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Abstract

We study the ALT algorithm [19] for the point-to-point

shortest path problem in the context of road networks. We

suggest improvements to the algorithm itself and to its

preprocessing stage. We also develop a memory-efficient

implementation of the algorithm that runs on a Pocket PC.

It stores graph data in a flash memory card and uses RAM

to store information only for the part of the graph visited by

the current shortest path computation. The implementation

works even on very large graphs, including that of the North

America road network, with almost 30 million vertices.

1 Introduction

Finding shortest paths is a fundamental problem with
numerous applications. There are several variations,
including single-source, point-to-point, and all-pairs
shortest paths. The single-source problem with non-
negative arc lengths has been studied most extensively
[4, 6, 7, 8, 15, 16, 17, 18, 20, 25, 30, 38, 41]. For this prob-
lem, near-optimal algorithms are known both in theory,
with near-linear time bounds, and in practice, where
running times are within a small constant factor of the
breadth-first search time.

In this paper we study another common variant, the
point-to-point shortest path problem on directed graphs
with nonnegative arc lengths (the P2P problem). We
are interested in exact shortest paths only. Unlike the
single-source case, where every vertex of the graph must
be visited, the P2P problem can often be solved while
visiting a small subgraph. Therefore, we measure the
algorithm performance in an output-sensitive way, in
terms of its efficiency : the ratio between the number
of vertices scanned by the algorithm and the number of
vertices on the shortest path. We allow preprocessing,
but limit the size of the data computed during this phase
to a (moderate) constant times the input graph size.

The P2P problem with no preprocessing has been
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Figure 1: An example of ALT algorithm running on the
road network of the Washington state and surrounding
area. Grayscale levels indicate road network density.
Highlighted area represents vertices actually visited.
Landmarks are represented by diamonds, and the five
clear ones are active. This is a relatively hard instance.

addressed, for example, in [24, 34, 36, 42]. While
no nontrivial theoretical results are known for the
general P2P problem, there has been work on the
special case of undirected planar graphs with slightly
superlinear preprocessing space. The best bound in
this context (see [11]) is superlinear in the size of the
output path unless the path is very long. Algorithms
for approximate shortest paths that use preprocessing
have been studied; see e.g. [5, 26, 39]. Previous work
on exact algorithms with preprocessing includes those
using geometric information [21, 28, 40], hierarchical
decomposition [35], and landmark distances [19]. We
take the latter approach, which is simple, applies to
a potentially wider range of problems (as it needs no
geometric information), and allows quick preprocessing
(and therefore can handle very large graphs). Figure 1
illustrates our version of this algorithm.



Visiting a small portion of the graph not only im-
proves the running time of the algorithm, but suggests
an external memory implementation. One can keep the
graph and preprocessing data in secondary storage (e.g.,
disk or flash memory) and the data required for the vis-
ited portion of the graph in main memory (RAM). This
approach is interesting because some applications work
on large graphs, run on small devices, or both. Mo-
bile or handheld GPS devices with automatic routing
capability are good examples of such applications.

The shortest path problem has also been studied
in the external memory context, where the goal is to
minimize the number of blocks read from secondary
storage. Hutchinson et al. [23] present a data structure
that supports queries on planar graphs with O(

√
n)

block reads per query, but the preprocessing data
requires O(n1.5) space. The single-source [3, 31] and all-
pairs [2] versions of the problem have also been studied,
but these variants require looking at the whole input.
In our case, we need to look only at part of the input,
and assume that the relevant data for this part will fit
in the primary memory. Therefore, we must make sure
this part is as small as possible.

The goal of the work presented in this paper is to
test and advance the state of the art in P2P algorithms.
We engineered an external memory implementation of
the ALT (A∗ search, landmarks, and triangle inequality)
algorithm of [19] for a Pocket PC with graph and
landmark data stored in flash memory. We tested it on
several road networks, including one of North America
(NA) with almost 30 million vertices. We are not aware
of any previous implementation that solves the P2P
problem on small devices on instances of this size

The contributions of our paper that make this
possible fall into two categories: general improvements
and a memory-efficient implementation.

In the first category, we suggest some modifications
to the ALT algorithm that improve its performance in
general, and not only in the external memory case.
During preprocessing, the ALT algorithm selects a
set of landmarks and precomputes distances between
each landmark and all vertices. Then it uses these
distances to compute lower bounds for an A∗ search-
based shortest path algorithm. Our most interesting
contribution allows us to dynamically adjust the set
of active landmarks, those that are actually used for
the current computation. We also suggest new overall
landmark selection strategies and introduce pruning
techniques that further reduce the search space. This
improves both the average- and worst-case performance
of the algorithm. Note that the worst case is especially
important because if a larger portion of the graph is
visited, the primary memory capacity may be exceeded.

Section 6 describes these improvements in detail.
Our second major contribution is a memory-

efficient implementation of the ALT algorithm. Careful
engineering is required to obtain practical results due
to memory limitations and to the low speed of the flash
card interface. We use space-efficient data structures in
combination with caching, data compression, and hash-
ing, as detailed in Section 7.

The experimental results, presented in Section 8,
show that our Pocket PC implementation can answer
random P2P queries on graphs with about a million
vertices in less than 10 seconds. For local queries, the
time is one or two seconds, and does not depend much
on the input graph size. The implementation also solves
random problems on the road graph of North America
in minutes. The current bottleneck is reading the data;
any improvement in this area will have a significant
impact on the overall performance.

2 Preliminaries

The input to the preprocessing stage of the P2P problem
is a directed graph G = (V,E) with n vertices and m
arcs, and nonnegative lengths `(a) for every arc a. The
main algorithm also has as inputs a source s and a sink
t. The goal is to find a shortest path from s to t.

Let dist(v, w) denote the shortest-path distance
from vertex v to vertex w with respect to `. In general,
dist(v, w) 6= dist(w, v).

A potential function is a function from vertices to
reals. Given a potential function π, the reduced cost of
an arc is defined as `π(v, w) = `(v, w) − π(v) + π(w).
Suppose we replace ` by `π. Then for any two vertices
x and y, the length of every x-y path (including the
shortest) changes by the same amount, π(y) − π(x).
Thus the two problems are equivalent.

We say that π is feasible if `π is nonnegative for all
arcs. The following facts are well-known:

Lemma 2.1. If π is feasible and for a vertex t ∈ V we
have π(t) ≤ 0, then for any v ∈ V , π(v) ≤ dist(v, t).

Lemma 2.2. If π1 and π2 are feasible potential func-
tions, then max(π1, π2) is a feasible potential function.

The first lemma implies that we can often think of π(v)
as a lower bound on the distance from v to t. The second
allows us to combine feasible lower bound functions into
a function that is also feasible, and whose value at any
point is at least as high as any original one.

