Binary Search Trees
Binary Search Trees

Binary Tree: A rooted tree, each node having a left and a right child, either or both missing.

Binary Search Tree: Each node contains an item. Items are totally ordered and arranged in the tree in symmetric order: all items in left subtree are less, all items in right subtree are greater.

Binary search trees support access, insert, delete in $O(\text{depth})$ time.
Search Trees Can Be Used For Range Queries

Report all entries between x and y:
Another binary search tree

How do we keep depth small?
Classical answer: Maintain a (local) balance condition.

Two properties:

(i) Implies $O(\log n)$ depth of an n-node tree.

(ii) Easily restorable after an update: $O(\log n)$ time by rebalancing along access path.

Since ~1962 many kinds of such balanced search trees have been discovered.
Classes of Balanced Trees

1. Height-balanced (AVL) trees
2. Weight-balanced \((BB(x))\) trees
3. 2,3 trees
4. B-trees
5. Brother trees
6. 2,4 trees
7. Symmetric binary B-trees
8. Red-black trees
9. Half-balanced tree

etc...etc...

All achieve \(O(\log n)\) access/insert/delete time
A Rotation

Changes depths of some nodes

Takes $O(1)$ time (3 pointer changes)

Preserves symmetric order
Red-Black Trees

1. Each node is either red or black.
2. The root and all missing nodes are black.
3. There are no two red nodes in a row.
4. All paths from the root to a missing node have the same number of black nodes.

Equivalent to:

2,4 trees
Symmetric binary B-trees
Half-balanced trees
Items in internal nodes, in symmetric order:
 items in left subtree smaller,
 items in right subtree larger.

Allows binary search for items
 search time = 1 + depth.
A Red-Black Tree

A 2,4 Tree
Red-black tree updates

- black
- red

Insert

O root → ●

recolor

{ possibly nonterminating

}
Delete

- short node (all paths down lack one black node)
 - red or black node (color preserved)

- root

- creates a terminating case

- Nonterminating if original root is black

\[O(\log n) \text{ recolorings; 0, 1, 2, or 3 rotations} \]

\[O(1) \text{ amortized recoloring time for insert/delete:} \]

\[\Phi = 2 \text{ for } \begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} , \quad 1 \text{ for } \begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} \]
How long to process a sequence of searches?

If access frequencies are known in advance and initial tree is arbitrary but fixed, an optimum binary search tree (Knuth-style) minimizes the total search time.

What if access frequencies are not known in advance?

What if tree is allowed to change during the sequence?
Total time for a sequence of accesses
 = total search time
 (sum of \(1+\) depth of accessed item, when accessed)
 + total number of rotations
 (between searches arbitrary rotations can be done)
Goal: Compare the minimum-cost off-line strategy with (simple) on-line strategies.

Can an on-line strategy (no future knowledge) achieve a performance within a constant factor of that of the optimum off-line strategy (access requests known in advance)?
A Self-Adjusting Search Tree
Previous Self-Adjusting Heuristics
(A. Allen and M. Munro, Bitner)

1. Move to root: do single rotations all along access path.

2. Single exchange: do one rotation at parent of accessed node.

Both are $O(n)$ per operation, even amortized.
Bad Examples

MTR

SE
Splaying: Sleator and Tarjan (1985)

Rotate each edge along an access path.

Perform rotations in pairs, roughly bottom-up.

Access path is (roughly) halved, other nodes can move down, but only by a few steps.
Cases of Splaying

zig

zig-zig

zig-zag
Step by Step Examples
EXAMPLES

splay

splay
Accessed node moves to root, distance of the other nodes from the root essentially halves.

splay
Splaying in sequential order

average = $3^{2/3}$
What is Known

Let m be the number of accesses, n the number of nodes.
Assume $m \geq n$.

Total time for m accesses $= O(m \log n)$: matches bound for balanced trees.

Total time for any access sequence is within a constant factor of that for an optimum *static* tree.

Total time for n accesses, one per item, in symmetric order, is $O(n)$.

+ 25
Access Lemma

For any assignment of positive weights to items, the amortized time to access item i is at most

$$3 \log (W/w_i) + 1$$

where $W =$ total weight and the cost of an access is the depth of the accessed node.

