
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #19
Scribe: Melissa Carroll April 20, 2006

1 Review

When we left off last time, we established the following problem:

Given:
a space X where |X| = N
examples x1, ..., xm ∈ X

xi ∼ D
features f1, ..., fn

fj : X → <
Our goal is to estimate D

The solution to this problem using Maximum Entropy is the distribution of maximum
entropy from the set

P =
{

p : ∀jEp[fj] = Êp[fj]
}

The solution to this problem using Maximum Likelihood is the distribution of maximum
likelihood from the set

Q =

{

q : q(x) =
exp(

∑

j xjfj(x))

Z

}

(all distributions q ∈ Q are Gibbs distributions)
The Duality Theorem states that the following are equivalent and any one of these

uniquely defines q?:

1. q? = arg maxp∈P H(p) i.e. the Maximum Entropy approach

2. q? = arg maxq∈Q

∑

i ln q(xi) i.e. the Maximum Likelihood approach

3. q? ∈ P ∩ Q

2 Motivation

Now we ask, how do we actually find q?? What algorithm will we use? In coming up with
an algorithm, #2 above (the Maximum Likelihood approach) will be the most useful. We
will attempt to find the following:

min
q∈Q

−
1

m

∑

i

ln q(xi)

More explicitly, we attempt to find a vector λ of parameter values which minimize the
negative log likelihoood:

L(λ) = −
1

m

∑

i

ln qλ(xi) (1)

where qλ(x) is a Gibbs distribution defined by λ. Thus we have

qλ(x) =
egλ(x)

Zλ

(2)

where
gλ(x) =

∑

j

λjfj(x).

Note that Eq. (1) is a convex function of λ.

3 Algorithm

We now introduce an algorithm for minimizing Eq. (1) and prove the algorithm’s conver-
gence. Before doing so, however, let’s consider how we might normally minimize a function.
We could use basic calculus, finding the equation’s derivatives, and setting the derivatives
to 0. Unfortunately, for Eq. (1) there is no nice analytic solution when doing so. Instead,
we will numerically minimize the function. The plan for the algorithm will be:

1. Start with a guess for the λj’s

2. Iteratively adjust the guess

The outline of the algorithm is as follows:

choose λ1 arbitrarily
for t = 1, 2, · · · until convergence

compute λt+1 from λt

We now will specify how to compute λt+1 from λt.

First, we’ll declare some assumptions we need to make about the features. Note that
the coefficients are arbitrary and, due to the normalization constant, we are free to scale or
add constants to the features without altering the result. Therefore, we can scale all of the
features so they are between 0 and 1.

Therefore, assume without loss of generality:

1.

fj : X → [0, 1]

2. Now divide the features by 1/n so that:
∑

j

fj(x) ≤ 1

3. In fact, we can go further. Create a new feature f0 such that

f0 = 1 −
∑

j

fj

Doing so does not change the representation of the problem because the representation
is still just a linear combination of the features. Adding this feature allows us to
assume:

∑

j

fj(x) = 1

2

Now we return to the question of how to compute λt+1 from λt.

We will use the following trick. First, we alter the notation slightly for convenience:

λ = λt

λ
′ = λt+1

We restate that we want to minimize L(λ). Let

∆L = L(λ′) − L(λ).

Therefore, we would like ∆L to be minimized.
The trick we will use will be to put an upper-bound on ∆L as an approximation and then
minimize that approximation. We will show that by doing so on every step of the algorithm,
our algorithm will converge to the actual minimum.

4 Derivation of Algorithm

First note that λ′

j = λj plus some small adjustment, which we can formalize as:

λ′

j = λj + αj . (3)

What is αj? To answer that, let’s try to compute ∆L and, in doing so, see at what
points we need to make an approximation. Recall that

L(λ) = ln

(

egλ(xi)

Zλ

)

Plugging in for λ and λ′ we have:

∆L =
1

m

∑

i

[

ln

(

egλ(xi)

Zλ

)

− ln

(

egλ′(xi)

Zλ′

)]

Note that we have logs of exponentials and we have ln Zλ and ln Zλ′ , both constants that
do not depend on i. Therefore, we can simplify to:

1

m

∑

i

(gλ(xi) − gλ′(xi)) + ln

(

Zλ′

Zλ

)

(4)

Remember that
gλ(x) =

∑

j

λjfj(x). (5)

Therefore, (gλ(xi) − gλ′(xi)) can be re-written as:

∑

j

(λjfj(xi) − λ′

jfj(xi)).