3 Labeling Method and Dijkstra’s Algorithm

The labeling method for the shortest path problem [12,
13] finds shortest paths from the source to all vertices
in the graph. The method works as follows (see for



example [37]). It maintains for every vertex v its
distance label d(v), parent p(v), and status S(v) ∈
{unreached, labeled, scanned}. Initially d(v) = ∞,
p(v) = nil, and S(v) = unreached for every vertex
v. The method starts by setting d(s) = 0 and S(s) =
labeled. While there are labeled vertices, the method
picks a labeled vertex v, relaxes all arcs out of v,
and sets S(v) = scanned. To relax an arc (v, w),
one checks if d(w) > d(v) + `(v, w) and, if true, sets
d(w) = d(v) + `(v, w), p(w) = v, and S(w) = labeled.

If the length function is nonnegative, the labeling
method terminates with correct shortest path distances
and a shortest path tree. Its efficiency depends on the
rule to choose a vertex to scan next. We say that d(v) is
exact if it is equal to the distance from s to v. It is easy
to see that if one always selects a vertex v such that,
at the selection time, d(v) is exact, then each vertex is
scanned at most once. Dijkstra [8] (and independently
Dantzig [6]) observed that if ` is nonnegative and v is
a labeled vertex with the smallest distance label, then
d(v) is exact. We refer to the labeling method with the
minimum label selection rule as Dijkstra’s algorithm.

Theorem 3.1. [8] If ` is nonnegative then Dijkstra’s
algorithm scans vertices in nondecreasing order of dis-
tance from s and scans each vertex at most once.

For the P2P case, note that when the algorithm is
about to scan the sink, we know that d(t) is exact and
the s-t path defined by the parent pointers is a shortest
path. We can terminate the algorithm at this point.
Intuitively, Dijkstra’s algorithm searches a ball with s
in the center and t on the boundary.

One can also run Dijkstra’s algorithm on the reverse
graph (the graph with every arc reversed) from the sink.
The reverse of the t-s path found is a shortest s-t path
in the original graph.

The bidirectional algorithm [6, 10, 33] alternates be-
tween running the forward and reverse versions of Di-
jkstra’s algorithm, each maintaining its own set of dis-
tance labels (df and dr, respectively). During initializa-
tion, the forward search scans s and the reverse search
scans t. The algorithm also maintains the length of
the shortest path seen so far, µ, and the corresponding
path. Initially, µ = ∞. When an arc (v, w) is scanned
by the forward search and w has already been scanned
in the reverse direction, we know the shortest s-v and
w-t paths have lengths df (v) and dr(w), respectively. If
µ > df (v)+`(v, w)+dr(w), we have found a path shorter
than those seen before, so we update µ and its path
accordingly. We perform similar updates during the re-
verse search. The algorithm terminates when the search
in one direction selects a vertex already scanned in the
other. Intuitively, the bidirectional algorithm searches

two touching balls centered at s and t.
Note that any alternation strategy works correctly.

We use the one that balances the work of the forward
and reverse searches, a strategy guaranteed to be within
factor of two of the optimal off-line strategy. Also
note that remembering µ is necessary, since there is no
guarantee that the shortest path will go through the
vertex on which the algorithm stops.

Theorem 3.2. [34] If the sink is reachable from the
source, the bidirectional algorithm finds a shortest path,
and it is the path stored along with µ.

4 A∗ Search

Consider the problem of looking for a path from s
to t and suppose we have a (perhaps domain-specific)
function πf : V → R such that πf (v) gives an estimate
on the distance from v to t. In the context of this
paper, A∗ search [9, 22] is an algorithm that works
like Dijkstra’s algorithm, except that at each step it
selects a labeled vertex v with the smallest key, defined
as kf (v) = df (v) + πf (v), to scan next. It is easy to see
that A∗ search is equivalent to Dijkstra’s algorithm on
the graph with length function `πf

. If πf is feasible, `πf

is nonnegative and Theorem 3.1 holds. We refer to the
class of A∗ search algorithms that use a feasible function
πf with πf (t) = 0 as lower-bounding algorithms.

Note that the selection rule used by A∗ search is a
natural one: always choose a vertex on an s-t path with
the shortest estimated length. In particular, if πf gives
exact distances to t, the algorithm scans only vertices
on shortest paths from s to t. If the shortest path is
unique, the algorithm scans exactly the vertices on the
shortest path except t.

Intuitively, better estimates lead to fewer vertices
being scanned. More precisely, consider an instance of
the P2P problem and let πf and π′

f be two feasible
potential functions such that πf (t) = π′

f (t) = 0 and,
for any vertex v, π′

f (v) ≥ πf (v) (i.e., π′

f dominates πf ).
If ties are broken consistently when selecting the next
vertex to scan, the following holds.

Theorem 4.1. [19] The set of vertices scanned by A∗

search using π′

f is contained in the set of vertices
scanned by A∗ search using πf .

Note that the theorem implies that any lower-
bounding algorithm with a nonnegative potential func-
tion visits no more vertices than Dijkstra’s algorithm,
since the latter is equivalent to the lower-bounding al-
gorithm with the zero potential function.

4.1 Bidirectional A∗ search. We combine A∗

search and bidirectional search as follows. Let πf be



the potential function used in the forward search and
let πr be the one used in the reverse search. Since
the latter works in the reverse graph, each original arc
(v, w) appears as (w, v), and its reduced cost w.r.t. πr

is `πr
(w, v) = `(v, w) − πr(w) + πr(v), where `(v, w) is

in the original graph. We say that πf and πr are con-
sistent if, for all arcs (v, w), `πf

(v, w) in the original
graph is equal to `πr

(w, v) in the reverse graph. This is
equivalent to πf + πr = const.

If πf and πr are not consistent, the forward and re-
verse searches use different length functions. When the
searches meet, we have no guarantee that the shortest
path has been found. To overcome this difficulty, we
can work with consistent potential functions or develop
a new termination condition.

We use the former approach. Assume πf and πr

give lower bounds to the sink and from the source,
respectively. Ikeda et al. [24] suggest using an average

function, defined as pf (v) =
πf (v)−πr(v)

2 for the forward

computation and pr(v) =
πr(v)−πf (v)

2 = −pf (v) for the
reverse one. Although pf and pr usually do not give
lower bounds as good as the original ones, they are
feasible and consistent. To make the algorithm more
intuitive, we add πr(t)/2 to the forward function (thus
making pf (t) = 0) and πf (s)/2 to the reverse function
(making it zero at s). Because these terms are constant,
the functions remain consistent.

5 ALT Algorithms

The main idea behind ALT algorithms is to use land-
marks and triangle inequality to compute feasible lower
bounds. We select a small subset of vertices as land-
marks and, for each vertex in the graph, precompute
distances to and from every landmark. Consider a land-
mark L: if d(·) is the distance to L, then, by the triangle
inequality, d(v)−d(w) ≤ dist(v, w); if d(·) is the distance
from L, d(w) − d(v) ≤ dist(v, w). To get the tight-
est lower bound, one can take the maximum of these
bounds, over all landmarks. Intuitively, the best lower
bounds on dist(v, w) are given by landmarks that ap-
pear “before” v or “after” w.

