Dynamic Trees

« Motivation (Online MSTs)

« Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

« Extensions

Online Minimum Spanning Trees

Dynamic Trees

« The online minimum spanning trees problem:
= Input: a sequence of edges (with costs), one at a time.

= Goal: keep the minimum spanning forest of the graph.

+ An algorithm:

= For each new edge (v,w):
« If v and w belong to different components, insert the edge.

« Ifvand w are in the same component:
— insert (v,w) into the solution; and
— remove the most expensive edge on the cycle created.

Dynamic Trees

Online Minimum Spanning Trees

edge cost
fg) 6

(fh)
(a,d)
(a,e)
(a,b)
(CY)]
[CN))
(c,h)
(de)
(ef)
(¢.9)
(g.)
(b
(be)
(b.g)

[S NS B N S O - N S TS BN |

Online Minimum Spanning Trees

Dynamic Trees

edge cost
(fg) 6
¢ (fh)
(a,d)
(a,e)
(a,b)
()
Qe h)
(c,h)
(de)
(ef)
(c,9)
(g.h)
(bic)
(be)
.9)

o)

g©

20

o)
U W A AN OO NN O N

Dynamic Trees

Online Minimum Spanning Trees

o=
(€]

Ro

A ©

edge cost
-9 6
(£h)
(a,d)
(a,e)
(a,b)
@pn
[CN))
(c,h)
(de)
(ef)
(c.9)
(g:0)
(b,e)
(be)
(b.g)

[E NS, SO N S O IS IS TS R AN

Online Minimum Spanning Trees

Dynamic Trees

edge cost

fg) 6

¢ - (fh)
(a,d)

(ae)

(a,b)

df

oc 6 h ()
7 (c,h)

(d,e)

o=
(]

a¥e)

a ©

(c,9)
(g,h)
(be)
(be)
(b,g)

[NI, B O N N O - I IR TS - NN

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

o=
©

edge cost
(fg) 6
(hh)
- (a,d)
(a,e)
(a,b)
)
b.)
(c,h)
(de)
(ef)
(c9)
(g.)
(b,
(be)
(b.g)

[E = NS BT N S O R RS TS BN NN |

edge cost

rg) 6
¢ (£h)
(a,d)
- (a,e)
a (a,b)
(df)
6 e 6 h b.)
(c,h)
(de)
d f (e)

o=
o

(c.9)
(g.h)
(b,e)
(be)
(b,g)

[S = NS, B SO N S O - 3RS BN TS B NN

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge cost
(9)
(fh)
(a,d)
(ae)
- (a,b)
)
b
(c,h)
(de)
(ef)
(c.9)
(g:h)
(b,c)
(b,e)
(b,9)

o

o= T R N S U I .S IS NG NIEN |

edge cost
(f9)
(fh)
(a,d)
(a,e)
(a,b)
->df
(b
(c,h)
(de)
(ef)
(c,9)
(g.h)
(bic)
(be)
.9)

o

oo w wh A PO OO NG N

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge cost
(fg) 6
(£h)
(a,d)
(a,e)
(a,b)
@n
- (b
(c,h)
(de)
(ef)
(c,9)
(g.)
(b,e)
(be)
(b.g)

[S NS SO N S O IS BN TS B AN

edge cost
fg) 6
(]
(a,d)
(ae)
(a,b)
df
b.)
- (ch)
(de)
(ef)
(c.9)
(g,h)
(b,e)
(be)
(b,g)

[NI, B O N N O - I IR TS - NN

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge cost
(fg) 6
(hh)
(a,d)
(a,e)
(a,b)
)
b.)
(c,h)
- (de)
(ef)
(c.9)
(g.)
(b,
(be)
(b.g)

[E = NS BT N S O R RS TS BN NN |

edge cost
(fg) 6
(£h)
(a,d)
(a,e)
(a,b)
(df)
b.)
(c,h)
(de)
- (ef)
(c9)
(g.h)
(b,e)
(be)
(b,g)

