
Indexing for Similarity Search

Qin Lv

COS598E Spring 2005

Outline

• Problem
• High-dimensional indexing: previous study

– Quadtree, kd-tree, R-tree, …
• Locality sensitive hashing (LSH)
• Navigating nets
• Cover trees
• Conclusion

Problem
• Feature vectors: points in high-

dimensional space
• Range query
• Nearest neighbor query

– K-nearest neighbor query
– Approximate nearest neighbor query

• Linear scan
• Indexing: preprocess/organize data points

in order to answer queries efficiently

Reference: Indexing Survey

• Searching in high-dimensional spaces -
Index structures for improving the
performance of multimedia databases
– Christian Böhm, Stefan Berchtold, Daniel A. Keim
– ACM Computing Surveys (CSUR)
– Volume 33 , Issue 3, Pages: 322 - 373
– September 2001

Quadtree

• At each level, splits a space into 2d equal
subspaces
– 4 subspaces in 2-dimensional space, hence the name

• Very simple data structure
• But

– Empty spaces
– Space exponential in d
– Time exponential in d

k-d Tree

• Splits in one dimension each time
• Adaptive: instead of splitting in the middle,

choose the split carefully
• No (or less) empty spaces
• Space linear to d
• Exponential query time

still possible

R-tree
• [Gut 84] Splits space using minimum bounding

rectangles (MBRs)
• Insertion: starting from root, each time picks a

child region, splits a region when needed
• Rules:

– p is contained in exactly
one region

– p is contained in multiple
regions

– No region contains p

R-tree (cnt’d)

• Basic problem:
– Overlap at high index levels and propagates

down by misled insert operations

R*-tree
• [BKSS 90] an extension of R-tree
• Minimize overlap between regions

– Picks the data region that yields the smallest enlargement of
overlap

– Picks the split plane that minimizes the overlap between regions
• Minimize the surface of regions

– When splitting, picks the dimension that yields the smallest
surface areas of all MBRs

• Minimize the volume covered by internal nodes
– Picks the internal region that yields the smallest volume

enlargement
• Maximize the storage utilization

– forced re-insert : certain percentage of points with the largest
distances from the region center are deleted and re-inserted

R*-tree (cnt’d)

• 10% - 75% improvements over R-tree
• In higher-dimensional spaces

– Deteriorated directory (internal nodes)
– Needs to load the entire index in order to process

most queries
• Heuristics to optimize for regions with smaller

surface is beneficial

R+-tree

• [SSH 86; SRF 87]
• An overlap-free variant of R-tree
• Uses forced-split to avoid overlap
• High dimensionality leads to many forced

split operations
• Low storage utilization

X-tree

• [BKK 96] An extension of R*-tree
• Overlap-free split according to a split history
• Supernodes with enlarged page capacity

X-tree (cnt’d)

• Small dimensions
– similar performance to R-tree

• Medium dimensions
– high performance gain compared to R*-tree

for all query types
• High dimensions

– Also needs to visit large number of nodes
– Linear scan is less expensive

SS-tree

• [WJ 96] uses spheres as regions
– (centroid point, minimum radius)

• Insertion: at each level, chooses the child
sphere whose centroid is closest to p

• Forced re-insert: 30% points with largest
distances to centroid are deleted and re-
inserted

SS-tree (cnt’d)

• Although spheres are theoretically
superior to volume-equivalent MRBs
– Overlap-free split is difficult for spheres

• Performance
– Outperforms R*-tree by a factor of 2
– Not as good as LSDh-tree and X-tree

SR-tree

• [KS 97] A combination of R*-tree and SS-
tree
– Region: intersection between a rectangle and

a sphere
– 2d values for MBRs
– d+1 values for spheres

• Insert and split operations
similar to SS-tree

SR-tree (cnt’d)