During an s-t shortest path computation, Goldberg
and Harrelson [19] suggest using only a subset of the
available landmarks: those that give the highest lower
bounds on the s-t distance. This tends to improve
performance because most remaining landmarks are
unlikely to help in this computation. We suggest a
further improvement of this idea in the next section.

Finding good landmarks is critical for the overall
performance of ALT algorithms. The simplest way of
selecting landmarks is to pick them at random. This
works reasonably well, but one can do better. In

Section 6.3, we revisit some of the landmark selection
algorithms suggested in [19] and propose new ones.

6 Improvements to the ALT Algorithm

In this section we discuss improvements to the main and
preprocessing stages of the ALT algorithm. We describe
them in the more general context of its bidirectional
version.

6.1 Restarting. As we shall see below, we sometimes
need to change the way lower bounds are calculated in
the middle of an ALT computation, e.g., by replacing
the current potential functions pf and pr by another
consistent pair. Let S be the set of vertices scanned
by the forward search and Vs the corresponding set of
labeled vertices (those in its priority queue). Define T
and Vt similarly for the reverse search. Note that S and
T are disjoint but Vs and Vt may intersect. At this point
we know the distances from s to all vertices in S and
from all vertices in T to t. The bidirectional algorithm,
as described above, stops when one of the searches is
about to scan a vertex already scanned by the other
search (i.e., when the searches meet). If we replace p
and do not want to scan vertices in S and T again, it
is unclear when to stop the algorithm. In particular,
one cannot always stop if the forward search is about to
scan a vertex in T . We need another stopping criterion.

We introduce the new stopping criterion in the
context of the bidirectional Dijkstra’s algorithm first
(for simplicity, we assume the path does exist):

Stop the algorithm when the sum of the mini-
mum labels of labeled vertices for the forward
and reverse searches is at least µ, the length of
the shortest path seen so far.

One can easily show that the new stopping condi-
tion is correct. Since the minimum label for each search
is monotone in time, so is their sum. Then, after the
condition is met, every vertex x removed from a priority
queue will be such that the sum of the distances from
s to x and from x to t will be at least µ, which implies
that no path shorter than µ exists.

The new stopping condition is at least as strong as
the standard one. When we are about to scan a vertex
v that has been scanned in the opposite direction, the
sum of the s-v and v-t distances is at least µ and the
sum of the minimum labels is at least the sum of the
distances. After the new stopping condition is satisfied
and until the searches meet, the length of the shortest
s-t path through any vertex v we scan is at least µ, so
no shorter path is discovered.

Since A∗ search is equivalent to Dijkstra’s algorithm
on the graph with arc lengths replaced by reduced



costs, we can use the new stopping condition with the
modified length function. Next we derive the exact
stopping condition. Let k∗

f and k∗

r be the smallest keys
of labeled vertices in the forward and reverse directions,
respectively (these are the first keys in each priority
queue). Let µp be the reduced cost of the shortest
path seen so far with respect to pf (or pr, as the two
functions are consistent). The stopping condition is
k∗

f + k∗

r ≥ µp. To get the condition in terms of µ, note
that µp = µ + pf (s) − pf (t) and pf (t) = 0. Thus the
stopping condition is k∗

f + k∗

r ≥ µ + pf (s).
Now, if we want to replace pf and pr, all we need to

do is change the keys of the labeled vertices for the two
searches appropriately and update the priority queues
containing these vertices. This takes time proportional
to the number of labeled vertices at this point.

After restarting, the algorithm proceeds as a regular
ALT algorithm with the following modification. If a
search (forward or reverse) scans an arc (v, w) and w
has been scanned in the same direction, even before the
algorithm has been restarted, nothing is done for w.

To prove correctness of the modified algorithm,
consider the following transformation. Suppose we have
an instance of the P2P problem and two disjoint sets,
A and B, such that we know the distances df (v) from
s to all vertices v ∈ A and the distances dr(w) from all
vertices w ∈ B to t. Suppose we contract all vertices
in A with s and for every arc (v, w) with v ∈ A, we
change the length of the corresponding arc (s, w) in
the contracted graph to `(v, w) + df (v). We make the
corresponding transformation for t and B. Let G and G′

be the original and the transformed graphs, respectively.

Lemma 6.1. The P2P problems on G and G′ are equiv-
alent.

Proof. Every path P in G′ corresponds to a path of the
same length in G as follows. Suppose the first arc of
P corresponds to an arc (a, b) of G and the last arc
corresponds to (c, d). Then the desired path in G is
obtained by concatenating the shortest path from s to
a, P , and the shortest path from d to t.

Now consider a path P in G. Let a be the last
vertex of {s} ∪ A on P and let d be the first vertex of
{t}∪B on the suffix of P that starts at a. Then the arcs
corresponding to those on the segment of P between a
and d form a path in G′ with the same length as P . �

Theorem 6.1. The modified algorithm is correct.

Proof. Consider a restart of the algorithm. Define A
as the set of vertices scanned by the forward search
up to this point and B as the set of vertices scanned
by the reverse search. If we transform the graph as

described above and scan s forward and t backward,
we get exactly the same configurations of the forward
and the reverse priority queues as we do in the actual
algorithm, and from this point on the computation of
the original algorithm corresponds to a bidirectional
Dijkstra’s algorithm computation on the transformed
graph. An induction on the number of restarts of the
algorithm completes the proof. �

6.2 Active landmarks. The original implementa-
tion of ALT uses, for each shortest path computation,
only a subset of h active landmarks, those that give the
best lower bounds on the s-t distance. With this ap-
proach, the total number of landmarks is limited mostly
by the amount of secondary storage available. The
choice of h depends on the tradeoff between the search
efficiency and the number of landmarks that have to be
examined to compute a lower bound.

We improve this idea by updating the set of ac-
tive landmarks dynamically. We start with only two
active landmarks: one that gives the best bound us-
ing distances to landmarks and another using distances
from landmarks. Then we periodically try to update
the active set by adding new landmarks until the al-
gorithm terminates or the total number of active land-
marks reaches an upper bound (six, in our experiments).

Update attempts happen whenever a search (for-
ward or reverse) scans a vertex v whose distance esti-
mate to the destination, as determined by the current
lower bound function, is smaller than a certain value
(a checkpoint—more on that later). At this point, the
algorithm verifies if the best lower bound on the dis-
tance from v to the destination (using all landmarks)
is at least a factor 1 + ε better than the current lower
bound (using only active landmarks). If so, the land-
mark yielding the improved bound is activated. In our
experiments, we used ε = 0.01.

Intuitively, the computation starts using the ini-
tially best landmarks. As it progresses and the location
of vertices for which lower bounds are needed changes,
other landmarks may give better bounds, and should be
brought to the active set. After every landmark update,
the potential function changes, and we must update the
priority queues as described in the previous section.

Checkpoints are determined by the original lower
bound b on the distance between s and t, calculated
before the computation starts. The i-th checkpoint for
each search has value b(10−i)/10: we first try to update
the landmarks when estimated lower bounds reach 90%
of the original value, then when they reach 80%, and so
on. This rule works well when s and t are reasonably
far apart; when they are close, update attempts would
happen too often, thus dominating the running time of



the algorithm. Therefore, we also require the algorithm
to scan at least 100 vertices between two consecutive
update attempts in the same direction.