[S = NS, B SO N S O - 3RS BN TS B NN

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge cost
(9)
(fh)
(a,d)
(ae)
(a,b)
df)
)
(c,h)
(de)
(ef)
- (c,9)
(g.)
(b,c)
(b,e)
(b,9)

o

o= T B N S U I S S IS G NIEN |

edge cost
(f9)
(fh)
(a,d)
(a,e)
(a,b)
()
(b
(c,h)
(de)
(ef)
(c,9)
- (g:h)
(bic)
(be)
.9)

o

oo w wh A PO OO NG N

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge cost
(fg) 6
(£h)
(a,d)
(a,e)
(a,b)
@pn
[CN))
(c,h)
(de)
(ef)
(c.9)
(g:0)
- (be)
(be)
(b.g)

[E NS, SO N S O IS IS TS R AN

edge cost
rg) 6
(£h)
(a,d)
(ae)
(a,b)
N
b.)
(c,h)
(de)
(ef)
(¢.9)
(g,h)
(b,e)
— (be)
(b,g)

[S = NI B TR N N O - I IR TS - NN |

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge cost
(fg) 6
(hh)
(a,d)
(a,e)
(a,b)
)
b.)
(c,h)
(de)
(ef)
(c9)
(g.)
(b,
(be)
- (bg)

[E = NS BT N S O R RS TS BN NN |

edge cost

(£9)
(£h)
(a,d)
(a,e)
(a,b)
(df)
b.)
(c,h)
(de)
(ef)
(c.9)
(g.h)
(b,e)
(be)
(b,g)

6

[S = NS, B SO N S O - 3RS BN TS B NN

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Dynamic Trees

« How fast is the algorithm?
= How fast can we find the most expensive edge of a cycle?
« O(log n), with the right data structure.

= Total running time: O(m log n) (m edges, n vertices)

« Motivation (Online MSTs)

« Problem Definition

« A Data Structure for Dynamic Paths
+ A Data Structure for Dynamic Trees

» Extensions

Dynamic Trees

Dynamic Trees

Dynamic Trees - Problem Definition

Dynamic Trees

« Goal: maintain a forest of rooted trees with costs on vertices.
= Each tree has a root, every edge directed towards the root.

« Operations allowed:

link(v,w): creates an edge between v (a root) and w.

cut(v): deletes edge (v, p(v)) (where p(v) is v’s parent).

findcost(v): returns the cost of vertex v.

findroot(v): returns the root of the tree containing v.

findmin(v): returns the minimum-cost vertex w on the path from v to
the root.

« A possible extension:

= evert(w): makes w the root of its tree.

» An example (two trees):

Dynamic Trees

Dynamic Trees

Dynamic Trees

Dynamic Trees

a4q 1 04 pb
rdg S 2
t6 u4d
Dynamic Trees
Applications

link(g,e)
t6 u4
Dynamic Trees
Dynamic Trees
a3

= findroot(s) = a /b
2831904
findcost(s) = 2 o, }a

7 1548 %6
m n

= findmin(s) = b 1,X;\daz
N L

o4 p6

« Used as a building block of several graph algorithms:
= online minimum spanning trees
= dynamic graphs
= directed minimum spanning trees

= network flows (e.g., maximum flow)

Dynamic Trees

Dynamic Trees

Dynamic Trees and Online MSTs

Dynamic Trees and Online MST

« How can dynamic trees help us solve the online MST problem?
= We must answer the following (equivalent) questions:
« Should we insert (c,g), with cost 4, into the following tree?
« Is (c,g) cheaper than some other edge on the cycle it creates?

« What is the most expensive edge on the path between ¢ and g?

» How can dynamic trees help us in the online MST problem?
= We must answer the following (equivalent) questions:
« Should we insert (c,g), with cost 4, into the following tree?
« Is (c,g) cheaper than some other edge on the cycle it creates?
« What is the most expensive edge on the path between c and g?

