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Problem
• Feature vectors: points in high-

dimensional space
• Range query
• Nearest neighbor query

– K-nearest neighbor query
– Approximate nearest neighbor query

• Linear scan
• Indexing: preprocess/organize data points 

in order to answer queries efficiently



Reference: Indexing Survey

• Searching in high-dimensional spaces -
Index structures for improving the 
performance of multimedia databases
– Christian Böhm, Stefan Berchtold, Daniel A. Keim
– ACM Computing Surveys (CSUR) 
– Volume 33 , Issue 3, Pages: 322 - 373
– September 2001



Quadtree

• At each level, splits a space into 2d equal 
subspaces
– 4 subspaces in 2-dimensional space, hence the name

• Very simple data structure
• But 

– Empty spaces
– Space exponential in d
– Time exponential in d



k-d Tree

• Splits in one dimension each time 
• Adaptive: instead of splitting in the middle, 

choose the split carefully 
• No (or less) empty spaces
• Space linear to d
• Exponential query time 

still possible



R-tree
• [Gut 84] Splits space using minimum bounding 

rectangles (MBRs)
• Insertion: starting from root, each time picks a 

child region, splits a region when needed  
• Rules:

– p is contained in exactly 
one region

– p is contained in multiple 
regions

– No region contains p



R-tree (cnt’d)

• Basic problem: 
– Overlap at high index levels and propagates 

down by misled insert operations 



R*-tree
• [BKSS 90] an extension of R-tree
• Minimize overlap between regions

– Picks the data region that yields the smallest enlargement of 
overlap

– Picks the split plane that minimizes the overlap between regions
• Minimize the surface of regions

– When splitting, picks the dimension that yields the smallest 
surface areas of all MBRs

• Minimize the volume covered by internal nodes
– Picks the internal region that yields the smallest volume 

enlargement
• Maximize the storage utilization

– forced re-insert : certain percentage of points with the largest 
distances from the region center are deleted and re-inserted 



R*-tree (cnt’d)

• 10% - 75% improvements over R-tree
• In higher-dimensional spaces

– Deteriorated directory (internal nodes)
– Needs to load the entire index in order to process 

most queries
• Heuristics to optimize for regions with smaller 

surface is beneficial



R+-tree

• [SSH 86; SRF 87]
• An overlap-free variant of R-tree
• Uses forced-split to avoid overlap
• High dimensionality leads to many forced 

split operations
• Low storage utilization 



X-tree

• [BKK 96] An extension of R*-tree
• Overlap-free split according to a split history
• Supernodes with enlarged page capacity



X-tree (cnt’d)

• Small dimensions
– similar performance to R-tree

• Medium dimensions 
– high performance gain compared to R*-tree 

for all query types
• High dimensions

– Also needs to visit large number of nodes
– Linear scan is less expensive 



SS-tree

• [WJ 96] uses spheres as regions 
– (centroid point, minimum radius)

• Insertion: at each level, chooses the child 
sphere whose centroid is closest to p

• Forced re-insert: 30% points with largest 
distances to centroid are deleted and re-
inserted



SS-tree (cnt’d)

• Although spheres are theoretically 
superior to volume-equivalent MRBs
– Overlap-free split is difficult for spheres

• Performance
– Outperforms R*-tree by a factor of 2
– Not as good as LSDh-tree and X-tree



SR-tree

• [KS 97] A combination of R*-tree and SS-
tree
– Region: intersection between a rectangle and 

a sphere
– 2d values for MBRs
– d+1 values for spheres

• Insert and split operations
similar to SS-tree



SR-tree (cnt’d)

• Reports better performance than SS-tree 
and R*-tree

• Probably not as good as LSDh-tree and 
X-tree



Space Filling Curves
• Mappings from d-dimensional space to one-

dimensional space
• Points that are close in original space are likely to be 

close in the embedded space
• Embedded space can be indexed by B-tree
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Locality Sensitive Hashing (LSH)

• (r1,r2, p1, p2)-
sensitive hashing 

• L hash tables
• Each hash table 

examines k random 
bits
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LSH Performance



LSH Performance (cnt’d)



Intrinsic Dimensionality

• Metric space (X, d)
• Closed ball
• Doubling dimension

– Minimum value ρ such that every set in X can be 
covered by 2ρ sets of half the diameter

• Expansion constant
– Smallest value c ≥ 2 such that 
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Navigating Nets

• Leveled directed acyclic graph 
– Multiple paths may exist from top to a lower-level 

point
• Each consequent level “covers” the dataset on 

a finer scale
• Adjacent levels are connected by pointers 

allowing for navigation between scales



Navigating Nets

• scale r navigation list of y is defined by
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Navigating Nets: Query
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Cover Trees
• a leveled tree where each level is a “cover” for the level 

beneath it
– Nesting: 
– Covering tree: For every node            , there exists a 

node satisfying                    and exactly one such 
q is a parent of p

– Separation: For all nodes              , 
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Cover Trees: Incremental Construct
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Cover Trees: Query
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Cover Trees: Batch Construct
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Cover Trees: Batch Query
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Cover Trees: Space Complexity

www.lems.brown.edu/vision/ independentStudy/Voctoria_covertree.ppt



Cover Trees vs. Navigating Nets
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Cover Trees: Performance



Cover Trees: Performance (cnt’d)

* Results from Zhe Wang



Expansion Constant



Doubling Dimension*
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Conclusion

• Indexing high-dimensional data for 
similarity search is hard

• Better feature vectors and distance 
functions

• A hybrid approach?
– Cover trees
– Locality sensitive hashing
– Linear scan