The dynamic selection of active landmarks improves
efficiency, especially for hard instances. It also reduces
the running time, as the final number of active land-
marks is usually very small (close to three).

6.3 Landmark selection. This section describes
several landmark selection strategies. Some have been
introduced in [19], and some are new or improved. The
new strategies do not use graph layout information, yet
they work better than the best method of [19] that does.

The NA graph is quite large and a single-source
shortest path computation on it takes around 10 seconds
on the machine we used. Any practical preprocessing
method cannot perform too many of those; n shortest
path computations would take years. We restricted
ourselves to more efficient preprocessing.

Note that one can define “optimal” landmark selec-
tion in many ways depending on how landmark quality
is measured. For example, one can aim to minimize
the total number of vertices visited for all O(n2) possi-
ble shortest path computations. Alternatively, one can
minimize the maximum number of vertices visited. The
related optimization problems are probably hard. Even
an exact comparison of two sets of landmarks, although
polynomial-time, is impractical except for small graphs.

6.3.1 Random. The simplest way to select land-
marks is at random. One can generate several sets of
random landmarks and pick the set that works the best
in practice. Not surprisingly, one can do better.

6.3.2 Farthest. Originally proposed in [19], farthest
selection works as follows. Pick a start vertex at random
and find a vertex v that is farthest away from it. Add
v to the set of landmarks. Proceed in iterations, always
adding to the set the vertex that is farthest from it.
In this paper, we introduce a slightly modified version:
distances are measured in terms of number of hops
instead of using the actual length function `(·); in other
words, we use BFS instead of Dijkstra’s algorithm to
compute distances. This biases the algorithm towards
dense regions. We shall refer to the original version as
farD and the new one as farB.

Farthest selection is very efficient. Selecting land-
marks takes less time than computing distances to and
from landmarks. It requires little space, since landmark
distances can be output as soon as computed and never
used in preprocessing again. However, with more time
and space one can find better landmarks.

6.3.3 Planar. Also proposed in [19], planar land-
mark selection is an example of a method that uses
graph layout information. It picks a point close to the
center of the graph and divides the map into sectors
originating from this point (this can be done efficiently
by sorting the vertices in polar coordinates). The far-
thest point in each sector is selected as a landmark. In
addition, if a vertex near a sector boundary is selected,
adjacent vertices of the neighboring sector are skipped
to ensure no two landmarks are close. In our exper-
iments, we obtained slightly better results by picking
as the reference a point close to the median (instead of
center) of the graph, and using BFS (instead of Dijk-
stra’s algorithm) to compute distances while computing
the median. We report only results with the modified
version in this paper.

6.3.4 Avoid. We now introduce a new landmark se-
lection method. Assume there is a set S of landmarks
already selected and that we want an additional land-
mark. First, compute a shortest-path tree Tr rooted
at some vertex r. Then calculate, for every vertex v,
its weight, defined as the difference between dist(r, v)
and the lower bound for dist(r, v) given by S. This is a
measure of how bad the current distance estimates are.

For every vertex v, now compute its size s(v), which
depends on Tv, the subtree of Tr rooted at v. If Tv

contains a landmark, s(v) = 0; otherwise, s(v) is the
sum of the weights of all vertices in Tv. Let w be the
vertex of maximum size. Traverse Tw, starting from w
and always following the child with the largest size, until
a leaf is reached. Make this leaf a new landmark.

We call this method avoid. It tries to identify
regions of the graph that are not “well-covered” by
avoiding existing landmarks. No path from w to a
vertex in its subtree has a landmark “behind” it. By
adding a leaf of this tree to the set of landmarks, avoid
tries to improve the coverage.

A natural way of picking r (the root vertex) is
uniformly at random. We obtained better results by
picking with higher probability vertices that are far from
the existing landmarks.

6.3.5 Optimization. A downside of constructive
heuristics, such as the ones described above, is that some
landmarks selected earlier on might be of limited use-
fulness once others are selected. It seems reasonable
to try to replace them with better ones. We use local
search [1] for this purpose.

To implement the search, we need a way to measure
how good a solution (set of landmarks) is. Ultimately,
the goal is to find a solution that makes all point-to-
point searches more efficient, but that is prohibitively



expensive, as already mentioned. In practice, we can
only estimate the quality of a given set of landmarks.

We use reduced costs for the estimation. In this
context, we define the reduced cost of an arc with
respect to landmark L as `(v, w)− d(L,w) + d(L, v). If
the reduced cost is zero, we say that the landmark covers
the arc. The best case for the point-to-point shortest
path algorithm happens when a landmark covers every
arc on the path. With that in mind, we define the cost
of a given solution as the number of arcs that have zero
reduced cost with respect to at least one landmark.
Less costly solutions are better: for a fixed k, we are
interested in finding a set of k landmarks that covers as
many arcs as possible.

Determining which arcs a given vertex covers re-
quires performing a single-source shortest path compu-
tation. For large graphs, it is impractical to do this for
all vertices. Therefore, we work only with a small set of
candidate landmarks, selected using avoid.

More precisely, let C be the set of candidates,
initially empty. We start by running avoid to find a
solution with k landmarks, all of which are added to
C. We then remove each landmark from the current
solution with probability 1/2. Once they are removed,
we generate more landmarks (also using avoid) until
the solution has size k again. Each new landmark
that is not already in C is added to it. We repeat
this process until either C has size 4k or avoid is
executed 5k times (whichever happens first). The
second condition is important to limit the running time
of the algorithm; not every execution of avoid will
generate a new landmark.

Eventually, we have a set C with between k and
4k landmarks. Interpreting each landmark as the set of
arcs that it covers, we need to solve an instance of the
maximum cover problem. Since it is NP-hard, we resort
to a multistart heuristic. Each iteration starts with a
random subset S of C with k landmarks and applies a
local search procedure to it. In the end, we pick the
best solution obtained across all iterations. We set the
number of iterations to blog2 k + 1c.

The local search procedure is based on swapping
landmarks. It tries to replace one landmark that
belongs to the current solution with another that does
not (but belongs to the candidate set). It works by
computing the profit associated with each of the O(k2)
possible swaps. It discards those whose profit is negative
or zero. Among the ones that remain, it picks a swap at
random with probability proportional to the profit. The
same procedure is then applied to the new solution. The
local search stops when it reaches a local optimum, i.e.,
a solution on which no improving swap can be made.
Each iteration of the local search takes O(km) time.

We call this method of landmark generation max-
cover. The optimization phase is quite fast. The run-
ning time is dominated by calls to avoid used to generate
the set of candidate landmarks.

6.3.6 Other approaches. We experimented with
many other selection strategies. Devising reasonably-
sounding strategies is easy and combinations of such
strategies are numerous. Some ideas work well, others
do not. While better selection strategies probably do
exist, one cannot expect an improvement of an order of
magnitude on the average efficiency. It is already above
10% for the largest graph we tested, and even higher for
smaller graphs. The worst case can be improved, but
one must keep in mind that preprocessing times are an
issue.

