
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #3
Scribe: E. Glen Weyl February 14, 2006

1 Probably Approximately Correct Learning

One of the most important models of learning in this course is the PAC model. This model
seeks to find algorithms which can learn concepts, given a set of labeled examples, with
a hypothesis that is likely to be about right. This notion of “likely to be about right” is
usually called Probably Approximately Correct (PAC). We can define the concept of PAC
learning formally, as we did in the last lecture. Let us repeat that definition here, for
memory’s sake. We will say that a concept class C is “PAC learnable” by a hypothesis class
H if and only if there exists an algorithm A which can preform the following task: given any
target concept c ∈ C, target distribution D over the set of possible examples X, and strictly
positive pairs of real numbers (δ, ε) (note: any (δ, ε) pair we will actually consider will have
both components bounded above by 1), A takes as input a set (called the training set) m of
independently drawn random labeled examples (xi, c(xi)), where xi ∈ X is drawn according
to D and m is bounded above by a polynomial in 1

δ
and 1

ε
, and outputs an hypothesis h ∈ H

about which we can say, with confidence (probability over all possible choices of the training
set) greater than 1 − δ that the error of the hypothesis (that is PrD[h(x) 6= c(x)] where
x ∈ X is drawn randomly according to D) is ≤ ε.

2 A Very Simple Example of PAC Learning

The first question that comes to mind in the context of PAC learning is whether such a
thing is even ever possible. That we might be able to say that for any concept and any
distribution that we can always find a hypothesis that is likely to be about right if we have
enough evidence seems a quite ambitious claim; in a sense, this is a claim to which much of
thousands of years of epistemological thought has been devoted to adressing. Despite this
apparent difficulty, we will see that under the assumptions we have made (an unchanging
distribution from which all examples are drawn and an unchanging concept that labels
them) a number of intersting concept classes are provably PAC learnable. The best way
to start building an intuition for PAC learning, however, is to consider a somewhat less
interesting, but simple and instructive example. Let our sample space X be the real line
(R) and let our concept space be the set of all positive “half-lines”; that is, every concept
or hypothesis is a real number paired with the indicator function of the relationship ≥. For
example, the concept might be that all real numbers ≥ π are labeled 1. Let us consider
an algorithm for learning this concept class (which we call, as usual, C) and try to prove
that it satisfies the requirements of PAC learning and therefore proves that C is learnable
by H = C.

Theorem 1 C is PAC learnable using C.

Consider the algorithm that first, after seeing a training set S which contains m labeled
examples of the form (xi, c(xi)) where xi ∈ R, selects the greatest example labeled 0,
which we call x (x ≡ maxi:c(xi)=0xi), and the smallest example labeled 1, which we call

x (x ≡ mini:c(xi)=1xi). We know that x < x because, otherwise, there is an example
labeled 1 that is smaller than an example labeled 0, contradicting that c is a positive ray.
The algorithm outputs an hypothesis h that is the positive ray corresponding to a point
arbitarily selected (the analysis below does not depend on how it is selected) from the open
interval (x, x).

Now suppose we are given any ε > 0. Let us define kc as the real number marking the
lower boundary of the positive ray c. Also, let us define kc ≡ max{k : D([kc, k)) ≤ ε}. That
is, kc is the greatest value of k for which the upper half-open interval [kc, k) has no more
than ε probability weight under the sampling distribution function D. If D is smooth (has
no discrete “lumps” anywhere), this reduces to choosing kc so that [kc, kc] has exactly ε
probability weight. Intutively, kc is exactly (or for discrete distributions, as close as we can
get to exactly) ε above kc in “probability distance”; that is to say, under the metric where
the distance between two points is measured by the proability under D of an example lying
in that interval. Let us define R+ ≡ [kc, kc]. We also can define R− and kc in a symmetric
fashion.

Let us now define kh as the real number marking the lower boundary of the positive
ray h. If kh ≤ kc, then there will be a probability, under D, of no more than ε that h
misclassifies a positive example. This is clear because h misclassifies those, and only those,
examples on which it disagrees with c and positive examples must have probability weight
of no more than ε if kh ≤ kc by construction. We want to show this, that the error of h is
less than ε, with some confidence (probability). We can do this as follows.