Recall from Eq. (3) that αj = λ′

j − λj .
Therefore,

(gλ(xi) − gλ′(xi)) = −
∑

j

αjfj(xi).

3

Plugging this equation in above and noting that we can reverse the sum over i, j, the entire
first term of Eq. (4) becomes:

−
1

m

∑

i,j

αjfj(xi)

and we can pull out the αj , which is not dependent on i, to yield

= −
∑

j

αj

(

1

m

∑

i

fj(xi)

)

.

Recall from the previous lecture that

Ê[fj] =
1

m

∑

i

fj(xi).

Therefore, we can re-write the first term as:

−
∑

j

αjÊ[fj].

Now let’s examine the second term. We will ignore the logs for now. Note that Zλ is a
normalizing constant so

Zλ′

Zλ

=

∑

x∈X exp
(

∑

j λ′

jfj(x)
)

Zλ

.

Replacing λ′

j using Eq. (3):

=

∑

x exp
(

∑

j λjfj(x) + αjfj(x)
)

Zλ

Substituting in Eq. (5), we can re-write this as:

=
∑

x

egλ(x)

Zλ

exp

∑

j

αjfj(x)

Recall from Eq. (2) that

qλ(x) =
egλ(x)

Zλ

Therefore, substituing above, we have

Zλ′

Zλ

=
∑

x

qλ(x) exp

∑

j

αjfj(x)

However we still have the α’s we’re trying to optimize embedded in a “nasty” exponen-
tial. To get around this problem, recall the approach we’ve seen many times before: upper
bound an exponential by a linear. Also, recall our third assumption, that

∑

j fj(x) = 1.
Therefore, above, we simply have an exponential raised to the average of the αjs.
Recall from previous lectures that an exponential is convex and we have the following
upper-bound:

f(avg) ≤ avg(f)

4

We can use this convexity to upper-bound the above equation and give us an approximate
optimization as follows. We will upper-bound exp(

∑

j αjfj(x)) with
∑

j fj(x) exp(αj), lead-
ing to the following upper-bound:

Zλ′

Zλ

≤
∑

x

qλ(x)
∑

j

fj(x)eαj

Again reversing the sum,
=
∑

j

eαj
∑

x

qλ(x)fj(x)

Note, though, that
∑

x qλ(x)fj(x) = Eqλ
[fj].

Putting the whole thing together, we have shown that:

∆L ≤ −
∑

j

αjÊ[fj] + ln

(

Zλ′

Zλ

)

and that:
Zλ′

Zλ

≤
∑

j

eαj Eqλ
[fj]

Therefore:

∆L ≤ −
∑

j

αjÊ[fj] + ln

∑

j

eαjEqλ
[fj]

 . (6)

Eq. (6) can be optimized simply by differentiating and setting the derivative equal to 0,
which we will now do. First, let:

Ê[fj] = Êj

Eqλ
[fj] = Ej

Taking the derivative with respect to αj yields:

∂

∂αj

= −Êj +
Eje

αj

∑

j Ejeαj
. (7)

We note that setting Eq. (7) equal to 0 would be much easier if not for the denominator in
the second term. Conveniently, we can remove the denominator by noting that if we find
a solution for the αjs and add a constant, the result would also be a solution. That is, let
α′

j be a solution to the above (found by setting Eq. (7) to 0). Then αj = α′

j + C is also
a solution, for any constant C. We can choose C so that

∑

j Eje
αj = 1. Thus, setting Eq.

(7) = 0 and solving, we obtain:

αj = ln

(

Êj

Ej

)

and we have arrived at a method for approximately minimizing ∆L.

