Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Online Minimum Spanning Trees

- The online minimum spanning trees problem:
 - Input: a sequence of edges (with costs), one at a time.
 - Goal: keep the minimum spanning forest of the graph.
- An algorithm:
 - For each new edge (v, w):
 - If v and w belong to different components, insert the edge.
 - If v and w are in the same component:
 - insert (v, w) into the solution; and
 - remove the most expensive edge on the cycle created.
Online Minimum Spanning Trees

edge cost
(a,g) 6
(a,h) 7
(a,d) 6
(a,e) 5
(a,b) 7
(a,f) 5
(a,y) 8
(a,b) 5
→(a,x) 2
(a,x) 4
→(a,y) 4
→(a,b) 5
→(a,e) 6
→(a,g) 6

Dynamic Trees

Online Minimum Spanning Trees

edge cost
(f,g) 6
(f,h) 7
(a,d) 6
(a,e) 5
(a,b) 7
(a,f) 5
(b,y) 8
(b,h) 5
→(b,x) 2
→(b,y) 4
→(b,g) 4
→(b,e) 5
→(b,d) 6
→(b,h) 6

Dynamic Trees

Online Minimum Spanning Trees

edge cost
(f,g) 6
(f,h) 7
(a,d) 6
(a,e) 5
(a,b) 7
(a,f) 5
(b,y) 8
(b,h) 5
→(b,x) 2
→(b,y) 4
→(b,g) 4
→(b,e) 5
→(b,d) 6
→(b,h) 6

Dynamic Trees

Online Minimum Spanning Trees

edge cost
(f,g) 6
(f,h) 7
(a,d) 6
(a,e) 5
(a,b) 7
(a,f) 5
(b,y) 8
(b,h) 5
→(b,x) 2
→(b,y) 4
→(b,g) 4
→(b,e) 5
→(b,d) 6
→(b,h) 6

Dynamic Trees

Dynamic Trees
Dynamic Trees

Online Minimum Spanning Trees

- How fast is the algorithm?
 - How fast can we find the most expensive edge of a cycle?
 - $O(\log n)$, with the right data structure.
 - Total running time: $O(m \log n)$ (m edges, n vertices)

Dynamic Trees - Problem Definition

- Goal: maintain a forest of rooted trees with costs on vertices.
 - Each tree has a root, every edge directed towards the root.
- Operations allowed:
 - `link(v, w)`: creates an edge between v (a root) and w.
 - `cut(v)`: deletes edge (v, p(v)) (where p(v) is v’s parent).
 - `findcost(v)`: returns the cost of vertex v.
 - `findroot(v)`: returns the root of the tree containing v.
 - `findmin(v)`: returns the minimum-cost vertex w on the path from v to the root.
- A possible extension:
 - `evert(w)`: makes w the root of its tree.

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees

- An example (two trees):
Dynamic Trees

Applications
- Used as a building block of several graph algorithms:
 - online minimum spanning trees
 - dynamic graphs
 - directed minimum spanning trees
 - network flows (e.g., maximum flow)
 - ...
Obvious Implementation of Dynamic Trees

- Each node represents a vertex.
- Each node x points to its parent $p(x)$:
 - cut, link, findcost: constant time.
 - findroot, findmin: time proportional to path length.
- Acceptable if paths are small, but $O(n)$ in the worst case.
- We can get $O(\log n)$ for all operations.

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees

- We start with a simpler problem:
- Maintain set of paths subject to the following operations:
 - split: removes an edge, cutting a path in two;
 - concatenate: links endpoints of two paths, creating a new path.
- Operations allowed:
 - findcost(v): returns the cost of vertex v;
 - findmin(v): returns minimum-cost vertex on the path containing v.

Simple Paths as Lists

- Natural representation: doubly-linked list:
 - Path characterized by two endpoints.
 - findcost: constant time.
 - concatenate: constant time.
 - split: constant time.
 - findmin: linear time (not good).
- Can we do it $O(\log n)$ time?