6.4 Pruning. Pruning may reduce the time and
memory requirements of the algorithm. We describe
it for the forward search. The reverse is symmetric.

Suppose we are scanning an arc (v, w). Normally,
we check if df (v) + `(v, w) < df (w); if so, we update
df (w) and the forward priority queue. With pruning,
we also check if df (v) + `(v, w) + πf (w) < µ. When
this inequality is not true, the shortest s-t path through
(v, w) does not improve upon the current shortest path.
Therefore, there is no need to store an updated value
of df (w). Note that the lower bound function used for
pruning does not need to be consistent.

7 External Memory Implementation

Our implementation stores graph and landmark data on
a flash memory card. System constraints dictate that
the minimum amount one can read from the card is a
512-byte sector. We read data in pages, with a page
containing one or more sectors. (One seems best for
large graph data with limited locality.) As Section 8
shows, reading is slow. This, together with the fact that
not all data in a block is actually used, makes reading
the bottleneck of our implementation. This motivates
some of our choices; others are motivated by the limited
amount of primary memory on the Pocket PC.

7.1 Graph representation. Our graph is stored
in the flash card in the following format. Arcs are
represented as an array of records sorted by the arc
tail. Each record has a 16-bit arc length (in our case,
transit time in seconds) and the 32-bit ID of the head
vertex. Another array represents vertex records, each
consisting of the 32-bit index of the record representing
the first outgoing arc. The reverse graph is also stored
(in the same format).

Additional information needed for each vertex vis-



ited by a search is kept in main memory in a record we
call a mutable node. Each vertex may need two mutable
nodes, one for the forward and another for the reverse
search. A mutable node contains four 32-bit fields: an
ID, a distance label, a parent pointer, and a heap po-
sition. Some fields are bigger than needed even for our
largest graph, but we chose to make the records word-
aligned to keep the implementation clean and flexible.
The user specifies M , the maximum number of muta-
ble nodes allowed. The total amount of RAM used is
proportional to M .

7.2 Data structures. To map vertex IDs to the cor-
responding mutable nodes, we use double hashing with
a table of size at least 1.5M . We maintain two prior-
ity queues, one for each search. For shortest path al-
gorithms, the improved multi-level bucket implementa-
tion tends to be the fastest [7, 17], and we did use it on
the landmark generating routines. For P2P computa-
tions, however, we used 4-heaps. Although slower than
multi-level buckets, 4-heaps have less space overhead
(one heap index per vertex). In addition, the priority
queue never contains too many elements in our applica-
tion, so the overhead associated with heap operations is
modest compared to that of data access. The maximum
size of each heap was set to M/8 + 100 elements.

7.3 Caching. The data we deal with has strong
locality. On partial graphs, at least 50% of the arcs are
between vertices whose IDs differ by 15 or less; for more
than 90% of the arcs the difference is at most 100. On
the NA graph, more than 99% of the arcs have endpoints
whose IDs differ by at most 10. For this reason, and
also because data must be read in 512-byte blocks, our
algorithm implements an explicit caching mechanism.
A page allocation table maps physical page addresses to
virtual page addresses (in RAM), and the replacement
strategy is LRU: the least recently used page was evicted
whenever necessary. We use separate caches for graphs
and landmarks. Each of the six landmark caches (one
for each active landmark) has 1 MB, and each of the
two graph caches has 2 MB.

7.4 Landmark representation and compression.

We store data for each landmark in a separate file.
Each distance is represented by a 32-bit integer. To
and from distances for the same vertex are adjacent.
Although the graph is not completely symmetric, the
two distances are usually close. Moreover, since vertices
with similar IDs tend to be close to each other, their
distances to (or from) the landmark are also similar.

This similarity is important for compression, which
allows more data to fit in the flash card and speeds up

data read operations. We use the fact that the two most
significant bytes of adjacent words (distances) tend to
be the same—there are actually long runs in which these
bytes coincide. For each run, we represent the common
bytes just once, together with the run length; only the
two least significant bytes are represented explicitly for
each element. The resulting compression ratio is almost
50%, which is a few percentage points better than
what is achieved by the standard compression program
gzip. To allow random access to the file, each page
is compressed separately. Since compression rates vary,
the file has a directory with page offsets.

8 Experimental Analysis

8.1 Setup. Our preprocessing was done in memory,
with landmarks output to disk. Most graphs were
preprocessed on a Pentium 4M with 512 MB of RAM
running at 2.2 MHz. The only exception is the (much
larger) NA graph, for which we used a 900 MHz Itanium
2 workstation with 11.9 GB of RAM.

The Pocket PC we used was a Toshiba 800e. It has
a 400 MHz ARM-4 processor and 128 MB of RAM,
and runs the Windows Mobile 2003 Second Edition
operating system. We set the system file cache size to
2 MB. This is the maximum allowed by the operating
system, and big enough to fit the file allocation table.
In some experiments, we reduced the clock speed to 100
MHz to check if the computation is CPU bound.

Data for the P2P algorithm was stored on Compact
Flash memory cards. For the NA graph, we used a 4
GB Lexar 80x card with FAT32 file system. For smaller
graphs, we used a 2 GB Lexar 80x card with FAT file
system. To measure their speed, we created a 32 MB
file and read a sequence of 512-byte blocks starting at
random positions aligned at multiples of 512 bytes. As
Table 1 shows, the throughput in this case is quite low,
and it depends on CPU frequency.

card throughput
capacity @100 @400 ratio

2 GB 234 379 1.62
4 GB 228 366 1.61

Table 1: Throughputs of each flash card (in KB/s) for
accesses to random 512-byte blocks with the CPU at
100 MHz and 400 MHz.

Our code was written in C++ and compiled under
eMbedded Visual C++ 4.0 (for the Pocket PC) and
Visual C++ 7.0 (for PCs). We use the Mersenne
Twister pseudorandom number generator [29].

We experimented with six road network graphs
extracted from Mappoint.NET data: San Francisco Bay
Area (including San Jose and Sacramento), Dallas area,



graph dimensions file sizes (MB)
vertices arcs graph landmark total

Bay Area 330 024 793 681 5.80 1.34 42.42
Los Angeles 563 992 1 392 202 10.12 2.21 71.07
St Louis 588 940 1 370 273 10.09 2.31 73.31
Dallas 639 821 1 522 485 11.15 2.51 80.03
Washington 991 848 2 294 870 16.91 3.90 123.52
North America 29 883 886 70 297 895 516.25 117.50 3 735.00

Table 2: Road network problems: graph dimensions and file sizes in MB (of a single graph file, of a single landmark
file, and the total considering two graph files and 23 landmark files).

