
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #17
Scribe: Jeffrey Traer Bernstein April 11, 2006

1 Proof of Widrow-Hoff continued...

Recap from last time:

wi = 0

for t = 1 . . . T trials

get xt ∈ R
n, a vector of expert predictions

predict ŷt = wt · xt

observe yt ∈ R

update

wt+1 = wt − η(

ŷt
︷ ︸︸ ︷
wt · xt −yt)xt

︸ ︷︷ ︸

∆t

loss is (ŷt − yt)
2

We were in the middle of proving a theorem

if ∀t ||xt||2 ≤ 1 then LA ≤ min
u∈R

n

[

Lu

1 − η
+

||u||22
η

]

where

LA =
T∑

t=1

(ŷy − yt)
2 and Lu =

T∑

t=1

(u · xt − yt)
2

with potential function Φt = ||wt − u||22 lt = wt · xt − yt learner’s loss is l2t

gt = u · xt − yt u’s loss is g2
t

The main thing to prove is:

Φt+1 − Φt ≤ −ηl2t +
η

1 − η
g2
t

We showed last time that this is enough to prove the theorem.
To make things easier let’s say w = wt and w

′ = wt+1

Φt+1 − Φt = ||w′ − u||2 − ||w − u||2 just the definition of Φ

= ||w − u − ∆||2 − ||w − u||2 from the update rule above

= ||w − u||2 − 2(w − u) · ∆ + ||∆||2 − ||w − u||2

because ||x||2 = x · x

= −2 (w − u) · ∆
︸ ︷︷ ︸

ηl(w·x−u·x)

+ ||∆||2
︸ ︷︷ ︸

η2l2||x||2≤η2l2

≤ −2ηl(l − g) + η2l2 ||x||2 ≤ 1 by assumption

and w · x − y
︸ ︷︷ ︸

l

+ y − u · x
︸ ︷︷ ︸

−g

= (η2 − 2η)l2 + 2η lg
︸︷︷︸

≤ 1

2
[g2

1−η
+l2(1−η)]?

regroup a little

≤ −ηl2t + η
1−η

g2
t all cleaned up

? For the last step we used a little trick:
√

ab ≤ a+b
2 . The easy thing to do is just pick

a = g2 and b = l2 but we are going to add in a constant that disappears when we multiply in

the
√

ab part so we can make the end result cleaner. So we pick a = g2

1−η
and b = l2(1 − η).

To figure these out you could just plug in a generic constant and then solve afterwards for
what yields the best result.

2 How do you derive an update rule?

Where did that update rule come from? We can derive an update by minimizing an expres-
sion of the form:

η
(

loss of wt+1 on xt and yt

)

+
(

distance between weight vectors wt and wt+1

)

You minimize this with respect to wt+1 to get a new update rule for some other distance
measure. You can also use this distance function in the analysis. We used the euclidian
distance squared:

ηL(wt+1,xt, yt) + ||wt+1 − wt||22
︸ ︷︷ ︸

EUCLIDIAN DISTANCE
2

Minimizing this expression gives us a gradient-descent update:

wt+1 = wt − η ∇L(wt+1,xt, yt)
︸ ︷︷ ︸

GRADIENT

You may notice the wt+1 on both sides of the equation. To make our lives easier we can
approximate wt+1 on the right hand side with wt in practice.
Now, we could, for example, substitute relative entropy as our distance function:

ηL(wt+1,xt, yt) + RE(wt||wt+1)

If we now minimize this expression, we get an update rule of the form:

wt+1,i =
wt,i exp(−η ∂L

∂wi
(wt+1,xt, yt))

Zt
︸︷︷︸

normalize to make a distribution

This algorithm is called EG for Exponentiated Gradient. For square loss we can prove that

if ||xt||∞ ≤ 1 and ||u||1 ≤ 1 then LEG ≤ min
u

[

aηLu + bη ln n
]

2

3 Can we apply online learning to batch?

Wouldn’t it be nice to apply the power and majesty of online learning to the batch learning
we talked about before? We’re going to look at regression but the technique is general and
can be applied to classification and other kinds of learning.
As usual for batch we are given

S = 〈(x1, y1), . . . , (xm, ym)〉 (xi, yi) ∼ D training
(x, y) ∼ D test

Now how do we apply Widrow-Hoff to this? Our goal is to find v such that Rv =
E(x,y)∼D[(v · x − y)2] is small relative to min

u

Ru where u is the best weight vector.

A simple plan:

1. run Widrow-Hoff on our training data (x1, y1), . . . , (xm, ym)
get back weight vectors w1, . . . ,wm

2. Output v =
1

m

m∑

t

wt, i.e. take the average of all the weight vectors

Now we can prove something about this:

ES [Rv] ≤ min
u

[Ru

1 − η
+

||u||22
ηm

︸ ︷︷ ︸

as m → ∞ this term → 0

]

So the expected risk of this is going to be just a little more risk than 1
1−η

Ru where Ru can
be thought of as the best possible risk.

First, we make three observations. In what follows, unless otherwise noted, expectations
are over S and (x, y).

1. Look at the loss

(v · x − y)2 =
(

(
1

m

∑

t

wt) · x − y
)2

=
(1

m

∑

t

(wt · x − y)
)2

square of averages

≤ 1

m

m∑

t=1

(wt · x − y)2 average of squares

The last step follows from the definition of convexity and since f(x) = x2 is convex.

2. E[(u · xt − yt)
2] = E[(u · x − y)2]

This is because (xt, yt) and (x, y) come from identical distributions.

3. E[(wt · xt − yt)
2] = E[(wt · x − y)2]

This is because wt is chosen before (xt, yt) and (x, y), which are therefore identically
distributed given wt.

3

Now given these three observations. . .

ES [Rv] = E[(v · x − y)2]

≤ E
[1

m

m∑

t=1

(wt · x − y)2
]

from (1)

=
1

m

∑

t

E[(wt · x − y)2] move E in by linearity of expectations

=
1

m

∑

t

E[(wt · xt − yt)
2] by (3)

=
1

m
E

[∑

t

(wt · xt − yt)
2
]

move E back out

We are using Widrow-Hoff and we have a bound for this!

≤ 1

m
E

[
∑

t(u · xt − yt)
2

1 − η
+

||u||22
η

]

plug in the W-H bound

≤ 1

m

[
∑

t E[(u · xt − yt)
2]

1 − η
+

||u||22
η

︸ ︷︷ ︸

CONSTANT

]

move E

≤ 1

m

[
∑

t E[(u · x − y)2]

1 − η
+

||u||22
η

]

get rid of the t’s, from (2)

=
1

m

[
∑

t Ru

1 − η
+

||u||22
η

]

=
Ru

1 − η
+

||u||22
ηm

and we’re done!

4