Simple Paths as Binary Trees

- Alternative representation: balanced binary tree.
 - Leaves = vertices in symmetric order.
 - Internal nodes = subpaths between extreme descendants.
- Compact alternative:
 - Each internal node represents both a vertex and a subpath:
 - subpath from leftmost to rightmost descendant.
Simple Paths: Maintaining Costs
• We store cost(x) directly in each node.
 • Problem: findmin still takes linear time (must visit all vertices).
 Actual costs:
 \[
 \begin{array}{ccccccc}
 v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 \\
 6 & 2 & 3 & 4 & 7 & 9 & 3 \\
 \end{array}
 \]

Dynamic Trees

Simple Paths: Finding Minima
• Also store mincost(x), minimum cost in subpath with root x.
 • findmin(x) now runs in \(O(\log n)\) time.
 Actual costs:
 \[
 \begin{array}{ccccccc}
 v_1 & v_2 & v_4 & v_5 & v_3 & v_6 & v_7 \\
 6 & 2 & 3 & 4 & 7 & 9 & 3 \\
 \end{array}
 \]

Dynamic Trees

Simple Paths: Data Fields
• Final version:
 • Stores mincost(x) and cost(x) for every vertex x.
 Actual costs:
 \[
 \begin{array}{ccccccc}
 v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 \\
 6 & 2 & 3 & 4 & 7 & 9 & 3 \\
 \end{array}
 \]

Dynamic Trees

Simple Paths: Structural Changes
• Concatenating and splitting paths:
 • Join or split the corresponding binary trees;
 • Time proportional to tree height.
 • For balanced trees (AVL, red-black, etc.), this is \(O(\log n)\):
 • Rotations must be supported in constant time.
 • We must be able to update mincost, but that's easy:

\[
\text{mincost}'(v) = \min \{\text{cost}(v), \text{mincost}(a), \text{mincost}'(w)\}
\]

Dynamic Trees

Splaying
• Simpler alternative to balanced binary trees: splaying.
 • Trees may be unbalanced in the worst case.
 • Guarantees \(O(\log n)\) amortized access.
 • Much simpler to implement.
 • Basic characteristics:
 • Maintains no balancing information.
 • On an access to \(x\):
 • Moves \(x\) to the root;
 • Roughly halves the depth of other nodes in the access path.
 • Primitive operation: rotation.
 • All operations (insert, delete, join, split) use splaying.
Amortized Analysis

- Bounds the running time of a sequence of operations.
- Potential function Φ maps configurations to real numbers.
- Amortized time to execute each operation:
 - $a_i = t_i + \Phi_i - \Phi_{i-1}$
 - t_i: actual time to execute the operation;
 - Φ_i: potential after the i-th operation.
- Total time for m operations:
 \[\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} (t_i + \Phi_i - \Phi_{i-1}) = \Phi_m - \Phi_1 + \sum_{i=1}^{m} t_i \]

Amortized Analysis of Splaying

- Definitions:
 - $s(x)$: size of node x (number of descendants, including x);
 - $r(x)$: rank of node x, defined as $\log s(x)$;
 - Φ: potential of the data structure (twice the sum of all ranks);
 - At most $2 n \log n$, by definition.
- Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most
 \[6(r(t) - r(x)) + 1 = O(\log(s(t)/s(x))). \]
Proof of Access Lemma

- Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most
 \[6(r(t) - r(x)) + 1 = O(\log(s(t)/s(x))).\]
- Proof idea:
 - \(r(x)\) = rank of \(x\) after the \(i\)-th splay step;
 - \(a_i\) = amortized cost of the \(i\)-th splay step;
 - \(a_i = \log(r(x) - r_{x_i}(x)) + 1\) (for the zig step, if any)
 - \(a_i = \log(r(x) - r_{x_i}(x))\) (for each zig-zig or zig-zag step)
 - Total amortized time for all \(k\) steps:
 \[\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} [6(r(x) - r_{x_i}(x))] + [6(r(x) - r_{x_i}(x)) + 1] = 6r(x) - 6r(x) + 1\]

Proof of Access Lemma: Splaying Step

- Zig-zig:
 - Claim: \(a = 6(r(x) - r(y)) + 1\)
 - \(t + \Phi - \Phi \leq 6(r(x) - r(y))\)
 - \(2 + 2(r(y) - r(x)) \leq 6(r(x) - r(y))\)
 - \(r(y) - r(x) \leq 3(r(x) - r(y))\)