Los Angeles area, St Louis area, Washington State and
vicinity (including Vancouver Island and Portland), and
the Continental North America (Canada, the United
States, and parts of Mexico). We refer to the first five
graphs as partial; although by no means small, these
graphs are much smaller than the last one. We use road
segment transit times as arc lengths (using road segment
lengths instead has little effect on the performance of
ALT, as shown in [19]). Table 2 reports the problem
sizes, including the average size of each of the two graph
files (forward and reverse) and of a typical landmark file.
It also reports the total space the algorithm requires
when working with 23 landmarks, the number we used
on the Pocket PC.

Following [19], we use two kinds of (s,t) pair distri-
butions. One selects the endpoints uniformly at random
(rand), which tends to produce pairs of far away ver-
tices. Another is bfs, which selects s at random, does
breadth-first search to find all vertices that are 50 hops
away from s, and chooses t at random from these; this
produces a local pair. Our design choices were made
with the random distribution in mind, since the searches
it induces cost much more. Therefore, most of our ex-
periments will focus on the random distribution; only
those in Section 8.3 use bfs.

We designed experiments to test several variants
of the algorithm. For each of the partial graphs, we
picked a random set of 1000 s-t pairs and ran the P2P
algorithm on it for all variants tested. For consistency,
each partial graph is tested with the same set of 1000
pairs on all experiments. Most experiments on NA,
which take longer to run, used 100 pairs only.

To compare two variants of the algorithm, the obvi-
ous measure of performance is running time. However,
with many design choices to evaluate, most of the ex-
periments were done on a PC, which is much faster,
mainly due to disk caching: for partial graphs, all data
fits in the cache. The flip side of this speedup is that the
running times are unsteady: different runs of the same
algorithm may have completely different running times
depending on the initial cache state. For this reason,

and to get a better understanding of the algorithm, we
use five machine-independent measures of quality.

The first three measures refer to the number of
mutable nodes (i.e., vertices visited): the average, the
99th percentile, and the maximum. We are interested
in optimizing the worst case of the algorithm. Since
we test only a fraction of the O(n2) possible pairs, the
variance on the maximum can be quite high. The 99th
percentile tends to be a more stable measure of the
relative performance of two different landmark selection
methods. For NA, on which only 100 pairs were tested,
we often report the 97th percentile instead.

The fourth measure is the average efficiency, de-
fined as the ratio between the number of vertices
scanned and the actual number of vertices on the path.
Finally, the fifth measure is the average amount of data
read from secondary storage per search. This correlates
well with the running time of the algorithm.

All experiments comparing different design choices
were made on the PC, and for them only the machine-
independent measures are presented. Running times are
shown only for the runs made on the Pocket PC (see
Section 8.3).

8.2 Design choices. Our two main improvements to
the original ALT algorithm are the new landmark selec-
tion schemes (avoid and maxcover) and the dynamic
selection of active landmarks. There are also some mi-
nor improvements, such as a new pruning strategy.

We start by defining a reference version of our
algorithm, with the best choice of each of the parameters
tested. It uses landmarks obtained with the maxcover
method. To solve the P2P problem, we used dynamic
selection of active landmarks, starting with two and
increasing this number as necessary (up to six). Pruning
was also used.

Table 3 presents data for this reference version,
with 16 landmarks. For this experiment only, we
used 1000 pairs to test NA. The average efficiency was
above 26% over the five partial graphs and above 10%
for the NA graph. Comparing this with the results



graph mutable nodes eff. data gener.
avg 99th max (%) (kb) time (s)

Bay Area 4 258 21 567 31 065 29.11 542 94
Los Angeles 7 242 46 759 93 801 26.52 700 168
St Louis 6 575 31 135 53 761 29.22 564 207
Dallas 8 145 49 913 86 784 26.86 682 173
Washington 10 159 48 407 111 205 33.16 808 248
North America 303 148 1 700 827 3 608 315 10.65 51 461 12 488

Table 3: Results with 16 landmarks generated with maxcover on 1000 random pairs: number of mutable nodes
(average, 99th percentile, and worst), average efficiency, and average amount of data read from disk. The last
column presents the total time required to generate the landmarks, in seconds.

reported in [19], the improvements on the original
ALT implementation become clear. The original ALT
efficiency (with 16 landmarks) was 7.8% on Bay Area,
5.6% on Los Angeles, 10.6% on St. Louis, and 7.1%
on Dallas (these were the only problems tested in both
studies).

Regarding the number of mutable nodes visited by
the algorithm, the table shows that, on average, they
are just over 1% of the total number of vertices on all
graphs, including NA. Moreover, on at least 99% of the
pairs, at most 8% of the vertices were visited. The worst
cases observed ranged from 9% (St Louis) to 17% (Los
Angeles) of the vertices in the graph.

Note that the 99th percentile is often closer to
the average than to the worst case, which suggests
that the distribution is far from uniform, and increases
sharply towards the end. Figure 2, which shows the full
histogram for Bay Area and Washington, confirms this.
The curves for the other three partial graphs, omitted
for clarity, fall between those two. The curve for NA
has a similar shape.
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Figure 2: Distribution of the number of mutable nodes
for each graph, with 1000 random pairs.

In absolute terms, the performance of the algorithm
on NA was worse than on the smaller graphs. However,
the fraction of vertices that were visited (mutable nodes)
was quite similar, and the average efficiency was not
much worse. The amount of data read per mutable
node, however, increased from less than 100 bytes in
most partial graphs to almost 170 bytes. This is because
larger maps have less locality, since the search spreads
over a larger portion of the graph.

In the remaining experiments in this section, we
vary one or more of the parameters used to build
Table 3. All parameters that are modified are explicitly
mentioned; those that are not remain the same as above.

8.2.1 Landmark selection. We start by analyzing
the effect of the landmark selection scheme on solution
quality. We compare maxcover with five alternative
methods. For each graph and each method, we gen-
erated three sets of landmarks (with different random
seeds), and picked the best (the one with the small-
est 99th percentile when processing 1000 random pairs).
For NA, we used the 97th percentile and 100 pairs.

Table 4 shows the results for partial graphs. Note
that all measures are relative to maxcover. For each
graph, we compute the ratio between the value obtained
by the method and what was obtained by maxcover,
then report the geometric mean of these ratios over all
five graphs.1

Observe that random is the worst method on all
measures except the time to generate the landmarks.
Even in this case, it is followed closely by the original
farthest selection (farD), which is better on all other
accounts. Farthest selection with BFS (farB) provides
even better results and is still relatively fast. Note
that farB is slower than farD because BFS does not

1We use geometric instead of arithmetic means because it

makes it easy to change the reference method. To see how all

methods fare with respect to random, for example, just divide

every entry in a column by the value in random.



selection mutable avg data gen.
scheme avg 99th eff. read time
random 2.11 2.64 0.66 1.55 0.07
farD 1.55 1.77 0.80 1.29 0.08
farB 1.39 1.48 0.84 1.21 0.13

planar 1.33 1.32 0.83 1.15 0.13
avoid 1.20 1.22 0.90 1.10 0.20

maxcover 1.00 1.00 1.00 1.00 1.00

Table 4: Effect of the landmark selection scheme on
the P2P algorithm. All values are relative to maxcover.
Only the five partial graphs are considered.

replace the shortest path computation: farB still has
to compute the actual shortest path trees in order to
output the landmark files.

