Molecular biology 101 or "why bother?"

Cells are fundamental working units of all organisms

Yeast are unicellular organisms

Humans are multi-cellular organisms

Understanding **how a cell works** is critical to understanding how the organism functions

Prokaryotes vs. Eukaryotes

Yeast is a eukaryote just like humans. Fundamental biological processes are very similar.

Biological macromolecules

What are the main players in molecular biology? What is DNA, RNA, protein, lipid?

Key biological macromolecules

- Lipids:
 - mostly structural function
 - Construct compartments that separate inside from outside
- DNA
 - Encodes hereditary information
- Proteins
 - Do most of the work in the cell
 - Form 3D structure and complexes critical for function

Lipids

- Each lipid consists of a hydrophilic (water loving) and hydrophobic fragment
- Spontaneously form lipid bilayers => membranes

DNA

- Uses alphabet of 4 letters {ATCG}, called bases
- Encodes genetic information in triplet code
- Structure: a double helix

Proteins

- A sequence of amino acids (alphabet of 20)
- Each amino acid encoded by 3 DNA bases
- Perform most of the actual work in the cell
- Fold into complex 3D structure

Courtesy of the Zhou Laboratory, The State University of New York at Buffalo

How does a cell function? The "Central Dogma" of biology

How are proteins made? What are translation & transcription?

How does a cell function?

Courtesy U.S. Department of Energy Genomes to Life program

DNA-RNA-protein

Transcription (DNA->RNA)

- DNA unwinds.
- **RNA polymerase** recognizes a specific base sequence in the DNA called a **promoter** and binds to it. The promoter identifies the start of a gene, which strand is to be copied, and the direction that it is to be copied.
- Complementary bases are assembled (U instead of T).
- A *termination code* in the DNA indicates where transcription will stop.
- The mRNA produced is called a *mRNA transcript*.

mRNA processing (Euk)

DNA

Mature mRNA transcript

Translation (mRNA->protein)

Ribosomes attach to mRNA and move along it to make protein by adding amino acids in order based on mRNA sequence

Gene regulation: from circuits to networks

How are genes regulated? How are biological circuits formed? What are biological networks?

Genes vs. proteins

- Genes are units of inheritance
- They are static blueprints
- It's proteins (dynamic) that do most of the work
- The process of making mRNA, and then protein from a gene (or genes) is called GENE EXPRESSION
- It's the control of gene expression that causes most phenotypic differences in organisms

Opportunities for gene regulation

- Opening of DNA duplex
- Transcription
- mRNA stability
- Translation
- Protein stability
- Protein modification

Control of gene expression

• GE is controlled on many levels (in eukaryotes)

Transcriptional regulation

- Thought to be the most used
- Does not waste intermediate products (mRNA, protein, etc)
- But transcriptional regulation is slow, and thus may not be used in cases when fast, transient regulation is necessarily

Promoters are important elements for gene expression

Will this gene be expressed? Depends on whether specific activators bind to the promoter

State 1: no activation, enzyme can't bind, so no RNA is made. Gene is not expressed.

State 2: promoter is activated, enzyme cant bind, RNA is made. Gene is expressed.

Transcriptional activation

Transcription Factors Bind DNA

Transcription factors bind DNA in a specific manner.

Binding recognizes DNA substrings called regulatory motifs

Regulation of Genes

Regulation of Genes

Regulation of Genes

promoter of heat shock hsp70

- TATA box: positioning transcription start
- TATA, CCAAT: constitutive transcription
- GRE: glucocorticoid response
 - MRE: metal response
- HSE: heat shock element

Regulatory Networks

A GENE REGULATORY NETWORK

What is genomics all about?

The "omes" in biology. Why bioinformatics? What is "systems biology"?

The "omes"

- Genome organism's complete set of DNA
 - Relatively stable through an organism's lifetime
 - Size: from 600,000 to several billion bases
 - Gene is a basic unit of heredity (only 2% of the human genome)
- Proteome organism's complete set of proteins
 - Dynamic changes minute to minute
 - Proteins actually perform most cellular functions, they are encoded by genes (not a 1-to-1 relationship)
 - Protein function and structure form molecular basis for disease

Beyond the "omes" – systems biology

- Understanding the function and regulation of cellular machinery, as well as cell-to-cell communication on the molecular level
- Why? Because most important biological problems are fundamentally systems-level problems
 - Systems-level understanding of disease (e.g. cancer)
 - Molecular medicine
 - Gene therapy

Systems-level challenges

• Gene function annotation – what does a gene do

- ~30,000 genes in the human genome => systems-level approaches necessary
- A modern human microarray experiment produces ~500,000 data points
 => computational analysis & visualization necessary
- Many high-throughput functional technologies => computational methods necessary to integrate the data

• Biological networks – how do proteins interact

- Large amounts of high-throughput data => computation necessary to store and analyze it
- Data has variable specificity => computational approaches necessary to separate reliable conclusions from random coincidences

• Comparative genomics – comparing data between organisms

- Need to map concepts across organisms on a large scale => practically impossible to do by hand
- High amount of variable quality data => computational methods needed for integration, visualization, and analysis
- Data often distributed in databases across the globe, with variable schemas etc => data storage and consolidation methods needed

Function

 To study WHAT proteins DO, HOW they INTERACT, and HOW they are REGULATED, need data beyond genomic sequence

Biological networks

- Interaction maps (no directions)
- Pathway models (dynamic or static)
- Metabolic networks
- Genetic regulatory networks

Yeast interaction network

A GENE REGULATORY NETWORK

Gene expression microarrays – one type of high-throughput functional data

Why microarray analysis: the questions

- Large-scale study of biological processes
- What is going on in the cell at a certain point in time?
- On the large-scale genetic level, what accounts for differences between phenotypes?
- Sequence important, but genes have effect through expression

Why study gene expression of the terms of terms

Microarray technology example of high-throughput data

What is it? Why do we care? And how can it help cure cancer?

