Minimum-Cost Network Flow

In addition to a capacity, each edge has a real-valued cost per unit of flow.

A minimum-cost (maximum) flow is a maximum flow whose total cost (sum of edge flows times edge costs) is minimum.

Problem: find a minimum-cost flow in a given network.

\[n = \text{# vertices} \]
\[m = \text{# edges} \]
\[U = \text{max capacity (if integers)} \]
\[C = \text{max cost (if integers)} \]
Two Naive Approaches

(1) Repeat: augment along a cheapest path in the residual network.
Each augmentation takes a shortest path computation.

Shortest paths can be found using Dijkstra's algorithm if costs are kept non-negative using price transformation (primal-dual method of linear programming).

Time: $O(nU(m+n\log n))$ (not polynomial)

(2) repeat
 In network of zero-cost residual edges, find a maximum flow.
 Augment the flow and update the prices.
 (find all paths of a given cost at once)

Time: $O(nC(nm\log(n^2/m)))$ (not polynomial)
\(G = (V, E) \) symmetric directed graph

\((v, w) \in E \iff (w, v) \in E\)

\(|V| = n, \ |E| = m, \ m \geq n \geq 2\)

\(E(v) = \{w | (v, w) \in E\} \)

arc capacities \(u(v, w) : (v, w) \in E \)

arc costs \(c(v, w) : (v, w) \in E \)

cost function is antisymmetric: \(c(v, w) = -c(w, v) \)

Circulation \(f: E \rightarrow \mathbb{R} \)

\(f(v, w) = u(v, w) \quad \forall (v, w) \in E \) \hspace{1cm} \text{capacity constraint}

\(f(v, w) = -f(w, v) \quad \forall (v, w) \in E \) \hspace{1cm} \text{flow antisymmetry}

\(\sum_{w \in E(v)} f(v, w) = 0 \quad \forall v \in V \) \hspace{1cm} \text{flow conservation}

Cost of \(f \): \(\frac{1}{2} \sum_{(v, w) \in E} f(v, w) c(v, w) \)
Reformulated problem: Find a circulation
of minimum cost: add a return arc from root of infinite capacity and
large negative cost \((-\infty)\).

residual capacity \(u'_v (v, w) = u(v, w) - f(v, w) \) or \(f(w, v) \)

residual arc \((v, w): u'_v (v, w) > 0\)

residual cycle: a (simple) cycle of residual arcs

length of cycle = number of arcs, \(l (\Gamma) \)

cost of cycle = sum of arc costs = \(c(\Gamma) \)

mean cost of cycle = \(c(\Gamma) / l(\Gamma) \)

negative cycle: \(c(\Gamma) < 0 \)
Naive Approach

1. Repeat: augment along a cheapest path in the residual graph.
 Each augmentation takes a shortest path computation.
 (1) repeat: find a shortest path using Dijkstra's algorithm
 if costs are kept non-negative using "prices" to
 transform costs (primal-dual method).
 Time: $O(nm \log (n+\frac{m}{n}))$ (not polynomial)

2. repeat: In network of zero-cost edges find a maximum flow.
 A new set of prices and update the prices.
 Time: $O(nm \log (n+\frac{m}{n}))$ (not polynomial)
Theorem (Busacker and Saaty, 1965): A circulation f is minimum-cost iff there is no negative residual cycle.

Algorithm (Klein, 1967)

1. Find any circulation f (by a max flow computation)

2. While 3 negative cycle Γ, cancel Γ by increasing f on all arcs of Γ by $\min \{ u_f (v, w) : (v, w) \in \Gamma \}$.

The choice of cycle can be exponential (or infinite)

How to choose cycles for canceling to minimize iterations, running time?

- minimum cost?
- minimum length?
- maximum length?
- maximum capacity?
- maximum cost decrease?
Primal Network Simplex Algorithm: Definitions

If \((v, w) \) is residual, then \((w, v) \) is also residual.

A set of residual edges forms a forest.

The algorithm maintains a basic circulation \(f \) and a basis tree \(T \) such that \(T \) contains every residual edge.

Any non-tree arc \((v, w)\) defines a basic cycle \(T_f(v, w) \) consisting of

\((v, w)\) and the path of tree arcs from \(v \) to \(w \).

(We reject each tree edge as consisting of a pair of tree arcs.)

An arc \((v, w)\) is pseudo-residual if it is residual or a tree arc.

A cycle is pseudo-residual if it consists only of pseudo-residual arcs.
Our Results

Minimum-mean cycle canceling: Always cancel a cycle of minimum mean cost.

