Indexing for Similarity Search

Qin Lv

COS598E Spring 2005

Outline

Problem

High-dimensional indexing: previous study
— Quadtree, kd-tree, R-tree, ...

Locality sensitive hashing (LSH)
Navigating nets

Cover trees

Conclusion

Problem

Feature vectors: points in high-
dimensional space

Range query
Nearest neighbor query

— K-nearest neighbor query
— Approximate nearest neighbor query

Linear scan

Indexing: preprocess/organize data points
in order to answer queries efficiently

Reference: Indexing Survey

« Searching in high-dimensional spaces -
Index structures for improving the

performance of multimedia databases
— Christian Bohm, Stefan Berchtold, Daniel A. Keim
— ACM Computing Surveys (CSUR)

— Volume 33, Issue 3, Pages: 322 - 373

— September 2001

Quadtree

« At each level, splits a space into 29 equal
subspaces

— 4 subspaces in 2-dimensional space, hence the name
« Very simple data structure

e But Ol O
— Empty spaces 0
— Space exponential in d

— Time exponential in d

kK-d Tree

Splits in one dimension each time

Adaptive: instead of splitting in the middle,
choose the split carefully

No (or less) empty spaces

Space linear to d
Exponential query time 5
still possible

R-tree

« [Gut 84] Splits space using minimum bounding
rectangles (MBRs)

* |Insertion: starting from root, each time picks a
child region, splits a region when needed

* Rules: -
— p is contained in exactly O
one region O

— p Is contained in multiple
regions O

— No region contains p O

R-tree (cnt'd)

» Basic problem:

— Overlap at high index levels and propagates
down by misled insert operations

P1| P11 | inserted point
/

P12 # P22

P21 2]

R*-tree

[BKSS 90] an extension of R-tree

Minimize overlap between regions

— Picks the data region that yields the smallest enlargement of
overlap

— Picks the split plane that minimizes the overlap between regions

Minimize the surface of regions

— When splitting, picks the dimension that yields the smallest
surface areas of all MBRs

Minimize the volume covered by internal nodes

— Picks the internal region that yields the smallest volume
enlargement

Maximize the storage utilization

— forced re-insert : certain percentage of points with the largest
distances from the region center are deleted and re-inserted

R*-tree (cnt'd)

 10% - 75% improvements over R-tree

* |n higher-dimensional spaces
— Deteriorated directory (internal nodes)

— Needs to load the entire index in order to process
most queries

* Heuristics to optimize for regions with smaller
surface is beneficial

§==e

R*-tree

[SSH 86; SRF 87]
An overlap-free variant of R-tree
Uses forced-split to avoid overlap

High dimensionality leads to many forced
split operations

Low storage utilization

« [BKK 96] An extension of R*-tree

X-tree

« Overlap-free split according to a split history
« Supernodes with enlarged page capacity

A (2) /@ (2
B’ C 1 C AT][ET 1) |[C
Node S B) D B~ D
A "B A"B C A" B C D APB”C D E

X-tree (cnt'd)

 Small dimensions
— similar performance to R-tree

e Medium dimensions

— high performance gain compared to R*-tree
for all query types

* High dimensions
— Also needs to visit large number of nodes
— Linear scan is less expensive

SS-tree

* [WJ 96] uses spheres as regions
— (centroid point, minimum radius)

* Insertion: at each level, chooses the child
sphere whose centroid is closest to p

* Forced re-insert. 30% points with largest
distances to centroid are deleted and re-
inserted

SS-tree (cnt'd)

* Although spheres are theoretically
superior to volume-equivalent MRBs

— Overlap-free split is difficult for spheres

:: o _.,,,\/: ¢ ._..,/:é.\\
K RN Y
 Performance

— Qutperforms R*-tree by a factor of 2
— Not as good as LSD"-tree and X-tree

SR-tree

* [KS 97] A combination of R*-tree and SS-
tree

— Region: intersection between a rectangle and

a sphere
— 2d values for MBRs | o
— d+1 values for spheres | w \
+ Insert and split operations ([/"

similar to SS-tree

SR-tree (cnt'd)

* Reports better performance than SS-tree
and R*-tree

« Probably not as good as LSD"-tree and
X-tree

Space Filling Curves

Mappings from d-dimensional space to one-
dimensional space

Points that are close in original space are likely to be
close in the embedded space

Embedded space can be indexed by B-tree

Name Region Disjoint | Complete | Criteria for Insert Criteria for Split Re-
insert
R-tree MBR No No Volume enlargement Various algorithms no
Volume
R*-tree | MBR No No Overlap enlargement Surface area Yes
Volume enlargement Overlap
Volume Dead space coverage
X-tree MBR No No Overlap enlargement Split history no
Volume enlargement Surface/overlap
Volume Dead space coverage
LSD"- K-d-tree | Yes No/yes Unique due to complete, | Cyclic change of dim. | no
tree region disjoint partition # of distinct values
SS-tree | Sphere No No Proximity to centroid Variance yes
SR-tree | Intersect | No No Proximity to centroid Variance yes
sphere/
MBR
Space Union of | Yes Yes Unique due to complete, | According to space no
filling rectangle disjoint partition filling curve
curves | s