« Imagine the tree is rooted at g: now, what is the most expensive edge on the
path from c to the root?

Dynamic Trees

Dynamic Trees

Obvious Implementation of Dynamic Trees

« Each node represents a vertex.

« Each node x points to its parent p(x):
= cut, link, findcost: constant time.
= findroot, findmin: time proportional to path length.

« Acceptable if paths are small, but O(n) in the worst case.

« We can get O(log n) for all operations.

Dynamic Trees

Dynamic Trees

» Motivation (Online MSTs)

+ Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

« Extensions

Dynamic Trees

Dynamic Paths

« We start with a simpler problem:
= Maintain set of paths subject to the following operations:
« split: removes an edge, cutting a path in two;
« concatenate: links endpoints of two paths, creating a new path.
= Operations allowed:
« findcost(v): returns the cost of vertex v;

« findmin(v): returns minimum-cost vertex on the path containing v.

<
X
w
N
e

SO

Simple Paths as Lists

Dynamic Trees

« Natural representation: doubly-linked list:

= Path characterized by two endpoints.
« findcost: constant time.
« concatenate: constant time.
« split: constant time.
« findmin: linear time (not good).

» Can we do it O(log n) time?

costs: 6 2 3 4 7 9

o
v

FOow

1

Dynamic Trees

Simple Paths as Binary Trees

« Alternative representation: balanced binary tree.
= Leaves = vertices in symmetric order.
= Internal nodes = subpaths between extreme descendants.

v, Vs

Simple Paths as Binary Trees

Dynamic Trees

» Compact alternative:
= Each internal node represents both a vertex and a subpath:

« subpath from leftmost to rightmost descendant.

(¢]
o

Dynamic Trees

Simple Paths: Maintaining Costs

« We store cost(x) directly in each node.

= Problem: findmin still takes linear time (must visit all vertices).

actual costs

costs: 6 2 3 4 7 9 3

Simple Paths: Finding Minima

Dynamic Trees

« Also store mincost(x), minimum cost in subpath with root x.

= findmin(x) now runs in O(log n) time.

actual costs

mincost “ Vg

costs: 6 2 3 4 7 9 3

Dynamic Trees

Simple Paths: Data Fields

« Final version:

= Stores mincost(x) and cost(x) for every vertex x.

costs: 6 2 3 4 7 9 3

v, v, v, v, v, vg v,

Simple Paths: Structural Changes

Dynamic Trees

« Concatenating and splitting paths:
= Join or split the corresponding binary trees;
= Time proportional to tree height.

= For balanced trees (AVL, red-black, etc.), this is O(log n):
« Rotations must be supported in constant time.
« We must be able to update mincost, but that’s easy:

() O
rotate(v)

R O — O -

mincost’(w) = min {cost(w), mincost(b), mincost(c)}
mincost (v) = min {cost(v), mincost(a), mincost’(w)}

Dynamic Trees

Splaying

« Simpler alternative to balanced binary trees: splaying.
= Trees may be unbalanced in the worst case.
= Guarantees O(log n) amortized access.

= Much simpler to implement.

« Basic characteristics:
* Maintains no balancing information.
= On an access to v:
« moves v to the root;

« roughly halves the depth of other nodes in the access path.

= Primitive operation: rotation.

« All operations (insert, delete, join, split) use splaying.

Splaying

Dynamic Trees

+ Three restructuring operations:

(2})
ORI IS OO
£ —— AAAA
VANAN O O
/D AN O.
[\
o zig(x) °
O AV NSO,
AN VAN

zig-zig(x)
@A LD
(only happens if y is the original root)

AN A A

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

An Example of Splaying

Dynamic Trees

An Example of Splaying

Dynamic Trees

zig-zig(a)
—
Dynamic Trees
An Example of Splaying
zig-zag(a)
Pl
Dynamic Trees
An Example of Splaying
zig-zag(a)
—_—

Dynamic Trees

An Example of Splaying

Dynamic Trees

An Example of Splaying

Dynamic Trees

An Example of Splaying

zig(a)
Db
Dynamic Trees
An Example of Splaying
+ Final result:
splay(a)
—_—

Dynamic Trees

Amortized Analysis

« Bounds the running time of a sequence of operations.
« Potential function ® maps configurations to real numbers.

