
COS 511: Foundations of Machine Learning

Homework #6 Due: April 18, 2006
Winnow and Widrow-Hoff

Problem 1

In class, we discussed a version of the winnow algorithm that makes few mistakes when
examples x, y are such that y(u · x) > 0 for some unknown vector u. Effectively, the inner
product u · x is being compared to the threshold 0 to determine x’s classification. In this
problem, we will consider the case in which some threshold other than 0 is to be used. Thus,
we now suppose that examples are such that

y(u · x − b) > 0

for some known threshold b ∈ R, and some unknown vector u.
To be more precise, as in class, assume xt ∈ [−1,+1]N and yt ∈ {−1,+1}. Assume

further that there exists δ > 0, u ∈ [0, 1]N with ||u||1 = 1 such that

yt(u · xt − b) ≥ δ

where b ∈ R is known. To learn, we use the following variant of winnow: Initially, w1,i = 1/N
(as usual). On each round t, if yt(wt · xt − b) > 0 (no mistake), then we do nothing (i.e.,
wt+1 = wt). Otherwise, we update wt as follows:

if yt = +1 then wt+1,i =
wt,i exp (ηxt,i)

Zt

if yt = −1 then wt+1,i =
wt,i exp

(

−ηxt,i

)

Zt

where Zt is a normalization constant, and where η > 0 and η > 0 are parameters of the
algorithm.

Let m and m be the number of mistakes made by this algorithm on rounds on which
yt = +1 and yt = −1 respectively. Thus, m + m is the total number of mistakes.

a. [12] Use a potential argument as in class to prove that

m C + m C ≤ ln N

where

C = η(δ + b) − ln

[
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]

C = η(δ − b) − ln
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b

]

b. [8] Show how to choose η and η as functions of δ and b to prove that

m RE

(

1 + b + δ

2
‖
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)

+ m RE
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1 + b − δ
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≤ ln N.



c. [5] Suppose xt ∈ {−1,+1}N and that there exists a set of indices S ⊆ {1, . . . , N} such
that yt = +1 if and only if xt,i = +1 for at least one of the indices i ∈ S. In other
words, yt is a disjunction of the variables indexed by S. Assume k = |S| is known.
Show how the winnow algorithm and analysis given in class can be applied to this
case and that the number of mistakes is at most O(k2 lnN).

d. [5] Now show how the version of winnow developed in parts (a) and (b) can be applied
to this problem to obtain a mistake bound of O(k ln N). (For this problem, you may
freely approximate ln(1 + ε) by ε when |ε| is small.)

Problem 2

In class, we proved that the loss of the Widrow-Hoff (WH) algorithm is at most

min
u∈R

n

(

pLu + q||u||22

)

(1)

for constants p = 1/(1−η) and q = 1/η. In this problem, we will show that these constants
are the best possible, in other words, that no algorithm can achieve a bound that is strictly
better.

Let A be any deterministic, on-line learning algorithm (not necessarily WH or even a
weight-update algorithm), and assume that the cumulative loss of A,

LA =
T

∑

t=1

(ŷt − yt)
2

is at most the bound given in Eq. (1). As usual,

Lu =
T

∑

t=1

(u · xt − yt)
2.

Consider training A on the following examples (x1, y1), . . . , (xT , yT ): each xt is a unit
vector with a 1 in the t-th coordinate, and 0’s in all other coordinates. (Thus, xt ∈ R

n

where n ≥ T .) The yt’s are all in {−1,+1} and can be chosen adversarially.

a. [8] Show how an adversary can choose the yt’s to ensure that LA ≥ T .

b. [12] Show that, regardless of how the yt’s are chosen in (a), the upper bound on LA

in Eq. (1) is equal to:
pq

p + q
T.

c. [5] Combine parts (a) and (b) to show that

1

p
+

1

q
≤ 1.

Show how this implies that the bounds for WH are the best possible, i.e., that it
cannot be the case that p < 1/(1 − η) and simultaneously q < 1/η for any η ∈ (0, 1).
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