Define the event that kh > kc as b+. Also define symmetrically (I omit details here)
the event b− for kc. b+ will only occur if there is no training example xi ∈ R+. Otherwise,
A would have chosen xi as the least example labeled 1 and thus we would have had kh ≤
xi ≤ kc. That is, b+ will only occur if none of the m independent training examples lie
inside R+. Because the probability of an example lying in R+ is ≥ ε by construction, the
probability of a training example not lying in R+ is ≤ 1 − ε. Because all of the training
examples are independent, the probability that none of the m training examples are in R+

is ≤ (1 − ε)m. Using the bound that (1 − x) ≤ e−x, we can say that the probability of b+

is ≤ e−mε. Using a symmetric argument, we can prove that the probability of b− is also
≤ e−mε. Note that we either have kh ≤ kc or kh ≥ kc, so h may misclassify positive examples
or negative examples but not both. Thus, if neither b+ nor b− occur, then the probability of
h misclassifying an example is ≤ ε. Because b− and b+ cannot both occur (they are disjoint
events) the probability of either occuring is just the sum of the probabilities of each of the
two occuring. That is, putting this all together, given m independent training examples
we can say with probability at least 1 − 2e−mε we can assert that the error of h is less
than ε. Conversely, if we have at least 1

ε
ln(2

δ
) training examples, we can show by simple

substitution that we can assert with probability at least 1−δ that the error of h is less than
ε. Because 1

ε
ln(2

δ
) is clearly bounded above by a polynomial in 1

δ
and 1

ε
we have shown that

A satisfies the requirements for PAC learning C by C. This proves that C is PAC learnable
by C and completes the proof.

Thus, we have shown, for the first time, that an (admitedly simple) concept class is PAC
learnable. We can interpret the bound we derived above in one further way by writing that
given m training examples we can assert that the h hypothesis outputted by A has error
≤ 1

m
ln(2

δ
). This bound has much the same flavor as a confidence interval in statistics. If

we want to acheive 95% (δ = .05) confidence in our bound, we can assert that, with this
confidence, the error of h is ≤ 1

m
ln(40). However, if we want to acheive 99% confidence,

then we must “widen” our confidence interval: with 99% confidence we are only able to

2

assert that the error is ≤ 1
m

ln(200). If we are willing to only have 90% confidence, we
can “tighten” our confidence interval: with 90% confidence we can assert that error is
≤ 1

m
ln(20).

It is also worth noting that the error dies off linearly with the inverse of m. This is quite
rapid and as the course progresses we will be interested in studying the relationship between
the number of examples we are given and the error of our hypothesis; this relationship is
often called the “learning curve”.

3 Two More Simple Examples

In the spirit of the analysis above, we can examine two more simple examples.

3.1 Intervals

Let us once again consider X = R. Now we consider a concept class C which is only slightly
more sophisticated. We let C be the set of all closed intervals on R. For example, we might
have c ∈ C where c = [0, 1] in which case c(x) = 1 iff x ∈ [0, 1] and c(x) = 0 iff x /∈ [0, 1]. To
analyze this situation, we have to consider four “bad events” like the “bad events” b+ and
b− we considered above. Loosely, these involve the bottom boundary of our interval being
too low, the bottom boundary being too high, the top boundary being too low, and the top
boundary being too high. Because the analysis here is a direct analog of the analysis in the
example above, we leave the more rigorous proof as an excercise, but note that the final
bound we arive at is that if we have at least 4

ε
ln(4

δ
) training examples we can assert with

probability 1 − δ that the error of the (correctly chosen consistent) hypothesis is less than
ε.

3.2 Axis-Parallel Rectangles

Now we return to an example from last time. We let X = R2 and let C be the set of all
axis-parallel rectangles in the real plane (as defined in last class). To put this precisely, we
can view C as the set of all cross-producted pairs of closed intervals on the real line. An
example is then labeled 1 if and only if its x coordinate lies inside the first closed interval
and its y coordinate lies within the second interval and is labeled 0 otherwise. For an
extensive analysis of this problem in the context of PAC learning, see Kearns and Varziani,
Section 1.1. The intuition, however, proceeds along a similar line as the above examples.

4 A More General Theorem

We have shown, or hinted, that in a number of simple cases PAC learning is possible.
However, these examples have been quite contrived and not of much general interest. What
we would really like to be able to do is say something more definite and general. This is
the purpose of the first truly important theorem we will prove in this course. We don’t
have time to prove it today, so we will save that for next time, but let us quickly state the
theorem formally and in plain English.

