
1

Optimizing Malloc and Free

COS 217

Reading: Section 8.7 in K&R book

http://gee.cs.oswego.edu/dl/html/malloc.html

2

Goals of This Lecture
• Brief review of K&R implementation

o Circular linked list of free chunks, with pointer and size in header
– Malloc: first-fit algorithm, with splitting
– Free: coalescing with adjacent chunks, if they are free

o Limitations
– Fragmentation of memory due to first-fit strategy
– Linear time to scan the list during malloc and free

• Optimizations related to assignment #4
o Placement choice, splitting, and coalescing
o Faster free

– Size information in both header and footer
– Next and previous free-list pointers in header and footer

o Faster malloc
– Separate free list for free chunks of different sizes
– One bin per chunk size, or one bin for a range of sizes

3

Free Chunk: Pointer, Size, Data
• Free chunk in memory
o Pointer to the next chunk
o Size of the chunk
o User data

header

p (address returned to the user)

user datasize

4

Free List: Circular Linked List
• Free chunks, linked together
o Example: circular linked list

• Keep list in order of increasing addresses
o Makes it easier to coalesce adjacent free chunks

Free list

In
use

In
use

In
use

5

Malloc: First-Fit Algorithm
• Start at the beginning of the list

• Sequence through the list
o Keep a pointer to the previous element

• Stop when reaching first chunk that is big enough
o Patch up the list
o Return a chunk to the user

p pprev prev p

6

Malloc: First Case, A Perfect Fit
• Suppose the first fit is a perfect fit
o Remove the chunk from the list
o Link the previous free chunk with the next free chunk
o Return the current to the user (skipping header)

p+1
prev p

7

Malloc: Second Case: Big Chunk
• Suppose the chunk is bigger than requested
o Divide the free chunk into two chunks
o Keep first (now smaller) chunk in the free list
o Allocate the second chunk to the user

p p

8

Free
• User passes a pointer to the memory chunk
o void free(void *ap);

• Free function inserts chunk into the list
o Identify the start of entry
o Find the location in the free list
o Add to the list, coalescing entries, if needed

bp ap

9

Free: Finding Location to Insert
• Start at the beginning

• Sequence through the list

• Stop at last entry before the to-be-freed element

In
use

FREE
ME

In
use

bpp
Free list

10

Free: Handling Corner Cases
• Check for wrap-around in memory
o To-be-freed chunk is before first entry in the free list, or
o To-be-freed chunk is after the last entry in the free list

In
use

FREE
ME

In
use

Free list
bp p

11

Free: Inserting Into Free List
• New element to add to free list

• Insert in between previous and next entries

• But, there may be opportunities to coalesce

bp

p p->s.ptr

12

Coalescing With Neighbors
• Scanning the list finds the location for inserting
o Pointer to to-be-freed element: bp
o Pointer to previous element in free list: p

• Coalescing into larger free chunks
o Check if contiguous to upper and lower neighbors

In
use

FREE
ME

In
use

bpp

lower upper

Free list

13

Coalesce With Upper Neighbor
• Check if next part of memory is in the free list
• If so, make into one bigger chunk

• Else, simply point to the next free element
p bp p->s.ptr

upper p p->s.ptr

14

Coalesce With Lower Neighbor
• Check if previous part of memory is in the free list

• If so, make into one bigger chunk

p bp p->s.ptr

lower p p->s.ptr

15

K&R Malloc and Free
• Advantages

o Simplicity of the code

• Optimizations
o Roving free-list pointer is left at the last place a chunk was allocated
o Splitting large free chunks to avoid wasting space
o Coalescing contiguous free chunks to reduce fragmentation

• Limitations
o Inefficient use of memory: fragmentation

– Best-fit policy can leave lots of “holes” of free chunks in memory
o Long execution times: linear-time overhead

– Malloc scans the free list to find a big-enough chunk
– Free scans the free list to find where to insert a chunk

16

Improvements: Placement
• Placement: reducing fragmentation

o Deciding which free chunk to use to satisfy a malloc() request
o K&R uses “first fit” (really, “next fit”)

– Example: malloc(8) would choose the 20-byte chunk
o Alternative: “best fit” or “good fit” to avoid wasting space

– Example: malloc(8) would choose the 8-byte chunk

Free list

In
use

In
use

In
use20 8 50

17

Improvements: Splitting
• Splitting: avoiding wasted memory

o Subdividing a large free chunk, and giving part to the user
o K&R malloc() does splitting whenever the free chunk is too big

– Example: malloc(14) splits the 20-byte chunk
o Alternative: selective splitting, only when the savings is big enough

– Example: malloc(14) allocates the entire 20-byte chunk

Free list

In
use

In
use

In
use

8 5020

18

Improvements: Coalescing
• Coalescing: reducing fragmentation

o Combining contiguous free chunks into a larger free chunk
o K&R does coalescing in free() whenever possible

– Example: combine free chunk with lower and upper neighbors
o Alternative: deferred coalescing, done only intermittently

– Example: wait, and coalesce many entries at a time later

In
use

FREE
ME

In
use

bpp

lower upper

Free list

19

Improvements: Faster Free
• Performance problems with K&R free()
o Scanning the free list to know where to insert
o Keeping track of the “previous” node to do the insertion

• Doubly-linked, non-circular list
o Header

– Size of the chunk (in # of units)
– Flag indicating whether the chunk is free or in use
– If free, a pointer to the next free chunk

o Footer in all chunks
– Size of the chunk (in # of units)
– If free, a pointer to the previous free chunk

h
e
a
d

f
o
o
t

20

Size: Finding Next Chunk
• Go quickly to next chunk in memory
o Start with the user’s data portion of the chunk
o Go backwards to the head of the chunk