Proof of Access Lemma: Splaying Step

- Zig:
 - Claim: \(a = 6(r(x) - r(y))\)
 - \(t + \Phi - \Phi \leq 6(r(x) - r(y))\)
 - \(2 + 2(r(y) - r(x)) \leq 6(r(x) - r(y))\)
 - \(r(y) - r(x) \leq 3(r(x) - r(y))\)

Splaying

- Summing up:
 - No rotation: \(a = 1\)
 - Zig: \(a = 6(r(x) - r(y))\)
 - Zig-zig: \(a = 6(r(x) - r(y))\)
 - Zig-zag: \(a = 6(r(x) - r(y))\)
 - Total amortized time at most \(6(r(x) - r(y)) + 1 = O(\log n)\)
 - Since accesses bring the relevant element to the root, other operations (insert, delete, join, split) become trivial.
Dynamic Trees

- We know how to deal with isolated paths.
- How to deal with paths within a tree?

Main idea: partition the vertices in a tree into disjoint solid paths connected by dashed edges.

A vertex v is exposed if:
- There is a solid path from v to the root;
- No solid edge enters v.

Solid paths:
- Represented as binary trees (as seen before).
- Parent pointer of root is the outgoing dashed edge of the path.
 - Dashed pointers go up, so the solid path above does not "know" it has dashed children.
- Solid binary trees linked by dashed edges: virtual tree.
- "Isolated path" operations handle the exposed path.
 - That's the solid path entering the root.
- If a different path is needed:
 - expose(v): make entire path from v to the root solid.

Virtual Tree: An Example
Dynamic Trees

- Example: expose(y)
 - Take all edges on the path to the root, ...

- Uses splice operation.

Exposing a Vertex

- expose(y): makes the path from y to the root solid.
- Implemented in three steps:
 1. Splay within each solid tree on the path from x to root.
 2. Splice each dashed edge from x to the root.
 - splice replaces left solid child with dashed child;
 3. Splay on x, which will become the root.

- expose(y): (1) splay within each solid tree;
- Does not change the partition into solid paths.
Exposing a Vertex: An Example

- `expose(y)`: (2) splice on all vertices from `y` to the root.
 - Original exposed path: `(q l f c b a)`
 - New exposed path: `(y v u t s m j g d c b a)`

Dynamic Trees: Splice

- Additional restructuring primitive: `splice`.
 - Dashed child becomes solid, replaces left child.

Exposing a Vertex: Running Time (Proof)

- `k`: number of dashed edges from `x` to the root `t`.
- Amortized costs of each pass:
 1. Splay within each solid tree:
 - x: vertex splayed on the i-th solid tree.
 - amortized cost of i-th splay: `6(\delta(x_i) - r(x_i)) + 1` (Access Lemma)
 - `\delta(x_i)`, `r(x_i)`: as the sum over all steps telescopes.
 - amortized cost first of pass: `6(\delta(x_k) - r(x_k)) + 6 \log n + k`.
 2. Splice dashed edges:
 - no rotations, no changes in potential: amortized cost is zero.
 3. Splay on `w`:
 - amortized cost is at most `6 \log n + k`.
 - `w` ends up in root, so exactly `k` rotations happen.
 - each rotation costs one credit, but is charged two.
 - they pay for the extra `k` rotations in the first pass.
- Amortized number of rotations = `O(\log n)`.

Implementing Dynamic Tree Operations

- `findcost(v)`:
 - expose `v`, return `cost(v)`.
- `findroot(v)`:
 - expose `v`;
 - find `w`, the rightmost vertex in the solid subtree containing `v`;
 - splay at `w` and return `w`.
- `findmin(v)`:
 - expose `v`;
 - use `mincost` to walk down from `v` to `u`, the rightmost minimum-cost node in the solid subtree containing `v`;
 - splay at `w` and return `w`.
Implementing Dynamic Tree Operations

- link(v, w):
 - expose v and w (they are in different trees);
 - set p(v) = w (that is, make v a middle child of w).
- cut(v):
 - expose v;
 - make p(right(v)) = null and right(v) = null;
 - set mincost(v) = \min\{cost(v), mincost(left(v))\}.

Alternative Implementations

- Total time per operation depends on path representation:
 - Splay trees: \(O(\log n)\) amortized [Sleator and Tarjan, 85].
 - Balanced search trees: \(O(\log^2 n)\) amortized [ST83].
 - Locally biased search trees: \(O(\log n)\) amortized [ST83].
 - Globally biased search trees: \(O(\log n)\) worst-case [ST83].