5

5 Iterative Scaling Algorithm

Now we plug the method arrived at above into our previous algorithm:

choose λ1

for t = 1, 2, · · · until convergence
//compute λt+1 from λt

λt+1,j = λt,j + ln

(

Ê[fj]
Eqλt

[fj]

)

This algorithm is known as the Iterative Scaling Algorithm.
By plugging in previous equations we derived, it can be shown that this algorithm can

also be thought of in the following alternative way, in terms of a distribution over samples
instead of α’s.
Let pt = qλt

.

pt+1(x) ∝ pt(x)
∏

j

(

Ê[fj]

Ept [fj]

)fj(x)

(8)

This alternative formulation is consistent with intuition. We are trying to reach a point at
which Ept [fj] = Ê[fj]. If Ê[fj] > Ept[fj], we have underestimated the expected value of
feature j over the samples and would therefore like to increase the distribution weight of
those samples with high values for j more than for those with low values. For feature j, the
quotient within the product in Eq. (8) will be > 1, so the weight adjustment component
corresponding to j will be proportional to the value of fj for each sample. Alternatively,
if Ept[fj] < Ê[fj], the weight adjustment component corresponding to j will be inversely
proportional to the value of fj for each sample, contributing a negative adjustment amount
for examples with larger fj values. In addition, the magnitude of the adjustment is also
dependent on how different the empirical and true expected values are.

6 Proof of Convergence

Now that we have the Iterative Scaling Algorithm, how do we prove it works, i.e. that it
converges? After all, we made an approximation when we upper-bounded ∆L. Thus we
need to apply a general technique for proving the convergence of algorithms that perform
such approximations.

6.1 Theorem

The distributions pt converge to the Maximum Entropy/Maximum Likelihood solution q?.
Formally,

pt → q?

6.2 Proof

First, we will note that to prove L is converging to a minimum, it is not sufficient to show
that L is strictly decreasing. Now, for the proof, we will use the Method of Auxiliary

Functions.

6

We define an auxiliary function A here as a helper function that maps probability distribu-
tions → < and has 3 properties:

1. A is continuous.

2. A upper-bounds the change in the negative log likelihood function and is never posi-
tive, i.e.

∆L = L(λt+1) − L(λt) ≤ A(qλt
) ≤ 0

3. A(p) = 0 ⇒ p ∈ P (if it is 0, it implies p is in P)

It turns out that showing that there exists an A as defined above implies the Iterative
Scaling Algorithm converges to q?. Why?
Say A exists. First, we know that L ≥ 0 and L(λt) is always decreasing. Together, these
imply

L(λt+1) − L(λt) → 0

In addition, note by property (2) above that A(pt) is squeezed between L(λt+1) − L(λt)
and 0, where pt = qλt

. Since the difference between them is → 0, this implies

A(pt) → 0

Suppose that pt converges with limit p, i.e. pt → p. Why does this imply that p is optimal?
Given what we just showed and that A is continuous by property (1),

A(p) = lim
t→∞

A(pt) = 0

which implies that p ∈ P by property (3). Also, since each pt ∈ Q is a Gibbs distribution,
and since p is the limit of points in Q, we have that

p ∈ Q

and therefore
p ∈ P, p ∈ Q ⇒ p ∈ P ∩ Q ⇒ p = q?

by the Duality Theorem.
This argument assumes that the pt’s have a limit, a fact which we need a little bit of

analysis or topology to prove. Although we skipped over this in class, for those who are
interested, here is how this can be proved. Suppose the sequence of pt’s does not converge
to q?. Then there must exist a neighborhood R around q? such that an infinite number of
pt’s lie outside of R. The pt’s lie in the space of all probability distributions over the finite
set X. This is a compact space. Therefore, the infinite subset of pt’s outside of R must have
a subsequence which converges to some point p (this is a property of compactness). By the
same argument given above (slightly modified), p must be equal to q?, a contradiction since
all of the points are outside of the neighborhood R around q?. Therefore, the pt’s converge
to q?.

Now, how do we find A? Our A should be an upper-bound on ∆L. We already derived

an upper-bound on ∆L and derived a choice for αj = ln

(

Êj

Ej

)

, so we can plug in αj and

we’ll have an upper-bound on the change in L.

∆L ≤ −
∑

j

Êj ln

(

Êj

Ej

)

+ ln

∑

j

Êj

 .

7

First, note that
∑

j

Êj =
∑

j

Ê[fj].