Microarray technologies

- Spotted cDNA arrays
 - Developed by Pat Brown (Stanford U)
 - Robotic microspotting
 - PCR products of full-length genes (>100nts)
- Affymetrix GeneChips
 - Photolithography (from computer industry)
 - Each gene represented by many n-mers
- Bubble jet / Ink jet arrays
 - Oligos (25-60 nts) built directly on arrays (in situ synthesis)
 - Highly uniform spots, very expensive

Early cDNA microarray (18,000 clones)

Extracting Data

Microarray Data Flow

Data partitioning clinically important: Patient survival for lung cancer subgroups

Time (months)

Genes overexpressed in lowsurvival lung adenocarcinomas

for details see: Garber, Troyanskaya et al. Diversity of gene expression in adenocarcinoma of the lung. PNAS 2001, 98(24):13784-9.

Computational biology/bioinformatics

What does it study? Where do we get the data?

Computational Molecular Biology

- In order to gather insight into the ways in which genes and gene products (proteins) function, we:
- Analyze DNA and protein sequences, searching for clues about structure, function, and control.
 SEQUENCE ANALYSIS
- 2. Analyze biological structures, searching for clues about sequence, function and control.
 STRUCTURE ANALYSIS
- 3. Understand how cellular components function in living systems.

FUNCTION ANALYSIS

What are functions of genes?

- Signal transduction: sensing a physical signal and turning into a chemical signal
- Structural support: creating the shape and pliability of a cell or set of cells
- Enzymatic catalysis: accelerating chemical transformations otherwise too slow.
- Transport: getting things into and out of separated compartments

What are the functions of genes?

• Movement: contracting in order to pull things together or push things apart.

- Transcription control: deciding when other genes should be turned ON/OFF
- Trafficking: affecting where different elements end up inside the cell

Evolution is key.

- Common descent of organisms implies that they will share many "basic technologies."
- 2. Development of new phenotypes in response to environmental pressure can lead to "specialized technologies."
- 3. More recent divergence implies more shared technologies between species.
- 4. All of biology is about two things: understanding shared or unshared features.

Where is the information?

- DNA sequence information
- GENBANK release 128 (2/02) contains
- 17,089,143,893 bases in 1546532 sequences
- •

(2001: 11,720,120,326 bases in 10,896,781 sequences)

- (2000: 5,805,414,935 bases in 5,691,170 sequences)
- (1999: 2,162,067,871 bases in 3,043,729)
- (1998: 1,622,041,465 bases in 2,355,928 sequences)
- (1997: 786,898,138 bases in 1,192,505 sequences)
- (1996: 463,800,000 bases in 686,000 sequences)

fundamentally information sciences.

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats

Species represented in GENBANK Entries Bases Species

•

•	5230974	8242537293	Homo sapiens
•	3535771	2619042515	Mus musculus
•	402487	1058062734	Rattus norvegicus
•	328165	666672794	Drosophila melanogaster
•	209574	367443679	Oryza sativa
•	224766	279095020	Arabidopsis thaliana
•	196851	221097337	Caenorhabditis elegans
•	189066	165746672	Tetraodon nigroviridis
•	160327	150223453	Pan troglodytes
•	199339	132154949	Brassica oleracea
•	237369	120533407	Bos taurus
•	195458	114913763	Danio rerio
•	233551	106834331	Glycine max
•	200940	102692364	Xenopus laevis
•	208338	93920641	Zea mays
•	160455	83402180	Lycopersicon esculentum
•	140819	72490418	Medicago truncatula
•	80590	72104802	Entamoeba histolytica
•	106882	66276523	Hordeum vulgare

Complete Genomes Known (900 currently available publically)

- Aquifex aeolicus
- Archaeoglobus fulgidus
- Bacillus subtilis
- Borrelia burgdorferi
- Chlamydia trachomatis
- Escherichia coli
- Haemophilus influenzae

- Helicobacter pylori
- Methanococcus jannaschii
- Mycobacterium tuberculosis
- Mycoplasma genitalium
- Mycoplasma pneumoniae
- Pyrococus horikoshii
- Treponema pallidum
- Methanobacterium
 Methanobacterium
 thermoautotrophicum
 Saccharomyces
 cerevisiae
 brosophila
 melanogaster

Where is the information?

- Protein Sequences
- PIR or Swiss-prot (as of 3/02)
- 106,736 sequences
- Over 39,242,287total amino acids
- From 95, 408 literature references

• http://us.expasy.org/sprot/relnotes/relstat.html

Where is the information?

- Protein three-dimensional Structures
- Protein Data Bank (PDB), as of March 26, 2002:
- 17,679 Coordinate Entries
- 15,855 proteins
- 1060 nucleic acids
- 746 protein/nucleic acid complex
- 18 carbohydrates

• http://www.rcsb.org/pdb/

Online access to DNA chip data http://smd.stanford.edu/

- Many published data sets available from Stanford site, 10,000 to 40,000 genes per chip
- Each set of experiments involves 3 to 40 "conditions"
- Each data set is therefore near 1 million data points.
- People gearing up for these measurements everywhere...

Where's the information?

- Medical Literature on line.
- Online database of published literature since 1966 = Medline = PubMED resource
- 4,600 journals
- 11,000,000+ articles (most with abstracts)

Human Genome Browsers

- UC Santa Cruz:
- http://genome.ucsc.edu/
- NCBI:
- <u>http://www.ncbi.nlm.nih.gov:80/cgi-</u> <u>bin/Entrez/map_search</u>
- ENSEMBL:
- http://www.ensembl.org/Homo_sapiens/