The theorem states that if we can find a hypothesis h ∈ H that is consistent with a test
sample of size m, then if |H| (the cardinality of the hypothesis space H) is finite, we can do
“the PAC jig”; that is, we can assert with a certain confidence (probability) that the error
of h is less than some level ε. Futhermore, and more importantly, given any strictly postive

3

pair (ε, δ) we can, supposing we find a hypothesis h ∈ H that is consistent with a number
of training examples m that is bounded above by a polynomial in 1

δ
and 1

ε
, assert with

probability (confidence) 1 − δ that the error of the hypothesis is less than ε. Furthermore,
we can come up with an exact expression for the number of examples required. Formally:

Theorem 2 If we are able to find a hypothesis h ∈ H where H has finite cardinality |H|
which is consistent with m independent random labeled training examples, then for any
strictly positive pair (δ, ε) we can assert with confidence (probability) 1 − δ that the error of
h is less than ε provided that:

m ≥
ln(|H|) + ln(1

δ
)

ε

Next class we will prove this theorem. For now, let’s try a little fun excercise.

5 (Not Quite) Just for Fun

In the statement of the theorem above, the size (cardinality) of the hypothesis space plays
an important role. The larger the size of the hypothesis space, the more examples we need
for a given (δ, ε) pair to assert with confidence 1 − δ that the hypothesis we get has error
less than ε. Thus, a large hypothesis space “hurts” us in a certain sense.

To see why this might be a case, let’s try a little fun experiment. I have in my mind
a “concept” for labeling every number between 1 and 20 as either + or −. For example, I
might be thinking that every prime is labeled + or that every number all of whose digits
appear in the first 10 places of the decimal expansion of π is labeled + (and all others in
both cases are labeled −). A hypothesis about my concept is a rule (like mine) for labeling
the numbers between 1 and 20. In class, every person generated one hypothesis; if you
want to try to replicate this excercise at home, you have to come up with a dozen or more
hypotheses on your own! Come up with your hypotheses before you look at the training set
in Figure 1.

Now peek at the training set (but not the test set!) and score your various hypotheses
accoring to their error on this training data. Choose the hypothesis with the least error on
the training set. Imagine that the set of all of your hypotheses was your hypothesis class
and that your “learning algorithm” has just output this least-error hypothesis which we
will call h. How low was the error of h? In class with about 30 students, the h we selected
had only 10% error. Now let’s test h to see how it preforms on test data that is labeled
according to the same rule. The test data is the numbers 11 through 20. Figure 2 shows
how the concept I had in mind labeled the test set.

How did h do this time? Not quite as well? This isn’t a big surprise. My “concept” was
just randomly flipping a coin. Yet how did h manage to get such low error on the training
set? The basic point is that there were so many hypotheses that one was bound to do very
well; however, it did not generalize well to the test set because, of course, the test set is
totally random, so it couldn’t hope to generalize! This shows us that we should expect
preformance to degrade as hypothesis classes grow larger; good preformance of a hypothesis
drawn from a large class on a training set may not tell us very much at all about how well it
will generalize, unless we compensate for this larger class with correspondingly more data.
This idea, which is the basic justification for the “Occam’s Razor” principle which prefers
simple (small) hypothesis classes, is a fundamental concept in machine learning.

4

example label

train
1 +
2 −
3 −
4 +
5 −
6 −
7 +
8 +
9 −
10 +

Figure 1: Training Set

example label

test
11 −
12 +
13 −
14 +
15 +
16 −
17 −
18 −
19 +
20 −

Figure 2: Test Set

A Appendix: Probably Approximately Correct Learning and

Expectation Learning

One question that comes to mind is whether PAC learning is equivelent to what we might
call “Expectation learning”. Expectation learning demands that we be able to acheive an
arbitrarily low expected error of the hypothesis , as opposed to insisting (as PAC does) that
with arbitrarily high confidence we can get the error arbitarily low. Formally, let us define
“Expectation learning” (E) and then prove that it is equivelent to PAC learning. We will
say that a concept class C is “E learnable” by a hypothesis class H if and only if there exists
an algorithm A which can preform the following task: given any target concept c ∈ C, target
distribution D over the set of all possible examples X, and strictly positive real number γ
(note: any γ we will consider will be less than 1), A takes as input a set (called the training
set) m of indepdently drawn random labeled examples (xi, c(xi)), where xi ∈ X is drawn
according to D and m is bounded above by a polynomial in 1

γ
, and outputs a hypothesis

h ∈ H whose expected error (defined above) is at worst γ (where the expectation is taken
over all possible choices of the training set).