« Amortized time to execute each operation:
"=+ -D,
« a; amortized time to execute i-th operation;
« t; actual time to execute the operation;
+ ®@; potential after the i-th operation.

« Total time for m operations:

Zinm i = Ty (@ + D= ©) = D= Dy, + %,

i=tm i

Amortized Analysis of Splaying

Dynamic Trees

+ Definitions:
= s(x): size of node x (number of descendants, including x);
« At most n, by definition.
= r(x): rank of node x, defined as log s(x);
« At most log n, by definition.
= @; potential of the data structure (twice the sum of all ranks).
« At most 2 n log n, by definition.

» Access Lemma [ST85]: The amortized time to splay a tree with root
t at a node x is at most

6(r()-r(x)) + 1= O(log(s(8)/s())).

Dynamic Trees

Proof of Access Lemma

o Access Lemma [ST85]: The amortized time to splay a tree with root
t at a node x is at most

6(r()-r(x)) + 1 = Olog(s(t)/s())).

« Proof idea:

r{(x) = rank of x after the i-th splay step;

a;= amortized cost of the i-th splay step;

a; < 6(ri(x)-r;_,(x)) + 1 (for the zig step, if any)

a; < 6(r{(x)-r;_,(x)) (for each zig-zig or zig-zag step)

Total amortized time for all k steps:
2k @ < Xy ey [60r00 =1, 0] + [6(r, ()1, () + 1]
= 61(x) — 67(x) + 1

Proof of Access Lemma: Splaying Step

Dynamic Trees

o Zig-zig: (2 (2
O\ A 2
Qa2 A M
Claim: a <6 ('(x) — r(x)) A A A A
t+®-Dd<6 (r(x) —rx)
2+ 2(r'(x)+r'(Y)+1r'(2)) — 2(r(x)+r(y)+r(z)) < 6 ((x) — r(x))
1+7() + ') +1'(2) = r(x) = r(y) - r(z) <3 ((x) - r(x))
1+7@) + @) - r(x) -r@) <3 () -r) since r'(x) =r(2)

1+ 7@y +1r'(2) — 2r(x) <3 (X(x) - r(x) since r(y) > r(x)
1+7°(x) +1(2) — 2r(x) <3 ("(x) — r(x)) since () > 1"(y)
)= + () -rE)<-1 rearranging
log(s(x)/s°(x)) + log(s'(2)/s’(x)) < —1 definition of rank

TRUE because s(x)+s’(z)<s'(x): both ratios are smaller than 1, at least one is at
most —1/2 (and its log is at most —1)

Dynamic Trees

Proof of Access Lemma: Splaying Step

« Zig-zag: O (2

0 /N zigzag(x) 0 °
£ AN AN

Claim: a < 4 (r'(x) - r(x))
t+ 0 - D <4 (F(x) - r(x) TANA
2 + (2r'(x)+2r'(y)+2r'(z)) — (2r(x)+2r(y)+2r(z)) < 4 (X (x) - r(x))

2 +2r'(y) + 2r'(z) — 2r(x) — 2r(y) < 4 ("(x) — r(x)), since r'(x) = r(z)

2+2r'(y) +2r'(z) - 4r() <4 (") - r(x)), since r(y) 2 r(x)
@) -rX) + @@ -rx)<-1, rearranging
log(s’()/s’(x) + log(s'(2)/s'(x)) < —1 definition of rank

TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one is at
most —1/2 (and its log is at most —1).