Theorem: \# cancellations = \(O(nm^2 \log n) \). If costs are integers of maximum magnitude \(C \), \# cancellations = \(O(nm \log (nC)) \).

Time to find a minimum mean cycle = \(O(nm) \) (Karp, 1978)

A variant of this approach gives a "practical" algorithm with a running time of \(O(nm \log n \min \{ \log (nC), m \log n \}) \).
Price Function (Dual Variables)

\[p: V \to \mathbb{R} \quad \text{reduced arc cost} \quad c_p(v,w) = c(v,w) + p(v) - p(w) \]

Theorem (Ford and Fulkerson, 1962): A circulation \(f \) is minimum-cost iff \(\exists p \) such that, \(\forall (v,w) \in E \),

\[u_f(v,w) > 0 \text{ implies } c_p(v,w) > 0. \]

\(\varepsilon \)-optimality

For \(\varepsilon > 0 \), a circulation \(f \) is \(\varepsilon \)-optimal with respect to a price function \(p \) iff, \(\forall (v,w) \in E \),

\[u_f(v,w) > 0 \text{ implies } c_p(v,w) \geq -\varepsilon. \]

\(\varepsilon(f) = \min \{ \varepsilon \geq 0 \text{ for which } f \text{ is } \varepsilon \text{-optimal with respect to some } p \} \)

Theorem (Bertsekas, 1986): If costs are integral and \(\varepsilon < \frac{1}{n} \), any \(\varepsilon \)-optimal circulation is minimum-cost.
Idea: minimum mean cycle canceling reduces $\epsilon(f)$ by a measurable amount, after enough cancellations.

Note: The cost of a cycle is the same as its reduced cost.

Key question: What is $\epsilon(f)$?

Let $\mu(f)$ be the mean cost of a minimum mean residual cycle with respect to circulation f.

Theorem: $\epsilon(f) = \max \{0, -\mu(f)\}$.

Proof: Use properties of shortest paths, e.g. shortest paths exist iff there are no negative cycles.
Analysis of Minimum Mean Cycle Canceling

Lemma: Canceling a minimum mean cycle cannot increase $\varepsilon(f)$.

Lemma: After m cancellations, $\varepsilon(f)$ has decreased by a factor of $(n-1)/n$ or better.

Theorem: $\#\text{cancellations} = O(nm \log (nc))$.

Lemma: If f and f' are both ε-optimal and $|c_p(v,w)| > 2n\varepsilon$, where f is ε-optimal with respect to p, then $f(v,w) = f'(v,w)$.

Theorem: $\#\text{cancellations} = O(nm^2 \log n)$.
A "Practical" Variant

Maintain a price function p along with a circulation f.

Call an arc (v,w) eligible if $u_f(v,w) > 0$ and $c_p(v,w) < 0$.

Let $\epsilon(f,p) = \min \{ c_p(v,w) \mid u_f(v,w) > 0 \} \cup \{ 0 \}$.

Algorithm

0. Let f be any circulation and let $p = 0$.

1. Repeat until $\epsilon(f,p) < 1/n$:

 a. Find an eligible cycle and cancel it.

 b. If the subgraph of eligible arcs is acyclic, modify p to reduce $\epsilon(f,p)$ by a factor of at least $(n-1)/n$.
Analysis

There are at most \(n \) iterations of 1a between iterations of 1b.

All iterations of 1a between two iterations of 1b take a total of \(O(m \log n) \) time using dynamic trees.

One iteration of 1b takes \(O(m) \) time.

\(O(n) \) iterations of 1b reduce \(\epsilon(f,p) \) by a constant factor.

\[
\therefore O(nm \log n \log(nC)) \text{ total time.}
\]

If every \(n \text{th} \) iteration of 1b reduces \(\epsilon(f,p) \) as much as possible, then the amortized time per iteration of 1b is still \(O(m) \) (every \(n \text{th} \) takes \(O(nm) \)).

\[
\therefore O(nm^2/(\log n)^2) \text{ total time.}
\]
<table>
<thead>
<tr>
<th>Date</th>
<th>Discoverer</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>Edmonds and Karp</td>
<td>$O(n \log^2 n)$</td>
</tr>
<tr>
<td>1980</td>
<td>Reif</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>1980</td>
<td>Rei</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>1984</td>
<td>Tardos</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>1984</td>
<td>Orin</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>1985</td>
<td>Fujishige</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>1985</td>
<td>Bland and Jansen</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>1986</td>
<td>Galil and Tardos</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>1987</td>
<td>Goldberg and Tarjan</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>