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1 Support Vector Machines Continued

As discussed in the previous class, given a set of examples labeled positive and negative
that are separable, we wish to find the hyperplane with largest margin.
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Margin of example (xi, yi) is the distance between the example and the hyperplane. We let
δ be the smallest margin. Thus we have the problem:

max δ

such that ||v||2 = 1 yi(v · xi) ≥ δ ∀i (1)

Now if we divide yi(v · xi) ≥ δ through by δ and let w = v

δ , we then get yi(w · xi) ≥ 1
and ||w|| = 1/δ. Thus our maximization problem above can be rewritten as a minimization
problem:

min
1

2
||w||2

such that yi(w · xi) ≥ 1 ∀i (2)

Note the 1

2
and the square do not affect where ||w|| is minimized. Also note that yi(w·xi) ≥ 1

can be rewritten as yi(w · xi) − 1 ≥ 0.
Now we define the Lagrangian

L(w,α) =
1

2
||w||2 −

∑

i

αi[yi(w · xi) − 1]

where α = (α1, ..., αm) are called the Lagrange multipliers. Also, let bi(w) = yi(w ·xi) − 1.

Claim: the problem
min
w

max
α≥0

L(w,α) (3)



is the same as problem(2).
proof: View this as a game where

Player 1 first chooses w to minL(w,α)
Player 2 then chooses α ≥ 0 to maxL(w,α)

If player 1 chooses w such that bi(w) < 0 for some i, then player 2 chooses αi = ∞
which will yield L(w,α) = ∞. Thus we see player 1 will choose bi(w) ≥ 0 for all i. So we
see that player 1 will choose w that will satisfy the constraint of problem(2) - yi(w ·xi) ≥ 1.

Continuing with the game, if player 1 chooses w so that bi(w) = 0 then αi is irrelevant.
If w is chosen so that bi(w) > 0 then αi = 0. So in either case we have αibi(w) = 0. So now
we have reduced L(w,α) = 1

2
||w||2 but with w satisfying yi(w · xi) ≥ 1, which is exactly

problem(2). �

Now what if we reverse player roles:

Player 1 first chooses α ≥ 0 to max L(w,α)
Player 2 then chooses w to minL(w,α).

Then we have the problem
max
α≥0

min
w

L(w,α).

Logically it would seem being the second player is more advantageous, and this turns out
to be true. That is we get

max
α≥0

min
w

L(w,α) ≤ min
w

max
α≥0

L(w,α).

In the above it turns out we will have equality if L(w,α) is convex in w and concave in α.
In our case, we have equality

max
α≥0

min
w

L(w,α) = min
w

max
α≥0

L(w,α).

We call
max
α≥0

min
w

L(w,α)

the convex dual.

(As a quick refresher, a function f(x) is convex if it satisfies

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y. And a function is concave if

f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y)

for all x, y. See Figure 2.)

Let
w

∗ = arg min
w

max
α≥0

L(w,α)

α∗ = arg max
α≥0

min
w

L(w,α)
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(x, f(x))

(y, f(y))

(x, f(x))

(y, f(y))

Figure 2: The top picture is convex, and the bottom picture concave

We see

L(w∗,α∗) ≤ maxα≥0 L(w∗,α) minw L(w,α∗) ≤ L(w∗,α∗)
‖ ‖

minw maxα≥0 L(w, α) = maxα≥0 minw L(w,α)

So α∗ maximizes L(w∗, ·) and w
∗ minimizes L(·,α∗). Thus we see the solution lies at

a saddle point. From these facts we see at the solution we have the following conditions:

∂L(w,α)

∂wj
= 0

∀i bi(w) ≥ 0 αi ≥ 0 αibi(w) = 0

The first condition is because w
∗ is minimum with no restrictions for all i. The second line

of conditions are called the ”complementary slackness conditions”. And all the conditions
are called the ”KKT conditions” for Karush, Kuhn, and Tucker.

Now to solve maxα≥0 minw L(w,α) we first solve minw L(w, α). Let xij be the jth
component of the ith example, and we get

∂L(w,α)

∂wj
= wj −

∑

i

αiyixij .

Solving for w gives

w =
∑

i

αiyixi

and this minimizes L(w,α). Now we plug in w into L(w, α) to get

max
α≥0

min
w

L(w,α) = max
α≥0

∑

i

αi − 1

2

∑

i,j

αiαjyiyjxi · xj. (4)

We can optimize this last equation using a number of techniques such as a hill climbing
algorithm.