Proof of Access Lemma: Splaying Step

Dynamic Trees

" Zg o 2ig(x) °
A — A @)
AN NN

Claim: a<1+ 6 ((x) - r(x)) (only happens if y is root)

t+@-0<1+6((x) - rk)

1+ (2r'(x)+2r'(y)) — (2r(x)+2r(y)) <1+ 6 ('(x) — r(x))

1+2(P0) -r(x) <1+ 6 (F(x) - r(x)), since r(y) = r'(y)

TRUE because r'(x) > r(x).

Dynamic Trees

Splaying

¢ Summing up:

= No rotation: a=1

Zig:a<6(r() -r(x) +1

Zig-zig: a <6 ((x) - r(x))

Zig-zag: a < 4 (r'(x) — r(x))

Total amortized time at most 6 (r(t) — r(x)) + 1 = O(log n)

« Since accesses bring the relevant element to the root, other
operations (insert, delete, join, split) become trivial.

Dynamic Trees

Dynamic Trees

« Motivation (Online MSTs)

+ Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

» Extensions

Dynamic Trees

Dynamic Trees

« We know how to deal with isolated paths.

« How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

o Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

Dynamic Trees

Dynamic Trees

» Main idea: partition the vertices in a tree into disjoint solid paths
connected by dashed edges.

o

Dynamic Trees

Dynamic Trees

« Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

 Itis unique.

Dynamic Trees

Dynamic Trees

« Solid paths:
= Represented as binary trees (as seen before).

= Parent pointer of root is the outgoing dashed edge of the path.

« Dashed pointers go up, so the solid path above does not “know” it has
dashed children.

« Solid binary trees linked by dashed edges: virtual tree.

« “Isolated path” operations handle the exposed path.
= That’s the solid path entering the root.
« Ifadifferent path is needed:

= expose(v): make entire path from v to the root solid.

Virtual Tree: An Example

Dynamic Trees

f
b
J(D?\
L) SL

P

@ k
ig oc/g\C\hO
m n e
d
r t Il
v s
w u :
Zc\j Ox
v

the actual tree avirtual tree

Dynamic Trees

Dynamic Trees

« Example: expose(y)

(actual tree)

Dynamic Trees

Dynamic Trees

« Example: expose(y)

= ..., make them solid, ...

(actual tree)

Dynamic Trees

Dynamic Trees

« Example: expose(y)
= Take all edges on the path to the root, ...

(actual tree)

Dynamic Trees

Dynamic Trees

« Example: expose(y)

= ...make sure there is no other solid edge incident to the path.
« Uses splice operation.

(actual tree)

Dynamic Trees

Exposing a Vertex

« expose(y): makes the path from y to the root solid.

« Implemented in three steps:
1. Splay within each solid tree on the path from x to root.

2. Splice each dashed edge from x to the root.
— splice replaces left solid child with dashed child;

3. Splay on x, which will become the root.

Exposing a Vertex: An Example

Dynamic Trees

» expose(y): (1) splay within each solid tree;
= Does not change the partition into solid paths.

SN

b
¢
q g, a
RN
g local splays q
o O h —
m n e
d
r (]

s
w u

f
1
é i
p ..’.
i
-
v
ZC:\D O«
v

Dynamic Trees

Exposing a Vertex: An Example

« expose(y): (2) splice on all vertices from y to the root.
= Original exposed path: (qlifcb a)

= New exposed path: (yvutsmjgdcba)

Dynamic Trees

Dynamic Trees: Splice

« Additional restructuring primitive: splice.
= Dashed child becomes solid, replaces left child.

splice(v)
—_—

N
/ \
/ \

= Update: mincost’(z) = min{cost(z), mincost(v), mincost(x)}

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

= k: number of dashed edges from x to the root t.
= Amortized costs of each pass:

1. Splay within each solid tree:

— x; vertex splayed on the i-th solid tree.

— amortized cost of i-th splay: 6 ('(x;) — r(x}) + 1 (Access Lemma)

- r(x;,) 21r(x), so the sum over all steps telescopes;

— amortized cost first of pass: 6(r"(x;)-r(x,)) + k<6 logn + k.
2. Splice dashed edges:

— no rotations, no changes in potential: amortized cost is zero.
3. Splayonx:

— amortized cost is at most 6 log n + 1.

