apply the Bayes’ algorithm and its weight
update rule in Eq. (16), we need to express the fraction, wt(i), of wealth invested in
stock i at day t in terms of b and price relatives p.

The differential wealth of CRPb at the end of day t is given by:

dSt(b) = dµ(b)
t∏

s=1

b · ps , (21)

where dµ(b) is the initial differential wealth of CRPb. Summing over all CRP’s yields
the total wealth at the end of day t:

St =

∫

all CRPb

dSt(b) =

∫

all CRPb

t∏

s=1

b · ps dµ(b) . (22)

Note that this means St is the expectation, over all b, of the wealth of CRPb:

St = Eover all b

[
t∏

s=1

b · ps

]

. (23)

The part of dSt(b) invested in stock i is:

bi dSt(b) = bi dµ(b)

t∏

s=1

b · ps . (24)

(Remember
∑N

i=1 bi = 1.) The total amount invested in stock i at the end of day t is
obtained by summing over all CRP’s.

∫

all CRPb

bi dSt(b) =

∫

all CRPb

bi

t∏

s=1

b · ps dµ(b) . (25)

Therefore, the Bayes’ algorithm weight, the fraction of wealth invested in stock i at
the end of day t, is given by:

wt(i) =

∫

all CRPb

bi dSt(b)
∫

all CRPb

dSt(b)
(26)

=

∫

all CRPb

bi

∏t

s=1 b · ps dµ(b)
∫

all CRPb

∏t

s=1 b · ps dµ(b)
. (27)
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The algorithm defined by Eqs. (27) and (16) is called the “universal portfolio algo-
rithm” (UPA). These integrals are generally difficult to evaluate numerically. Compu-
tationally simpler estimates can be obtained by evaluating only on a random sample
of all CRP’s, in effect discretizing the simplex of all CRP’s.

A standard performance bound exists for this algorithm:
(

expected wealth of
UPA at time T, St

)

≥
1

(T + 1)N−1
×

(
wealth of the best CRP at T
(if it was the sole investment)

)

(28)

This bound is the most moderate in T dependence. Other algorithms with more
moderate N dependences exist, but they are worse in other aspects. Instead of
proving the above bound, we will prove a slightly weaker one, which admits a much
simpler proof [1] .

The idea is to show that CRP’s that are near perform similarly and that there
are enough CRP’s that are close enough to optimal. Let b∗ be the best performing
portfolio in hindsight, and

∆ ,

{

b = (b1, b2, . . . , bN ) :
N∑

i=1

bi = 1

}

(29)

be the simplex of all possible portfolio weights b. Consider the α simplex-neighborhood
of b∗ given by

δ∗(α) , {b = (1 − α)b∗ + α z : z ∈ ∆} , (30)

where α ∈ [0, 1] is fixed. Over the period of the sth day,

(one day gain of a b ∈ δ∗(α)) = b · ps (31)

= (1 − α)b∗ · ps + α z · ps (32)

≥ (1 − α)b∗ · ps (33)

= (1 − α) × (one day gain of b∗) (34)

Hence,

(wealth gain of b ∈ δ∗ (α) at day T ) =
T∏

s=1

b · ps (35)

≥ (1 − α)T

T∏

s=1

b∗ · ps (36)

= (1 − α)T (wealth gain of b∗ at day T )(37)

The number of portfolios in δ∗(α) is given by its volume, which is shrunk from ∆ by
a factor of α in all its N − 1 dimensions:

Vol (δ∗ (α)) = Vol ({b = (1 − α)b∗ + α z : z ∈ ∆}) (38)

= Vol ({α z : z ∈ ∆}) (39)

= Vol (α ∆) (40)

= αN−1Vol (∆) (41)
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As the distribution of initial portfolio wealth is uniform over ∆,

initial wealth invested in δ∗ (α)

initial wealth invested in ∆
=

Vol (δ∗ (α))

Vol (∆)
= αN−1 (42)

Putting these together:

(
expected wealth of

UPA at time T

)

(43)

≥

(
expected wealth of
δ∗ (α) at time T

)

(since δ∗ (α) ⊆ ∆)(44)

≥ (1 − α)T ×

(
wealth gain
of b∗ at T

)

×

(
initial wealth

invested in δ∗ (α)

)

(using Eq. (37))(45)

= αN−1 (1 − α)T ×

(
wealth gain
of b∗ at T

)

×

(
initial wealth
invested in ∆

)

(using Eq. (42))(46)

= αN−1 (1 − α)T ×

(
wealth of the best CRP at T
(if it was the sole investment)

)

(47)

This bound holds for all α ∈ [0, 1], and in particular, for α = 1/(T + 1). Together
with the inequality (1 − 1

T+1
)T > 1/e, we have

(
expected wealth of

UPA at time T

)

≥
1

e(T + 1)N−1
×

(
wealth of the best CRP at T
(if it was the sole investment)

)

(48)

3.3 Numerical Results

Some numerical results showing the performance comparisons of UPA and a few other
algorithms when they are applied to historical stock price data were shown in class.
The experimental portfolios consists of a few stocks and the algorithms were run
on data lasting five to ten years. The general trend appeared to suggest that UPA
performs best when stock prices are uncorrelated and more volatile, and not better
otherwise. It was speculated that uncorrelatedness of stock prices played a more
important role than price volatilities.

One valid criticism of the numerical experiment is that since the stocks used were
listed on NYSE for many years, they were not the worst to invest in and could have
been forgiving to the performance of UPA.
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