Note. The item weights are parameters of the analysis, not of the algorithm.
Potential: define the **total weight** of a node to be the sum of the individual weights of its descendants, including itself.

The potential of a tree is the sum of the (base-two) logarithms of the weights of its nodes.

\[\Phi = \sum_{i=1}^{n} \log_2 (w_i) \]
Potential: define the weight of of a node to be

the sum of the individual weights of its descendants,

including itself.

\[\Phi = \sum_{i=1}^{m} \frac{1}{t} \log(\text{weight}_i) \]

The potential of a tree is the sum of the (base-two) logarithms of the total weight of its nodes.

\[\Phi = \sum_{i=1}^{n} \log(\text{weight}_i) \]
Let \(w(x) \) = sum of weights of all items in subtree of \(x \)

rank of \(x \) = \(r(x) = 2 \log_2 \sum w(x) \)

We shall show:

amortized time of a splay step at \(x \) is

\[\leq 3 \left(r'(x) - r(x) \right) + 1 \text{ (if zig)} \]

\[\uparrow \quad \uparrow \]

after \quad before

Then total amortized time of splay is

\[\leq 3 \left(r_{\text{final}}(x) - r_{\text{initial}}(x) \right) + 1 \]

\[\leq 3 \left(\log W - \log w_i \right) + 1 \]

\[\leq 3 \left(\log \frac{W}{w_i} \right) + 1 \]
Am. 4th one =

\[1 + r'(y) - r^a(x) \]
\[\leq 1 + (r'(x) - r(x)) \]
Am done: \[1 + r'(y) + r'(z) - r(x) - r(y) \]

That is, \[1 \leq (r'(x) - r'(y)) + (r'(x) - r'(z)) \]

since \(r(y) \geq r(x) \)

But otherwise,

\[1 \leq r(x) - r'(y) \text{ if } tw(y) \leq tw(z); \]

\[1 \leq r'(x) - r'(z) \text{ if } tw(z) \leq tw(y). \]

\[\text{zig-zag} \]
Analysis of Case 2 (zig-zig) Step

Amortized time of step

\[= 1 + r'(y) + r'(z) - r(x) - r(y) \]
\[\leq 1 + r'(x) + r'(z) - 2r(x) \quad \text{since} \quad r'(x) \geq r'(y), \quad r(y) = r(x) \]
\[\leq 3(r'(x) - r(x)) \quad \text{iff} \]
\[2r'(x) - r(x) - r'(z) \geq 1. \]

But \(r'(x) \geq \max \{r(x), r'(z)\} \). Also, \(tw(x) + tw(z) \leq tw'(x) \).

Thus \(\min \{tw(x), tw'(z)\} \leq tw'(x)/2 \). I.e. \(r'(x) \geq \min \{r(x), r'(z)\} \).

\[r(x) = \log tw(x) \]
Access lemma holds for variants of splaying, including top-down and more half-way to root methods. For the latter, the constant factor is 2.
Corollaries

Balance Theorem
The total time for m accesses in an n-node tree is \(O((m+n) \log (n+2)) \).

Static Optimality Theorem
If every item is accessed at least once, the total access time is
\[O(m + \sum_{i=1}^{n} q_i \log (m/q_i)) \],
where \(q_i \) is the access frequency of item \(i \).
Extension of arguments shows that self-adjusting
trees are as efficient (to within a
certain factor) as optimum trees, over
a sequence of operations.
Static Finger Theorem
The total access time is
\[o(n \log n + \sum_{j=1}^{m} \log(d(i_j, f) + 2)) \]
where \(f \) is any fixed item, \(i_j \) is the item accessed during the \(j^{th} \) access, and \(d(i, i') \) is the (symmetric-order) distance between items \(i \) and \(i' \).
"Working Set" Theorem

The total access time is

\[o(n \log n + \sum_{j=1}^{m} \log(t(i,j)+2)) \]

where \(t(i,j) \) is the number of different items accessed before access \(j \) since the last access of item \(i \).
Thm. Total time to access all items once, in symmetric order, using splaying = $O(n)$.
(any initial tree)
Conjecture

Dynamic Optimality

For any access sequence, splaying minimizes the total access time to within a constant factor among dynamic binary search tree algorithms, assuming unit cost per rotation and access cost equal to depth.

(Initial tree is given or $+O(n)$ term)