— xends up in root, so exactly k rotations happen;

— each rotation costs one credit, but is charged two;

— they pay for the extra k rotations in the first pass.

= Amortized number of rotations = O(log n).

Dynamic Trees

Exposing a Vertex: An Example

« expose(y): (3) splay on y.
= Does not change the exposed path.

Dynamic Trees

Exposing a Vertex: Running Time

« Running time of expose(x):
= Proportional to initial depth of x;
« xisrotated all the way to the root;
« we just need to count the number of rotations.
= Will use the Access Lemma.
« s(x), r(x) and potential are defined as before;

« Inparticular, s(x) is the size of the whole subtree rooted at x.
— Includes both solid and dashed edges.

Dynamic Trees

Implementing Dynamic Tree Operations

« findcost(v):
= expose v, return cost(v).
« findroot(v):
= expose U;
= find w, the rightmost vertex in the solid subtree containing v;
= splay at w and return w.
« findmin(v):

expose v;

use mincost to walk down from v to w, the rightmost minimum-cost
node in the solid subtree containing v;

= splay at w and return w.

Dynamic Trees

Implementing Dynamic Tree Operations

o link(v,w):

= expose v and w (they are in different trees);

= set p(v)=w (that is, make v a middle child of w).
« cut(v):

= expose v;

= make p(right(v))=null and right(v)=null;

= set mincost(v) = min{cost(v), mincost(left(v))}.

Dynamic Trees

Dynamic Trees

« Motivation (Online MSTs)

« Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

« Extensions

Dynamic Trees

Alternative Implementations

« Total time per operation depends on path representation:
= Splay trees: O(log n) amortized [Sleator and Tarjan, 85].
= Balanced search trees: O(log?n) amortized [ST83].
= Locally biased search trees: O(log n) amortized [ST83].
= Globally biased search treess: O(log n) worst-case [ST83].

« Biased search trees:
= Support leaves with different weights.

= Some solid leaves are “heavier” because they also represent dashed
subtrees.

= Much more complicated than splay trees.

Dynamic Trees

Network Flow Applications

+ Augmenting path:

= path from source to sink with positive residual capacity C.

Dynamic Trees

Network Flow Applications

« Augmenting path:

= path from source to sink with positive residual capacity C.

2
s
9

N
lx

7 5
\N
o

Network Flow Applications

Dynamic Trees

» Augmenting path:
= path from source to sink with positive residual capacity C.
« Flow can be sent along this path (as much as C).

= Residual capacity of each arc decreases by C.

Dynamic Trees

Network Flow Applications

Extension: Adding Costs

« Augmenting path:
= path from source to sink with positive residual capacity C;
« Flow can be sent along this path (as much as C).
= Residual capacity of each arc decreases by C.
« Maximum flow algorithms usually maintain only a tree.
= findmin(s) can determine the residual capacity C;

= How can we decrease the capacities?

4
3 4
s O,
7 o—>

9

> 0> 0>
6 1 3

« addcost(v,x): adds x to the cost of each vertex on the path from v to
the root.

addcost(s,3) 72 0
q 4'}07 1508 0

m 0

o4 p6

Dynamic Trees

Dynamic Trees

Adding Costs to Dynamic Paths

Adding Costs to Dynamic Paths

« Corresponding operation on dynamic paths:
= addcost(v,x): adds x to the cost of vertices in path containing v;

= current representation takes linear time.

actual costs

« Better approach is to store Acost(x) instead (difference form):
= Root: Acost(x) = cost(x)
= Other nodes: Acost(x) = cost(x) — cost(p(x))

difference form n Ug

costs: 6 2 3 4 7 9 3

Dynamic Trees

Adding Costs to Dynamic Paths

costs: 6 2 3 4 7 9 3
v, v, vy v, v, vy v,
Dynamic Trees
Adding Costs to Dynamic Paths
e Costs:
= addcost: constant time (just add to root)
= Finding cost(x) is slightly harder: O(depth(x)).
difference form n Vg
costs: 6 2 3 4 7 9 3
v, v, v, v, v, Vg v,