• Reports better performance than SS-tree
and R*-tree

• Probably not as good as LSDh-tree and
X-tree

Space Filling Curves
• Mappings from d-dimensional space to one-

dimensional space
• Points that are close in original space are likely to be

close in the embedded space
• Embedded space can be indexed by B-tree

noAccording to space
filling curve

Unique due to complete,
disjoint partition

YesYesUnion of
rectangle
s

Space
filling
curves

yesVarianceProximity to centroidNoNoIntersect
sphere/
MBR

SR-tree

yesVarianceProximity to centroidNoNoSphereSS-tree

noCyclic change of dim.
of distinct values

Unique due to complete,
disjoint partition

No/yesYesK-d-tree
region

LSDh-
tree

noSplit history
Surface/overlap
Dead space coverage

Overlap enlargement
Volume enlargement
Volume

NoNoMBRX-tree

YesSurface area
Overlap
Dead space coverage

Overlap enlargement
Volume enlargement
Volume

NoNoMBRR*-tree

noVarious algorithmsVolume enlargement
Volume

NoNoMBRR-tree

Re-
insert

Criteria for SplitCriteria for InsertCompleteDisjointRegionName

Locality Sensitive Hashing (LSH)

• (r1,r2, p1, p2)-
sensitive hashing

• L hash tables
• Each hash table

examines k random
bits

22

11

)]()([Pr),(
)]()([Pr),(

pphqhthenrqBpif
pphqhthenrqBpif

H

H

≤=∉
≥=∈

ρ

ρ

)/(

)/(log
/1ln
/1ln

2/1

2

1

Bnl

Bnk
p
p

p

=

=

=

LSH Performance

LSH Performance (cnt’d)

Intrinsic Dimensionality

• Metric space (X, d)
• Closed ball
• Doubling dimension

– Minimum value ρ such that every set in X can be
covered by 2ρ sets of half the diameter

• Expansion constant
– Smallest value c ≥ 2 such that

|),(||)2,(| rpBcrpB SS ≤

}),(:{),(ryxdSyrxBS ≤∈=

Navigating Nets

• Leveled directed acyclic graph
– Multiple paths may exist from top to a lower-level

point
• Each consequent level “covers” the dataset on

a finer scale
• Adjacent levels are connected by pointers

allowing for navigation between scales

Navigating Nets

• scale r navigation list of y is defined by
}),(:{ 2/, ryzdYzL rry ⋅≤∈= γ

),((2)
),(,, (1)

satisfiesit if of -an is subset A

ε
ε

ε

yBX
yxdYyx

XnetXY

Yy∈⊆
≥∈∀

⊆

U

. -2 theamong topointsnearby oflist a stores
 structure data the,every and scaleevery For

 . of - a be ,}:2{Let

2/

2/

r

rr
i

Ynetry
Yyr
YnetrYi

∈Γ∈
Ζ∈=Γ

Navigating Nets: Query

 minimal is),(for which return 5.
2/set 4.

}),(),(:{set 3.
proper is and),()11(2 while2.

}{ and set 1.
) 0 and (Input NNS-APPROX

,2/

max

zqdZz
rr

rZqdyqdLyZ
ZZqdr

yZrr
Xq

r

rrzZzr

rr

topr

r

∈
=

+≤∈=
>+

==
>∈

∈U

ε

ε

Cover Trees
• a leveled tree where each level is a “cover” for the level

beneath it
– Nesting:
– Covering tree: For every node , there exists a

node satisfying and exactly one such
q is a parent of p

– Separation: For all nodes ,

1−iC

iC

1−⊂ ii CC
1−∈ iCp

iCq∈ iqpd 2),(≤

iCqp ∈, iqpd 2),(>

Cover Trees: Incremental Construct

found"parent no"return else (c)
found"parent "return (iii)

)(Children into insert (ii)
2),(satisfying pick (i)

2),(and found"parent no")1,,(Insert if (b)