- Biased search trees:
 - Support leaves with different weights.
 - Some solid leaves are “heavier” because they also represent dashed subtrees.
 - Much more complicated than splay trees.

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Network Flow Applications

- Augmenting path:
 - path from source to sink with positive residual capacity \(C\).

Network Flow Applications

- Augmenting path:
 - path from source to sink with positive residual capacity \(C\).
 - Flow can be sent along this path (as much as \(C\)).
 - Residual capacity of each arc decreases by \(C\).
Dynamic Trees

Network Flow Applications
- Augmenting path:
 - path from source to sink with positive residual capacity C.
- Flow can be sent along this path (as much as C).
- Residual capacity of each arc decreases by C.
- Maximum flow algorithms usually maintain only a tree.
- $\text{findmin}(s)$ can determine the residual capacity C.

How can we decrease the capacities?

Extension: Adding Costs
- $\text{addcost}(v,x)$: adds x to the cost of each vertex on the path from v to the root.

Adding Costs to Dynamic Paths
- Corresponding operation on dynamic paths:
 - $\text{addcost}(v,x)$: adds x to the cost of vertices in path containing v;
 - current representation takes linear time.

Adding Costs to Dynamic Paths
- Better approach is to store $\Delta \text{cost}(x)$ instead (difference form):
 - Root: $\Delta \text{cost}(x) = \text{cost}(x)$
 - Other nodes: $\Delta \text{cost}(x) = \text{cost}(x) - \text{cost}(p(x))$

Adding Costs to Dynamic Paths
- Costs:
 - addcost: constant time (just add to root)
 - Finding $\text{cost}(x)$ is slightly harder: $O(\text{depth}(x))$.

Adding Costs to Dynamic Paths
- Still have to implement findmin:
 - Cannot store $\text{mincost}(x)$ explicitly (addcost would be linear).

Dynamic Trees

<table>
<thead>
<tr>
<th>Network Flow Applications</th>
<th>Extension: Adding Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Augmenting path:</td>
<td>- \text{addcost}(v,x): adds x to the cost of each vertex on the path from v to the root.</td>
</tr>
<tr>
<td>- Flow can be sent along this path (as much as C).</td>
<td></td>
</tr>
<tr>
<td>- Residual capacity of each arc decreases by C.</td>
<td></td>
</tr>
<tr>
<td>- Maximum flow algorithms usually maintain only a tree.</td>
<td></td>
</tr>
<tr>
<td>- $\text{findmin}(s)$ can determine the residual capacity C;</td>
<td></td>
</tr>
<tr>
<td>- How can we decrease the capacities?</td>
<td></td>
</tr>
</tbody>
</table>

Adding Costs to Dynamic Paths
- Corresponding operation on dynamic paths:
 - $\text{addcost}(v,x)$: adds x to the cost of vertices in path containing v;
 - current representation takes linear time.

Adding Costs to Dynamic Paths
- Better approach is to store $\Delta \text{cost}(x)$ instead (difference form):
 - Root: $\Delta \text{cost}(x) = \text{cost}(x)$
 - Other nodes: $\Delta \text{cost}(x) = \text{cost}(x) - \text{cost}(p(x))$
Dynamic Trees

Adding Costs to Dynamic Paths

- Store \(\Delta \text{min}(x) = \text{cost}(x) - \text{mincost}(x) \) instead.
 - \text{findmin}() still runs in \(O(\log n) \) time, \text{addcost} now constant.

- \text{actual costs}:

\[
\begin{array}{cccccccc}
2 & 7 & 3 & 3 & 2 & 3 & 4 & 2 \\
\end{array}
\]

- \text{mincost}:

\[
\begin{array}{cccccccc}
5 & 7 & 5 & 7 & 2 & 7 & 5 & 7 \\
\end{array}
\]

- \text{costs}:

\[
\begin{array}{cccccccc}
6 & 2 & 3 & 4 & 7 & 9 & 3 & 2 \\
\end{array}
\]

Adding Costs to Dynamic Paths: Operations

- \text{findcost}(v):
 - expose \(v \), return \(\Delta \text{cost}(v) \).