« Still have to implement findmin:
= Cannot store mincost(x) explicitly (addcost would be linear).

costs: 6 2 3 4 7 9 3

Ul

Dynamic Trees

Dynamic Trees

Adding Costs to Dynamic Paths

« Store Amin(x) = cost(x)—mincost(x) instead.

= findmin still runs in O(log n) time, addcost now constant.

costs: 6 2 3 4 7 9 3

Adding Costs to Dynamic Paths

Dynamic Trees

« Final version:

= Store Amin(x) and Acost(x) on each node.

costs: 6 2 3 4 7 9

Dynamic Trees

Adding Costs to Dynamic Paths: Updating Fields

« Updating fields during rotations:

() O
rotate(v)

R O = O =

Acost’(v) = Acost(v) + Acost(w)

Acost’(w) = —Acost(v)

Acost’(b) = Acost(v) + Acost(b)

Amin’(w) = max{o, Amin(b) — Acost’(b), Amin(c) — Acost(c)}

Amin’(v) = max{o, Amin(a) — Acost(a), Amin’(w) — Acost’(w)}

Adding Costs: Updating Fields

Dynamic Trees

« Updating fields during splice:

splice(v)
—

= Acost’(v) = Acost(v) — Acost(z)
= Acost’(u) = Acost(u) + Acost(z)

= Amin’(z) = max{o, Amin(v) — Acost’(v), Amin(x) — Acost(x)}

+ Recall that w is always the root of a solid tree.

Dynamic Trees

Adding Costs: Operations

« findcost(v):
= expose v, return Acost(v).
« findroot(v):
= expose U;
= find w, the rightmost vertex in the solid subtree containing v;

= splay at w and return w.

« findmin(v):

expose v;

use Acost and Amin to walk down from v to w, the last minimum-cost
node in the solid subtree;

splay at w and return w.

Adding Costs: Operations

Dynamic Trees

« addcost(v, x):

= expose v;

= add x to Acost(v), subtract x from Acost(left(v))
o link(v,w):

= expose v and w (they are in different trees);

= set p(v)=w (that is, make v a middle child of w).
o cut(v):

= expose U;

= add Acost(v) to Acost(right(v));

= make p(right(v))=null and right(v)=null.

= set Amin(v) = max {0, Amin(left(v)) — Acost(left(v))}

Dynamic Trees

Another Extension: Change Root Another Extension: Change Root

« evert(q): makes q the root of its tree « evert(q): makes ¢ the root of its tree

= Make sure g is exposed, reverse solid path.

(actual trees)

(actual trees)

Dynamic Trees

Dynamic Trees

Another Extension: Change Root Other Extensions
« evert(q): makes g the root of its tree « Associate values with edges:
= In the virtual tree: reverse left-right pointers: = just interpret cost(v) as cost(v,p(v)).
« This can be done implicitly with a reverse bit. . .
— Must be stored in difference form (meaning depends on parents). + Other path queries (SllCh as length)’
; = modify values stored in each node appropriately.

m b . + Free (unrooted) trees: use evert to change root.
. ¢ A
1@ $ i '.L a evert(q) a 1 6,99 + Subtree-related operations:
P ;) : k A - j . y : h = Can be implemented, but parent must have access to middle children in
C//)?; 2 m no constant time:
7 .. d ¢ d « Tree must have bounded degree.
r t] 9 r t 9

N) v = Approach for arbitrary trees: “ternarize” them:
: : w u H « [Goldberg, Grigoriadis and Tarjan, 1991]
wd Vu Ox

By

(virtual trees)

Dynamic Trees Dynamic Trees