Locality Sensitive Hashing (LSH)

* (r1,r2, p1, p2)- if peB(q,r,)then Pr,[h(q) =h(p)]= p,
sensitive hashing if peB(q,r,)thenPr,[h(q)=h(p)]< p,

[hash tables

« Each hash table

examines k random
bits

In1/ p,

In1/ p,

K = |091/p2 (n/B)
| =(n/B)”

p:

LSH Performance

alpha=2, n=19000, d=64, k=700 Performance vs error

— T T T T T T T T 450 ! ! ! ! ! ' '

1) SRR SV SRS SRRSO NS SRS NOPRI. SO SO SO SR-Tree

[7L

[y

=
T

[

=

=
T

i
0.4} 1 @
a 250+
]
o
0.3+ . © 200+
-
A
0O 150}F
0.2 .
100F

[y
=
T

i

0 i i i i i i . T
Mumber of indices Error (%)

Disk accesses

40

[
[}

[
=

LSH Performance (cnt'd)

alpha = 2, 10-NNS

3bE

=
&

SR-Tree

LSH, error=.02
LSH, errar=05
LSH, errar=_1
LSH, errar=.2

_r"-. -

L CEEEET FEree ..I......_.._.._,.ﬂ........ o
: ! b
5 5 A

- - .

: -

: -

o -

: -

M -

. -

-

000[-1] 00 0OCEEOLOEE6E 0 06HE6 60 00 CoDEEEEO00

* *
B A...J
4 T
v v
o m
W T
1 H
1 1

Number of database points

(b) Approximate 10-NNS

x 10°

35

]] 8]
[=] o [=]
T

Disk accesses

=
=

alpha = 2, 10-NNS

=
m

SR-Tree
L5H,
L5SH,
L5H,
L5H,

error=.02
error=.05
error=.1
error=.2

Dimensions

Intrinsic Dimensionality

Metric space (X, d)
Closed ball B, (x,r)={yeS:d(x,y)<r}

Doubling dimension

— Minimum value p such that every set in X can be
covered by 2° sets of half the diameter

Expansion constant
— Smallest value ¢ = 2 such that

| Bs(p,2r)|<c|Bg(p,r)]

Navigating Nets

» Leveled directed acyclic graph
— Multiple paths may exist from top to a lower-level

point
« Each consequent level “covers” the dataset on
a finer scale

* Adjacent levels are connected by pointers
allowing for navigation between scales

Navigating Nets

AsubsetY — X isan g-net of X If it satisfies

(1) vx,yeY,d(x,y)=>¢

(2) X Uer B(y,)

LetI' ={2':ieZ},Y. bear-netofY,,.
Foreveryscaler eI"and every y €Y, the data structure

stores a list of nearby points to y among ther/2-netY.,,.
» scale r navigation list of y is defined by

I—y,r :{Z EYr/2 :d(Z, y) < V' r}

Navigating Nets: Query

APPROX-NNS (Inputge X and & >0)
Lsetr=r andZ ={yg}

2.while2r(1+1/¢) > d(q,Z,) and Z, is proper

3. setZ,,={yeU,, L, :d(q,y)<d(q.Z)+r}
4. setr:r/2

5.return z € Z, for which d(q, z) iIs minimal

Cover Trees

« aleveled tree where each level is a “cover” for the level
beneath it
— Nesting: C cC
— Covering tree: For every node P ECi—l, there exists a

node qeC satisfying d(p,q)<2'and exactly one such
q is a parent of p

— Separation: For all nodes P, eC, d(p,q)> 2

Cover Trees: Incremental Construct

Insert (point p, covertset Q., leveli)
(1) set Q ={Children(q):q e Q.}
(2)if d(p,Q) > 2'then return "no parent found"
(3) else
(@)setQ_, ={qeQ:d(p,q)<2'}
(b)if Insert (p,Q,_,,i—1) ="no parent found"and d(p,Q,) < 2
(i) pick q € Q satisfyingd(p,q) < 2'
(i1) insert p into Children(q)
(111) return "' parent found"
(c) else return "no parent found"

Cover Trees: Query

Find - Nearest(cover tree T, query point p)
(1)setQ_=C_
(2) for 1 from oo down to — oo
(a) consider the set of children of Q.
Q ={Children(q):q Q. }
(b) form next cover set :
Q.. ={qeQ:d(p,a)<d(p,Q)+2}
(3) returnmin,_, d(p,q)

Cover Trees: Batch Construct

Construct(point p, point sets < NEAR, FAR >, leveli)
(1)if NEAR=®
(2) then return< p, ® >
(3) else
(a) < SELF, NEAR > = Construct(p, SPLIT(d(p,),2" ", NEAR),i—1)
(b) add SELF to Children(p;)
(c) while NEAR = @
(i) pick gin NEAR
(i) < CHILD, UNUSED >= Construct(q, SPLIT(d(q,-),2' ", NEAR, FAR), i —1)
(iii) add CHILD to Children(p,)
(iv) let < NEW - NEAR,NEW - FAR >=SPLIT(d(q,"),2' , UNUSED)
(v) add NEW - FAR to FAR and NEW - NEAR to NEAR
(d) return< p, , FAR >