Now we note that we have αibi(w) = 0 and if αi 6= 0 then bi(w) = 0, written out gives
yi(w · xi) = 1. So we see ith example is a support vector. Thus our solution only depends
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on the support vectors. So if we have k support vectors, then by homework 2 problem 1 we
see

err ≤ O

(

k ln(m) + ln(1/δ)

m

)

.

Now if our examples are not separable, then we can introduce ξi as the distance we
have to move an example which has been wrongly classified by our hyperplane — see figure
below.

dd

x
i

x
j

Figure 3

This gives the problem

min 1

2
||w||2 − C

∑

i ξi

such that yi(w · xi) ≥ 1 − ξi ξi ≥ 0 ∀i

where C is some fixed constant.
Now suppose we have examples where finding even an approximately separating hyper-

plane is not possible — see figure 4.

Figure 4

Then we map our examples into a higher dimensional space. Suppose x = (x1, x2). We
do the following:

x 7→ (1, x1, x2, x
2

1
, x2

2
, x1x2) = ψ(x).

This gives us a linear classifier (hyperplane) now of the form

a + bx1 + cx2 + dx2

1
+ ex2

2
+ fx1x2 = 0.
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We see this example can be extended from the 2-dimensional space where the above x

lives to any n-dimensional space and extended from the collection of degree 2 or less mono-
mials (x1, x2, x

2

1
, x2

2
, x1x2) to all monomials of degree d or less. So we see that mapping

to a higher dimension allows a much more general classifier (conic sections in the exam-
ple above). However, we are adding O(nd) dimensions. This leads to computational and
statistical problems. But support vector machines handles these problems nicely.

For the statistical problem, we recall the VC-dimension is 1/δ2 so is independent of the
dimension of our example space. Thus going to larger dimensional example space does not
necessarily hurt.

As for the computational problem, notice in equation (4) that we only need to compute
the inner product of our example vectors to solve maxα≥0 minw L(w, α). So if we map our
examples into a higher dimension space using ψ(x), our problem then becomes

max
α≥0

min
w

L(w,α) = max
α≥0

∑

i

αi − 1

2

∑

i,j

αiαjyiyjψ(xi) · ψ(xj). (5)

So we only need to compute the inner product ψ(xi) ·ψ(xj) to solve our problem. For the
example of ψ(x) given previously, we add some well chosen constants to ψ(x) which will
be absorbed in the coefficients of the linear classifier equation. Let

ψ(x) = (1,
√

2x1,
√

2x2, x
2

1, x
2

2,
√

2x1x2).

So we see

ψ(x)·ψ(u) = 1+2x1u1+2x2u2+x2

1
u2

1
+x2

2
u2

2
+2x1x2u1u2 = (1+x1u1+x2u2)

2 = (1+(x·u))2.

The above is an example of a ”kernel” mapping: K(x,u) = ψ(x) · ψ(u). A ”kernel” map
is an inner product mapped into higher dimensions. Thus a kernel mapping helps us avoid
computing the inner product in the higher dimensional space by using the lower dimensional
inner product. Thus kernel mappings solve the problem of computing the higher dimensional
inner product found in equation (5).

A further example of a kernel map would be the extension of our example above for any
n-dimensional space and monomials of degree d, (1+(x ·u))d called polynomial kernel. Also
there is exp(−c||x − u||2

2
) which is called the radial basis kernel. For mapping into higher

dimensions we can use any kernel map K satisfying the Mercer Conditions — symmetric
and positive semidefinite.

One overlooked fact: We assumed ||xi|| ≤ 1 to get a VC-dimension of 1/δ2. If ||xi|| ≤ R
we get a VC-dimension of R2/δ2. And we see if ||xi|| ≤ 1 then

||ψ(x)||2 = ψ(x) ·ψ(x) = (1 + x · x)d ≤ 2d.

Thus we see ||ψ(x)|| ≤ 2d/2 and not ||ψ(x)|| ≤ 1, which can cause our VC-dimension to be
bigger than 1/δ2. So, mapping to a higher dimensional space is likely to cause δ to increase,
but it also may cause R to increase, which means it may or may not improve performance
depending on how much δ increases relative to R.
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