Planar landmark selection takes roughly the same
time as farB and has slightly better performance.
Avoid, the first completely new method proposed here,
is even better, despite not using any geometric informa-
tion. Being only three times slower than random, it can
still be considered fairly quick.

The reference method, maxcover, is roughly five
times slower than avoid, but it is clearly superior on
all other measures. It should be the method of choice
among those tested if one can afford the extra time.

Results for NA are presented in Table 5. They
are similar to Table 4, but there are some differences.
The performance of farD is much worse—even worse
than random. This happens because several landmarks
are placed in areas that have very few vertices and are
far from denser regions (and from each other), such as
Alaska, Northern Canada, and Mexico. FarB is less
susceptible to problems of this kind, and performs better
than planar.

land. mutable avg. data gen.
avg 97th eff. read time

farD 3.38 4.71 0.40 6.56 0.10
random 2.34 2.59 0.67 3.40 0.09
planar 1.86 2.46 0.68 2.46 0.15
farB 1.63 2.12 0.74 2.12 0.15
avoid 1.51 1.84 0.86 1.96 0.21

maxcover 1.00 1.00 1.00 1.00 1.00

Table 5: Effect of the landmark selection scheme on
the P2P algorithm for NA. All values are relative to
maxcover.

Another important difference is that on NA the
choice of landmarks has much more impact on the per-
formance of the P2P algorithm. On the partial graphs,
doubling the average number of mutable nodes (using

random instead of maxcover) increases the amount of
data read by 55%. On NA, the difference is greater
than 200%.

8.2.2 Number of landmarks. Table 6 shows how
performance improves as the number of landmarks
increases from 2 to 32 (always using maxcover). As
in the previous experiment, we actually generated three
sets of landmarks in each case and picked the best (with
respect to the 99th percentile). All measures are relative
to what was obtained with 16 landmarks. Note that all
measures of solution quality improve as the number of
landmarks increase, but the marginal benefits of each
additional landmark decrease. Only the five partial
graphs are considered in the table.

land. mutable avg data gen.
avg 99th eff read time

2 12.43 9.45 0.21 4.25 0.08
4 4.11 4.26 0.41 2.10 0.18
8 1.93 2.19 0.68 1.37 0.42

16 1.00 1.00 1.00 1.00 1.00
23 0.81 0.80 1.15 0.95 1.72
32 0.67 0.66 1.29 0.92 3.28

Table 6: Effect of the total number of landmarks
available on the P2P algorithm (partial graphs only).
All values are relative to 16 landmarks.

Results for NA, presented on Table 7, are similar.
Once again, the main difference is that an improvement
on the set of landmarks has greater effect on the amount
of data read from external memory.

land. mutable avg. data gen.
avg 97th eff. read time

2 18.51 17.76 0.20 25.07 0.11
4 5.16 4.90 0.22 9.00 0.22
8 2.55 2.66 0.51 3.22 0.44

16 1.00 1.00 1.00 1.00 1.00
23 0.77 0.72 1.15 0.69 2.12
32 0.64 0.65 1.24 0.51 5.44

Table 7: Effect of the total number of landmarks
available on the performance of the P2P algorithm
(NA). All values are relative to 16 landmarks.

8.2.3 Active landmarks. We now compare the dy-
namic and static schemes for selecting active landmarks.
For each of the five partial graphs, we ran nine versions
of the static algorithm (with h varying from 2 to 10) and
compared them to the dynamic scheme. Given a fixed
instance, we use the same set of 16 maxcover landmarks



and the same 1000 random s-t pairs for all runs.
Figure 3 summarizes the experiment. It shows how

the measures taken (average number of mutable nodes,
99th percentile of mutable nodes, average efficiency, and
average amount of data read) behave as a function
of h. The values are normalized: we consider the
ratio between the actual value and what was obtained
by the dynamic algorithm. Each point in the plot
is the geometric mean of five normalized values (one
for each instance). As usual, larger values are better
for efficiency, and small values are better for all other
measures. The closer a point is to 1.0, the more similar
to dynamic selection the corresponding method is. The
data is for partial graphs only.
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Figure 3: Performance of the P2P algorithm on partial
graphs as a function of the number of statically selected
landmarks. All values are relative to dynamic selection.

Note that, with dynamic selection, the algorithm
reads less than the amount required with three static
landmarks, and achieves much better results on average
and particularly on hard cases (as the 99th percentile
shows).

Results for NA were very similar (we omit the corre-
sponding plot). As with partial graphs, static selection
always obtained worse results in terms the average num-
ber of mutable nodes and the 99% percentile. Moreover,
the average amount of data read was high even for small
values of h; for h = 4 (the best for static selection), it
was 60% larger than with dynamic selection. In terms
of efficiency, static selection was better then dynamic
for h between 3 and 5, but by no more than 4%.

We interpret these results as follows. Often, one
landmark gives very good bounds for the forward search
and another one for the reverse search. Both active
landmark selection variants choose these landmarks,
and the dynamic version never adds new ones. This case

is easy for ALT, and the use of more landmarks by the
static algorithm only increases the amount of landmark
data read. In hard cases, for one or both searches
there is no landmark that gives good bounds throughout
the computation, and some good landmarks cannot be
determined based on their s-t distance bounds. Static
selection must guess which landmarks may become
useful, while dynamic selection can wait until is has
more information to make better choices.

Furthermore, Theorem 4.1 does not apply to the
variant of ALT we study. Bad landmarks can “pull”
a search toward themselves and away from from the
goal. Dynamic selection only picks landmarks that are
better than those currently in use, at least locally. The
downside is that a landmark may become useful between
checkpoints, and the dynamic selection method will use
worse landmarks until the next checkpoint.

8.2.4 Other improvements. We now briefly dis-
cuss the effect of pruning and the new stopping criterion
on the performance of the algorithm.

On the partial graphs, with 16 maxcover landmarks,
efficiency decreases by roughly 3% and the average
number of mutable nodes increases by more than 6%
if pruning is not used. The effect of the new stopping
criterion is also modest on average: both the efficiency
and the number of mutable nodes get only 3% worse if
the old criterion is used.2 The average results for NA
were similar.

However, the effects of both improvements depend
heavily on the particular characteristics of each search.
Take NA, for instance. On more than half of the
searches tested, switching to the old stopping criterion
would increase the number of mutable nodes by less
than 1%. However, there were searches where the
difference was greater than 20%. In 60% of the cases
the number of vertices visited would increase by less
than 1% if pruning were not used, but we did observe
differences as high as 164%.

Interestingly, there was no obvious correlation be-
tween the “hardness” of the search (in terms of the
number of vertices visited) and the effect of these im-
provements. Some searches visiting more than a mil-
lion vertices were largely unaffected, while others bene-
fited greatly. Such diversity was also observed for easier
searches.