Cover Trees: Batch Query

Find - All- Nearest (query cover tree p;, cover set Q;)
(1)if 1 =—cothenforeachae L(p;)
returnarg min,_, d(a,b) as the nearest neighbor of a
(2) else
(a)if j<ithen
(1) Set Q ={Children(q) :q Q. }
(i) SetQ., ={a€Q:d(p;,q) <min,, d(p;,q)+2' +2"*}
(111) Find - All- Nearest (p;,Q,_;)
(b) else for each q;_, € Children(p;)
Find - All- Nearest (q,;,Q;)

Cover Trees: Space Complexity

i=7 o
OR®
(1) @
=4 01000010
OQOWE
(OD@WEL -
=1 WEOWEE))
DD EEEIE O

0/0/0J00.0.0.0l0
Ay 0)610/000.0.0.0/0
0100/0/0/0000.0/0

www.lems.brown.edu/vision/ independentStudy/Voctoria_covertree.ppt

Cover Trees vs. Navigating Nets

Cover Trees Navigating Nets
Construction Space O(n) cOWn
Construction Time O(c’ninn) cfOninn
Insertion/Removal O(c®Inn) C0(1) Inn
Query O(c”Inn) c®Ylnn
Batch Query O(c*°n) c®®Pninn

Dataset d N Cover tree (s) Brute force (s) Speedup factor

Iris 4 150 0.0012 0.0014 1.2
Bupa 345 0.005 0.007 1.5
Wine 14 178 0.001 0.003 1.8
Glass 10 214 0.002 0.004 2.0
Pima 9 768 0.010 0.047 4.9
lonosphere 35 351 0.006 0.017 3.0
Pendigits_A 15 3498 0.091 1.367 15.1
Optdigits A 65 1797 0.277 0.811 3.0
Pendigits_B 15 7494 0.340 6.606 19.4
Optdigits_B 65 3823 1.493 3.872 2.6
Letter 17 20000 6.057 37.633 6.2
Corel 32 37749 38.569 203.2 5.3
Image 4096 698 0.871 1.208 1.4
Phy _train 78 50000 13.867 724.5 52.2
Phy_test 78 100000 38.924 2885.5 74.1
Bio_train 74 145751 814.4 6134.9 7.5
Bio_test 74 139658 741.6 5672.9 7.7

covtype 55 581012 77.9 72301.3 928.3
Mnist 784 60000 1944.0 4581.6 2.4

search speed (s)

Cover Trees: Performance

Mixed Image
BruteForceOngnal 01 -
50.0 | Emtanrcﬁk&Eh % _
Itering
200 ¢ Indexing < E@Eﬁa
b
50 t g
20"]
{} A
054 o
0.2 | | |
50k 100k 200k 400k 600K
dataset size

search speed (s)

0.064

0.032
0.016
0.008
0.004

0.002

0.001

Mixed 3D Shape

HruteForceOriginal g

BruteForceSketch —x—
Filtering i
Indexing {?n-n-ﬂ':'

= e
1 Yy
1 e
;.. i Lt
4 ol

a !

ot M i
.8 OO
{:} e -

ok m ak
dataset size

16K

40k

search spead (s)

Cover Trees: Performance (cnt'd)

Mixed Audio Mixed Audio
5000 — . 80k ;
BruteForceOriginal & i %
BruteForceSketch —»— - e &
Filtering Z &
500 ¢ : i
Indexing ‘3'5 W g 60k o
50.0 | B 5 ok | ﬁ}/"-??
..... E Q'&
5.0 2 20k | =
o090 O° S o
0.5 - - ' 0 Looe®®” - -
5k 10k 20k 40k 60K 0 4k 8k 12k 16k 20k
dataset size dataset size

* Results from Zhe Wang

expansion constant c

Expansion Constant

6000

5000 |

4000

3000 f

2000

1000

0 i

1000 2000 3000 4000 5000
#points with expansion at most ¢

Doubling Dimension*®

Audio

Log,(r) 20 P
1 86 6.43
2 1992 10.96
3 1.38 0.47

Image

Log,(r) 20 P
1 4 2
2 50.41 5.66
3 139.3 7.12
4 25.10 4.65
5 1.17 0.23
6 1.0004 0.0006

* Results from Emily Huang

Shape
Log,(r) 2 P
1 9 3.17
2 224.08 7.81
3 187.90 7.55
4 5.40 2.43
5 1.72 0.78
6 1.32 0.40
7 1.11 0.15
8 1.09 0.13
9 1.04 0.05
10 1.02 0.03
11 1.01 0.01
12 1.003 0.004
13 1.0004 0.0006
14 1.002 0.003
15 1.0009 0.0013

Conclusion

 Indexing high-dimensional data for
similarity search is hard

» Better feature vectors and distance
functions

* A hybrid approach?
— Cover trees
— Locality sensitive hashing

— Linear scan