By linearity of expectations,

= Ê

∑

j

fj

and we said
∑

j

fj = 1

so
∑

j

Êj = 1

and the second term above goes away altogether. Therefore, we have:

∆L ≤ −
∑

j

Êj ln

(

Êj

Ej

)

By a similar argument to the one above,
∑

j Ej = 1. Thus, the Ej’s and Êj’s are distribu-
tions over features so we just have Relative Entropy! That is,

−
∑

j

Êj ln

(

Êj

Ej

)

= −RE
(

Êj||Ej

)

Therefore, we can use negative Relative Entropy as our A. So define

A(p) = −RE
(

Ê [fj] ||Ep [fj]
)

Now we check the properties we specified above.

• Is A continuous? Yes, RE is continuous.

• ∆L ≤ A(qλt
)? Yes, we just proved that.

• A(pt) ≤ 0 ? Yes, RE ≥ 0, so −RE ≤ 0.

• A = 0 ⇒ p ∈ P? Yes, RE = 0 ⇒ Ê [fj] = Ep [fj] is a property of RE.

Q.E.D.

7 General comments

1. The above proof was written for when we have a distribution over examples; however
it is common to have labeled data x, y and the goal of estimating Pr[y|x]. It turns
out that one can apply similar ideas in this case, essentially trying to maximize the
entropy of Y |X given constraints derived from data. This problem is called Logistic

Regression, an “oldie but goodie.” Therefore, Logistic Regression is just a special
case of Maximum Entropy.

8

2. If the true probability distribution is in the class of distributions you are searching
over, Maximum Likelihood will eventually converge to the true probability; however,
Maximum Likelihood can behave very badly if the true distribution is not in that
class. For example, consider the following scenario:

• a distribution over 0, 1 =

{

1 with probability p
0 with probability 1 − p

}

i.e. a simple Bernoulli

distribution, for instance the probability of a coin flip returning heads.

• say the model class you are considering is, for some reason, = {0.01, 1}, e.g.
heads with probability 0.01 or 1 but no other possibilities.

• say the true distribution p = 0.98.

• intuitively, 1 is the better estimated distribution, but Maximum Likelihood will
return 0.01 as the estimated distribution as the number of examples becomes
larger. Why? Let’s consider the expected log loss.

−E[ln q] = −0.98 ln q − 0.02 ln(1 − q).

Since 0.02 ln(1 − 1) = 0.02 ln 0, the second term becomes ∞. Thus:

=

{

< ∞ if q = 0.01
∞ if q = 1

}

So Maximum Likelihood will naturally prefer the first alternative.

Here we see an important caveat: Maximum Likelihood behaves badly when dealing
with probabilities very close to 0 or 1.

8 Introduction to Online Log Loss and Universal Compres-

sion

We’ll now introduce our next topic. Previously, we talked about the connection between
Maximum Likelihood and minimizing log loss and how minimizing log loss is ≈ RE; however,
what if you would like to do log loss in online learning? For example, imagine you are
betting on horses at the track. You want to estimate the probability of each horse winning
and translate these estimations into bets corresponding to the probability distribution over
horses. How do you estimate these probabilities? You may want to use the expert advice
setting, in which the experts are estimating the probabilities of each horse winning each
race. Before each race, you would combine the probability estimates of the experts into a
single distribution. One horse will win the race and then you’ll move on and repeat the
expert advice pooling for the next race. As in our bit expert setting, you’ll want to learn
which expert is giving the best predictions and, as before, you will want your predictions to
be not much worse than the best expert, i.e. the one giving the best predictions in hindsight,
without making probabilitistic assumptions; however the predictions are now probability
distributions, not single bits.

9

Let’s formalize the problem.

for t = 1, 2, · · · , T
each expert i chooses a distribution pt,i,

corresponding to expert i’s prediction at time t,
over the space X of possible outcomes

the master/learner combines the pt,i’s into a distribution qt

observe xt ∈ X
suffer a loss − ln qt(xt)

The goal is, naturally, to suffer a low cumulative loss, i.e. a loss that is worse than the
loss of the best expert by only a small amount.

−
∑

t

ln qt(xt) ≤ min
i

[

−
∑

t

ln pt,i(xt)

]

+ a small amount

It turns out, as we will see next time, that solving this problem is closely related to
performing compression. Stay tuned!

10