8.3 Running times. The previous experiments have
shown that the best approach (among those tested) is
to generate as many landmarks as possible using the

2Since the standard stopping criterion cannot be used with

dynamically selected landmarks, we compared it with the new

stopping criterion using static selection (with h = 6).



maxcover method and dynamically choose which ones
to use during the actual P2P computation. This section
presents running times for this algorithm on a Pocket
PC.

The total number of landmarks we could use for
NA was limited by the size of the CF Card we had.
A formatted four-gigabyte card can only hold 3.74 GB
of data. That is enough for 23 landmarks and the
graph data; 24 landmarks would require 3.76 GB. For
symmetry, we also tested the other graphs with 23
landmarks.

Table 8 reports the performance of the algorithm.
Both distributions (bfs and rand) are considered. For
each, we tested the algorithm with 1000 pairs on the
partial graphs, and 100 pairs on NA. We ran each
experiment twice, with different clock speeds: 100 MHz
and 400 MHz. This was done to verify that main
bottleneck of our implementation is not CPU, but
reading the data from flash.

The results confirm this. Reducing the clock speed
by a factor of four increases running times by a factor of
1.68 to 1.85. Compare this with Table 1, which shows
that the time to merely read a fixed amount of data
already increases by more than 1.6 when the CPU is
slowed down. This is evidence that reading the data
dominates the running time.

In a related experiment, we tested an in-memory
version of our algorithm. Each input file (graphs and
landmarks) was preloaded to a separate array in mem-
ory, and all calls to fread (the C function used to read
data from the file) were replaced by calls to memcpy.
Everything else remained unaltered: the data was still
read in blocks, decompressed on the fly (for landmarks),
and caching was used. In other words, all the over-
head associated with an external memory implementa-
tion was still present. Of course, a “pure” in-memory
implementation of the ALT algorithm (without block
reads, caching, compression, hashing, and other over-
heads) would be significantly faster.

Still, the version we implemented is already one
order of magnitude faster than the external memory
algorithm. On the Pocket PC, the average time for
Bay Area (with the rand distribution) was 0.40 seconds
at 400 MHz (and 1.21 seconds at 100 MHz).3 This
represents a speedup of roughly 13 when compared with
the external memory version, showing that reading the
data is indeed the bottleneck of our algorithm.

Even though flash card performance is bad in our
application, running times for our code are reasonable.

3Note that a four-time increase in clock speed makes the

algorithm only three times as fast. We conjecture that this

happens because the change in clock frequency does not affect
other components—notably RAM.

Local (bfs) queries, which would be the most typical
in navigation software, took a second or two. For
this distribution, performance does not seem to depend
much on the graph size: queries take similar amounts
of time on small and large maps (they are only slightly
larger on NA).

For random pairs, on the other hand, running times
clearly depend on graph size. On smaller graphs, the
average time was between 5 and 8 seconds. On NA,
searches took less than six minutes on average, still
respectable considering the size of the data set and the
system limitations. The median time (not shown in the
table) was only one minute.

On partial graphs, the efficiency of the algorithm is
roughly the same for bfs and rand, which might seem
counter-intuitive. This is related to the nature of the
ALT algorithm. On a long path, each search (forward
and reverse) tends to visit more vertices close to its
origin. The middle portion of the path is often perfectly
“covered” by a landmark, and therefore is traversed
more efficiently. The search depicted in Figure 1 is a
good example of this. A search in the bfs distribution
can be seen as one with no sizeable middle portion.

Note that we set M , the limit on the maximum
number of mutable nodes, to two million. With this
value, the program footprint is about 78 MB. This
would be reduced to 15 MB if we used 200 000 mutable
nodes, more than enough for the partial graphs. For
NA, on the other hand, there are cases where two million
mutable nodes are not enough, but Table 3 shows that
this is rare: at least 99% of the searches visit fewer
vertices. None of the 100 pairs tested on the Pocket PC
reached this limit.

9 Final Remarks

We improved the ALT algorithm, developed a memory-
efficient version of it, and tested it on a Pocket PC. The
implementation works even for large graphs, with tens
of millions of vertices. Reading data from flash memory
is the bottleneck. On graphs corresponding to local area
maps, our Pocket PC implementation is fast enough for
practical use.

On NA with random pairs of vertices, the imple-
mentation is still somewhat slow, but being able to solve
problems of this size of the device in minutes is still an
achievement. In addition to possible algorithmic im-
provements, faster flash cards and interfaces are likely
in the future. Combined with cheaper and higher ca-
pacity flash memory cards becoming available, solving
problems of NA size on small devices may become more
practical.

Although our implementation is not directly com-
parable to that of [19], we believe that an in-memory



mutable nodes eff. data search time
pairs graph avg 99th max (%) (kb) @100 @400 ratio
bfs Bay Area 582 2 040 2 248 28.2 103 2.07 1.20 1.73

Los Angeles 697 2 737 3 466 26.8 109 2.32 1.36 1.70
St Louis 341 1 255 1 327 42.9 53 1.33 0.79 1.68
Dallas 337 921 952 39.1 58 1.38 0.82 1.69
Washington 400 2 016 3 817 42.9 60 1.47 0.85 1.72
North America 441 1 785 3 188 33.4 68 3.92 2.15 1.82

random Bay Area 3 473 14 974 15 490 32.3 505 9.33 5.13 1.82
Los Angeles 5 635 35 535 49 926 29.6 650 13.04 7.25 1.80
St Louis 5 863 36 389 37 299 34.1 561 12.26 6.94 1.77
Dallas 8 067 46 619 53 863 29.4 726 16.17 8.72 1.85
Washington 7 154 29 491 39 680 44.9 707 14.59 8.00 1.82
North America 189 602 974 362 1 804 161 14.7 22 397 552.35 328.78 1.68

Table 8: Pocket PC runs with 23 maxcover landmarks: number of mutable nodes, average efficiency, average
amount of data read, average running time in seconds at 100 MHz and 400 MHz, and the ratio between them.

variant of our algorithm will be substantially faster.
Not only does our algorithm visit fewer vertices (be-
cause of higher efficiency), but it also processes each
one faster (because the number of active landmarks is
reduced with dynamic selection).

We have seen that better landmark selection
schemes can significantly improve the performance. We
believe there is still room for improvement, particularly
for the NA graph. Developing new landmark selection
schemes is an obvious path for future research.

Other potential improvements include a more com-
pact representation of landmarks (for example, storing
distances only for some vertices and recomputing the
rest) and reusing mutable nodes to further reduce the
footprint of the algorithm. The implementation would
also benefit from further tuning. We have not performed
extensive experiments to determine the ideal number of
pages to read at a time, the best size of each cache, or
the minimum number of vertices visited between check-
points. Treating the flash card as a raw device may also
improve performance.

An open problem is to analyze the performance of
ALT on interesting classes of graphs and compare it to
(bidirectional) Dijkstra’s algorithm. Our approach is
related to using beacons to estimate distances in the
Internet [14, 32]. The empirical work on beacons re-
ceived a theoretical justification [27], suggesting a path
to explain the good performance of ALT in practice.
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