}2),(:{set (a)
else (3)

found"parent no"return then 2),(if)2(

}:)(Children{set (1)
) level ,set covert ,(point Insert

1

1

qp
qpdQq

QpdiQp

qpdQqQ

Qpd

QqqQ
iQp

i
i

i
ii

i
i

i
i

i

≤∈

≤=−

≤∈=

>

∈=

−

−

Cover Trees: Query

),(minreturn (3)
}2),(),(:{

:setcover next form (b)
}:)Children({

 ofchildren ofset heconsider t (a)
 down to from for (2)

set (1)
)point query ,ver treeNearest(co-Find

1

qpd
QpdqpdQqQ

QqqQ
Q

i
CQ

pT

Qq

i
i

i

i

∞−∈

−

∞∞

+≤∈=

∈=

∞−∞
=

Cover Trees: Batch Construct

><

⋅=><

−⋅>=<

Φ≠

−⋅=><

>Φ<
Φ=

><

−

−

FAR , return (d)
NEAR toNEAR-NEW and FAR toFAR-NEW add (v)

 UNUSED), 2),,(SPLIT(FAR-NEWNEAR,-NEWlet (iv)

)Children(toCHILD add (iii)
)1 FAR), NEAR,,2),,(SPLIT(, Construct(UNUSEDCHILD, (ii)

NEARin pick (i)
 NEAR while(c)

) Children(toSELF add (b)
)1 NEAR), ,2),,(SPLIT(,Construct(NEAR SELF, (a)

else (3)
,return then (2)

 NEAR if (1)
) level ,FAR NEAR, setspoint ,point Construct(

1

1

i

i
i

i

i

i

p

qd

p
iqdq

q

p
ipdp

p

ip

Cover Trees: Batch Query

),(Nearest -All-Find

)(Children each for else (b)

),(Nearest -All-Find (iii)

}22),(min),(:{Set (ii)

}:)(Children{Set (i)
 then if (a)

else (2)

 ofneighbor nearest theas),(min argreturn

)(each for then if (1)

)set cover , cover tree(query Nearest -All-Find

1

1

1

2
1

ij

jj

ij

ji
jQqji

i

Qb

j

ij

Qq

pq

Qp

qpdqpdQqQ

QqqQ
ij

abad

pLai

Qp

−

−

−

+
∈−

∈

∈

++≤∈=

∈=
<

∈−∞=

∞−

Cover Trees: Space Complexity

www.lems.brown.edu/vision/ independentStudy/Voctoria_covertree.ppt

Cover Trees vs. Navigating Nets

Batch Query

Query

Insertion/Removal

Construction Time

Construction Space

Navigating NetsCover Trees

nncO ln)1(

ncO ln)1(

nncO ln)1(

ncO ln)1(

ncO)1(

)(16ncO
)ln(12 ncO

)ln(6 nncO

)(nO

)ln(6 ncO

7.56134.9814.414575174Bio_train

74.12885.538.92410000078Phy_test

52.2724.513.8675000078Phy_train

1.41.2080.8716984096Image

928.372301.377.958101255covtype

7.75672.9741.613965874Bio_test

2.44581.61944.060000784Mnist

6.237.6336.0572000017Letter

5.3203.238.5693774932Corel

2.63.8721.493382365Optdigits_B

19.46.6060.340749415Pendigits_B

3.00.8110.277179765Optdigits_A

15.11.3670.091349815Pendigits_A

3.00.0170.00635135Ionosphere

4.90.0470.0107689Pima

2.00.0040.00221410Glass

1.80.0030.00117814Wine

1.50.0070.0053457Bupa

1.20.00140.00121504Iris

Speedup factorBrute force (s)Cover tree (s)NdDataset

Cover Trees: Performance

Cover Trees: Performance (cnt’d)

* Results from Zhe Wang

Expansion Constant

Doubling Dimension*

0.471.383

10.9619922

6.43861

ρ2ρLog2(r)

0.00061.00046

0.231.175

4.6525.104

7.12139.33

5.6650.412

241

ρ2ρLog2(r)

0.00131.000915

0.0031.00214

0.00061.000413

0.0041.00312

0.011.0111

0.031.0210

0.051.049

0.131.098

0.151.117

0.401.326

0.781.725

2.435.404

7.55187.903

7.81224.082

3.1791

ρ2ρLog2(r)
Audio

Image

Shape

* Results from Emily Huang

Conclusion

• Indexing high-dimensional data for
similarity search is hard

• Better feature vectors and distance
functions

• A hybrid approach?
– Cover trees
– Locality sensitive hashing
– Linear scan

