
Princeton University
COS 217: Introduction to Programming Systems

The Memstat Tool

What is it?

Memstat is a simple tool to help you analyze your application’s dynamic memory
management. In particular, it can help you find memory leaks and multiple frees. It may
help you to find other dynamic memory management errors as well.

How do I use it?

Suppose you wish to use the memstat tool to help you debug an application named
myapp. Further suppose that myapp consists of source code files mysourcecode1.c and
mysourcecode2.c. Follow these steps:

(1) Set the PATH environment variable so it includes directory /u/cos217/bin/i686.
Using the bash shell, you do that by issuing the command:

export PATH=/u/cos217/bin/i686:$PATH

Note that the file /u/cos217/.bashrc contains that command; if you are using the bash
shell and you have copied the /u/cos217/.bashrc file to your home directory, then you
need not manually issue the command. You can confirm that the PATH environment
variable contains directory /u/cos217/bin/i686 by examining the output of the printenv
command.

(2) Set the MEMSTATDIR environment variable equal to /u/cos217/bin/i686. Using the
bash shell, you do that by issuing the command:

export MEMSTATDIR=/u/cos217/bin/i686

Again, note that the file /u/cos217/.bashrc contains that command; if you are using the
bash shell and you have copied the /u/cos217/.bashrc file to your home directory, then
you need not manually issue the command. You can confirm the setting of the
MEMSTATDIR environment variable by examining the output of the printenv command.

(3) Use the gccmemstat (instead of the gcc) command to preprocess, compile, and
assemble mysourcecode1.c and mysourcecode2.c:

gccmemstat –Wall –ansi –pedantic –c mysourcecode1.c
gccmemstat –Wall –ansi –pedantic –c mysourcecode2.c

(4) Use the gccmemstat (instead of the gcc) command to link mysourcecode1.o and
mysourcecode2.o, thus creating executable file myapp:

Page 1 of 4

gccmemstat –o myapp mysourcecode1.o mysourcecode2.o

Note that steps 3 and 4 can be combined by issuing a single command:

gccmemstat –Wall –ansi –pedantic –o myapp mysourcecode1.c mysourcecode2.c

(5) Execute myapp as usual, by typing its name (and command-line arguments, as
appropriate):

myapp arg1 arg2 ...

Doing so generates a text file in the current directory named memstatX.out, where X is
the id of the process in which myapp executed.

(6) Optionally, use a text editor to examine the memstatX.out file:

xemacs memstatX.out

Note that the file contains one line for each call to malloc(), calloc(), realloc(), and free()
performed by process X.

(7) Use the memstatreport program to generate (to stdout) a summary report of
memstatX.out, and thus of process X’s dynamic memory management:

memstatreport memstatX.out

The first part of the report shows the number of bytes allocated and "deallocated" on a
line-by-line basis. A positive number indicates a memory allocation; a negative number
indicates a memory deallocation. The second part of the report shows the total number of
bytes allocated/deallocated by each compilation unit. Usually, the total for each
compilation unit should be 0. The last line of the report shows the total number of bytes
allocated/deallocated by the entire application. That number certainly should be 0.

If the total number of bytes allocated/deallocated by the entire application is a positive
number, then your application contains memory leaks. In that case you should analyze
the more detailed information in the report to help you determine which dynamically
allocated memory is not being freed.

If the total number of bytes allocated/deallocated by the entire application is a negative
number then your application contains multiple frees. In that case you should analyze the
more detailed information in the report to help you determine which dynamically
allocated memory is being freed more than once.

Page 2 of 4

How does it work?

Memstat is a very simple tool. The code that comprises memstat is available in directory
/u/cos217/bin/i686. Please study it. Specifically, directory /u/cos217/bin/i686 contains
these files:

memstat.h

memstat.h is the header file for the memstat utility. The gccmemstat command
automatically includes memstat.h into each .c file that it preprocesses.

memstat.h declares functions Memstat_malloc(), Memstat_calloc(),
Memstat_realloc(), and Memstat_free(). It also uses the C preprocessor to alter
your .c files so each instance of the text "malloc" is changed to
"Memstat_malloc", each instance of "calloc" is changed to "Memstat_calloc",
each instance of "realloc" is changed to "Memstat_realloc", and each instance of
"free" is changed to "Memstat_free". In that way, the memstat tool "intercepts"
your program’s calls to C’s standard dynamic memory management functions.

memstat.c

memstat.c contains the definitions of the Memstat_malloc(), Memstat_calloc(),
Memstat_realloc(), and Memstat_free() functions.

The first time any of those functions is called, it opens a file named
memstatX.out. Subsequently, each function writes a line to memstatX.out
indicating that it has been called, along with appropriate data. It then proceeds to
call the corresponding standard C function.

With one complication... Unknown to your application, the Memstat_malloc(),
Memstat_calloc(), and Memstat_realloc() functions actually allocate a block of
memory that is slightly larger than you requested, and store the number of bytes
that you requested in a hidden area at the beginning of the memory block. The
Memstat_realloc() and Memstat_free() functions then use that hidden information
to write appropriate data to memstatX.out.

libmemstat.a

libmemstat.a is a UNIX library (alias archive) that contains the compiled version
of memstat.c. It was created from the memstat.o file using the command:

ar rs libmemstat.a memstat.o

See chapter 4 of our Loukides and Oram textbook for an explanation of UNIX
libraries. Page 102 explains the "ar" command.

Page 3 of 4

gccmemstat

gccmemstat is a bash script which calls gcc with appropriate options. It uses the
"-include memstat.h" option so gcc includes memstat.h into each .c file that it
preprocesses. It uses the "-L$MEMSTATDIR" option to command gcc to look in
directory $MEMSTATDIR (that is, /u/cos217/bin/i686) for libraries at link time.
It uses the "-lmemstat" option to command gcc to link with the libmemstat.a
library.

See page 88 of our Loukides and Oram textbook for more information about the
"–L" and "–l" options to gcc.

memstatreport.c

memstatreport.c contains the source code for the memstatreport program.

Note that it uses an ADT named DynArray. The DynArray ADT is discussed in
precepts. The source code for the DynArray ADT is provided as a precept
handout.

memstatreport

memstatreport is the binary executable file created from memstatreport.c.

Copyright © 2006 by Robert M. Dondero, Jr.

Page 4 of 4

	The Memstat Tool
	How do I use it?
	How does it work?