- \text{findroot}(v):
 - expose \(v \);
 - \text{find} \(w \), the rightmost vertex in the solid subtree containing \(v \);
 - \text{spay} at \(w \) and return \(w \).

- \text{findmin}(v):
 - expose \(v \);
 - use \(\Delta \text{cost} \) and \(\Delta \text{min} \) to walk down from \(v \) to \(u \), the last minimum-cost node in the solid subtree;
 - \text{spay} at \(u \) and return \(u \).

Adding Costs to Dynamic Paths: Updating Fields

- Updating fields during rotations:

 \[
 \begin{align*}
 \Delta \text{cost}(v) &= \Delta \text{cost}(v) + \Delta \text{cost}(u) \\
 \Delta \text{cost}(u) &= \Delta \text{cost}(v) \\
 \Delta \text{cost}(b) &= \Delta \text{cost}(v) + \Delta \text{cost}(b) \\
 \Delta \text{min}(u) &= \max(\text{null}, \Delta \text{min}(b) - \Delta \text{cost}(b), \Delta \text{min}(c) - \Delta \text{cost}(c)) \\
 \Delta \text{min}(v) &= \max(\text{null}, \Delta \text{min}(u) - \Delta \text{cost}(a), \Delta \text{min}(w) - \Delta \text{cost}(u))
 \end{align*}
 \]

- \text{Final version}:
 - Store \(\Delta \text{min}(x) \) and \(\Delta \text{cost}(x) \) on each node.

- \text{actual costs}:

\[
\begin{array}{cccccccc}
8 & 7 & 1 & 1 & 2 & 3 & 5 & 3 \\
\end{array}
\]

- \text{Final version}:
 - \text{Store} \(\text{actual costs}, \Delta \text{cost}, \Delta \text{min} \) on each node.

- \text{costs}:

\[
\begin{array}{cccccccc}
8 & 7 & 1 & 1 & 2 & 3 & 5 & 3 \\
\end{array}
\]

Adding Costs: Updating Fields

- Updating fields during \text{splice}:

 \[
 \begin{align*}
 \Delta \text{cost}(v) &= \Delta \text{cost}(v) - \Delta \text{cost}(v) \\
 \Delta \text{cost}(u) &= \Delta \text{cost}(v) + \Delta \text{cost}(a) \\
 \Delta \text{min}(u) &= \max(\text{null}, \Delta \text{min}(v) - \Delta \text{cost}(v), \Delta \text{min}(x) - \Delta \text{cost}(x))
 \end{align*}
 \]

 - Recall that \(w \) is always the root of a solid tree.

Dynamic Trees

Adding Costs: Operations

- \text{addcost}(v, x):
 - expose \(v \);
 - add \(x \) to \(\Delta \text{cost}(v) \), subtract \(x \) from \(\Delta \text{cost}(\text{left}(v)) \);
 - \text{link}(v, w):
 - expose \(v \) and \(w \) (they are in different trees);
 - set \(p(v) = w \) (that is, make \(v \) a middle child of \(w \)).

- \text{cut}(v):
 - expose \(v \);
 - add \(\Delta \text{cost}(v) \) to \(\Delta \text{cost}(\text{right}(v)) \);
 - make \(p(\text{right}(v)) = \text{null} \) and \(\text{right}(v) = \text{null} \).

 - set \(\Delta \text{min}(v) = \max(\text{null}, \Delta \text{min}(\text{left}(v)) - \Delta \text{cost}(\text{left}(v))) \)

Dynamic Trees
Another Extension: Change Root

- `evert(q)`: makes `q` the root of its tree
 - In the virtual tree: reverse left-right pointers:
 - This can be done implicitly with a reverse bit.
 - Must be stored in difference form (meaning depends on parents).

Another Extension: Change Root

- `evert(q)`: makes `q` the root of its tree
 - Make sure `q` is exposed, reverse solid path.

Other Extensions

- Associate values with edges:
 - Just interpret `cost(v)` as `cost(v, p(v))`.
- Other path queries (such as length):
 - Modify values stored in each node appropriately.
- Free (unrooted) trees: use `evert` to change root.
- Subtree-related operations:
 - Can be implemented, but parent must have access to middle children in constant time:
 - Tree must have bounded degree.
 - Approach for arbitrary trees: “ternarize” them:
 - [Goldberg, Grigoriadis and Tarjan, 1991]