Theorem 3 E learning is equivelent to PAC learning. That is, a concept class C is E
learnable by H if and only if it is PAC learnable by H.

Proof: Our strategy is to show that any algorithm A which satisfies the requirements of
PAC learning also satsifies the requirements of E learning (that E learning reduces to PAC
learning) and, conversely, that any algorith A′ which satisfies the requirements of E learning
also satsifies those of PAC learning (that PAC learning reduces to E learning). First we
prove that E learning reduces to PAC learning.

Suppose we are given an algorithm A which satisfies the conditions of PAC learning
(given above). We must show that (for all concpets, distributions, and strictly positive
values of γ) A can take a training sample of size m that is bounded above by a polynomial
in 1

γ
and output a hypothesis h ∈ H whose expected error is less than γ. A can do this

(given any concept, distribution and strictly postive value of γ) in the following manner. It
generates a hypothesis h ∈ H with the property that Pr

[

err(h) > γ
2

]

≤ γ
2 , which it can do

5

because we have assumed it satsifies the conditions of PAC learning. We then have:

E [err(h)] = E

[

err(h)|err(h) ≤
γ

2

]

Pr

[

err(h) ≤
γ

2

]

+

E

[

err(h)|err(h) >
γ

2

]

Pr

[

err(h) >
γ

2

]

≤
γ

2
Pr

[

err(h) ≤
γ

2

]

+ E

[

err(h)|err(h) >
γ

2

]

γ

2

≤
γ

2
+

γ

2
= γ

The first equality follows by conditioning on whether the error is > or ≤ γ
2 . The first

inequality follows from the fact that E
[

err(h)|err(h) ≤ γ
2

]

≤ γ
2 and our construction from

the PAC properties. The second inequality follows from the fact that all probabilities are
bounded above by 1.

Thus, h satisfies E [err(h)] ≤ γ. Additionally, the number of examples needed to generate
h, m, is bounded above by a polynomial in 2

γ
and 2

γ
because A satisfies the requirements

of PAC learning and if m is bounded above by a polynomial in 2
γ

and 2
γ

then it is clearly

also bounded above by a polynomial in 1
γ
. This shows that A satisfies the requirements of

E learning and therefore proves that E learning reduces to PAC learning. Next we prove
that PAC learning reduces to E learning.

Suppose we are given an algorithm A which satisfies the conditions of E learning (given
above). We must show that (for all concpets, distributions, and strictly positive values pairs
(δ, ε)), A can take a training sample of size that is bounded above by a polynomial in 1

ε
and

1
δ

and output a hypothesis h ∈ H about which we can say, with confidence greater than
1 − δ that the error of the hypothesis is ≤ ε. A can do this (given any concept, distribution
and value of γ) in the following manner. It generates a hypothesis h ∈ H with the property
that E [err(h)] ≤ δε, which it can do because we have assumed it satsifies the conditions of
E learning. We then suppose that Pr [err(h) > ε] > δ. Then we have

E [err(h)] = E [err(h)|err(h) > ε] Pr [err(h) > ε] +

E [err(h)|err(h) ≤ ε] Pr [err(h) ≤ ε]

> εδ

The equality is again by conditioning and the inequality follows by our supposition and
that all probabilities must be non-negative. This gives us E [err(h)] > δε which contradicts
that E [err(h)] < δε. Thus we must have Pr [err(h) > ε] < δ. Furthermore, the number
of examples needed to generate h, m, is bounded above by a polynomial in 1

δε
, which is a

polynomial in 1
δ

and 1
ε
, and because a polynomial of a polynomial is itself a polynomial we

have that m is bounded above by a polynomial in 1
δ

and 1
ε
. This shows that A satisfies the

requirement of PAC learning and therefore that PAC learning reduces to E learning. This
completes the proof of the equivelence of E and PAC learning.

6