– Easy, since you know the size of the header
o Go forward to the head of the next chunk

– Easy, since you know the size of the current chunk

21

Size: Finding Previous Chunk
• Go quickly to previous chunk in memory
o Start with the user’s data portion of the chunk
o Go backwards to the head of the chunk

– Easy, since you know the size of the header
o Go backwards to the footer of the previous chunk

– Easy, since you know the size of the footer
o Go backwards to the header of the previous chunk

– Easy, since you know the chunk size from the footer

22

Pointers: Next Free Chunk
• Go quickly to next free chunk in memory
o Start with the user’s data portion of the chunk
o Go backwards to the head of the chunk

– Easy, since you know the size of the header
o Go forwards to the next free chunk

– Easy, since you have the next free pointer

23

Pointers: Previous Free Chunk
• Go quickly to previous free chunk in memory
o Start with the user’s data portion of the chunk
o Go backwards to the head of the chunk

– Easy, since you know the size of the header
o Go forwards to the footer of the chunk

– Easy, since you know the chunk size from the header
o Go backwards to the previous free chunk

– Easy, since you have the previous free pointer

24

Efficient Free
• Before: K&R
o Scan the free list till you find the place to insert

– Needed to see if you can coalesce adjacent chunks
o Expensive for loop with several pointer comparisons

• After: with header/footer and doubly-linked list
o Coalescing with the previous chunk in memory

– Check if previous chunk in memory is also free
– If so, coalesce

o Coalescing with the next chunk in memory the same way
o Add the new, larger chunk to the front of the linked list

25

But Malloc is Still Slow…
• Still need to scan the free list
o To find the first, or best, chunk that fits

• Root of the problem
o Free chunks have a wide range of sizes

• Solution: binning
o Separate free lists by chunk size
o Implemented as an array of free-list pointers

26

Binning Strategies: Exact Fit
• Have a bin for each chunk size, up to a limit
o Advantages: no search for requests up to that size
o Disadvantages: many bins, each storing a pointer

• Except for a final bin for all larger free chunks
o For allocating larger amounts of memory
o For splitting to create smaller chunks, when needed

1 1 1 1

3 3

5 8

2
3
4

> 4

27

Binning Strategies: Range
• Have a bin cover a range of sizes, up to a limit
o Advantages: fewer bins
o Disadvantages: need to search for a big enough chunk

• Except for a final bin for all larger free chunks
o For allocating larger amounts of memory
o For splitting to create smaller chunks, when needed

1-2 1 2 1

4 5

10 14

3-4
4-5
6-7
> 7

28

Stupid Programmer Tricks
• Reducing small allocs, especially strings

typedef struct Entry {

struct Entry *e_next;

int e_count;

char e_string[1];

} Entry;

29

Stupid Programmer Tricks
• Inside the malloc library

if (size < 32)

size = 32;

else if (size > 2048)

size = 4096 * ((size+4095)/4096);

else if (size & (size-1)) {

find next larger power-of-two

}

30

Stupid Programmer Tricks
• Defeating your malloc library
typedef struct MyData {

struct MyData *md_nextFree;

…

} MyData;

MyData *mdFreePtr;

void MyData_Free(MyData *ent) {ent->md_nextFree = mdFreePtr;
mdFreePtr = ent;}

MyData *MyData_Alloc(void) {

if (mdFreePtr != NULL)

manipulate list, return first item

else

allocate array of items, add all to free list

}

31

Suggestions for Assignment #4
• Debugging memory management code is hard

o A bug in your code might stomp on the headers or footers
o … making it very hard to understand where you are in memory

• Suggestion: debug carefully as you go along
o Write little bits of code at a time, and test as you go
o Use assertion checks very liberally to catch mistakes early
o Use functions to apply higher-level checks on your list

– E.g,. all free-list elements are marked as free
– E.g., each chunk pointer is within the heap range
– E.g., the chunk size in header and footer are the same

• Suggestion: working in pairs
o Think (and discuss) how to collaborate together

• Suggestion: draw lots and lots of pictures

32

Conclusions
• K&R malloc and free have limitations
o Fragmentation of the free space

– Due to the first-first strategy
o Linear time for malloc and free

– Due to the need to scan the free list

• Optimizations
o Faster free

– Headers and footers
– Size information and doubly-linked free list

o Faster malloc
– Multiple free lists, one per size (or range of sizes)

• Next lecture, on Tuesday
o Bob Dondero starting off with assembly language

	Optimizing Malloc and Free
	Goals of This Lecture
	Free Chunk: Pointer, Size, Data
	Free List: Circular Linked List
	Malloc: First-Fit Algorithm
	Malloc: First Case, A Perfect Fit
	Malloc: Second Case: Big Chunk
	Free
	Free: Finding Location to Insert
	Free: Handling Corner Cases
	Free: Inserting Into Free List
	Coalescing With Neighbors
	Coalesce With Upper Neighbor
	Coalesce With Lower Neighbor
	K&R Malloc and Free
	Improvements: Placement
	Improvements: Splitting
	Improvements: Coalescing
	Improvements: Faster Free
	Size: Finding Next Chunk
	Size: Finding Previous Chunk
	Pointers: Next Free Chunk
	Pointers: Previous Free Chunk
	Efficient Free
	But Malloc is Still Slow…
	Binning Strategies: Exact Fit
	Binning Strategies: Range
	Stupid Programmer Tricks
	Stupid Programmer Tricks
	Stupid Programmer Tricks
	Suggestions for Assignment #4
	Conclusions

