A Protocol-Independent Technique for Eliminating
Redundant Network Traffic

Neil T. Spring and David Wetherall*
Computer Science and Engineering, 352350
University of Washington
Seattle, WA 98195-2350

ABSTRACT

We present a technique for identifying repetitive informa-
tion transfers and use it to analyze the redundancy of net-
work traffic. Our insight is that dynamic content, streaming
media and other traffic that is not caught by today’s Web
caches is nonetheless likely to derive from similar informa-
tion. We have therefore adapted similarity detection tech-
niques to the problem of designing a system to eliminate
redundant transfers. We identify repeated byte ranges be-
tween packets to avoid retransmitting the redundant data.

We find a high level of redundancy and are able to detect
repetition that Web proxy caches are not. In our traces, af-
ter Web proxy caching has been applied, an additional 39%
of the original volume of Web traffic is found to be redun-
dant. Moreover, because our technique makes no assump-
tions about HTTP protocol syntax or caching semantics, it
provides immediate benefits for other types of content, such
as streaming media, FTP traffic, news and mail.

1. INTRODUCTION

Much work has focused on the problem of improving Web
performance by reducing download times and bandwidth re-
quirements. However, despite the adoption of browser and
proxy caching and use of end-to-end compression standards
such as JPEG, Web performance still lags user demands.
Moreover, proxy caching appears limited in its ability to
further improve Web performance. A recent study [19] pre-
dicts that proxy caches with Squid [1] cacheability rules can
eliminate at most 45% of the traffic — a valuable start, but
not a complete solution.

In this paper, we analyze the redundancy present in network
traffic with a view to eliminating it as a means of improving
Web performance. To the naive user, the behavior of the
Web can be quite strange: it can take a long time to down-
load what appears to be the same page, or one with similar

*email: {nspring,djw}Q@cs.washington.edu

content. Such redundant, uncached content has a number
of possible origins. It may be:

e dynamically generated or personalized;

e mirrored on a different server ;

e named by a different URL;

e delivered using a new or unsupported protocol;
e updated static content;

e access counted for advertising revenue.

Regardless of origin, these transfers represent a source of in-
efficiency that we aim to remove. One possible approach is
to improve caching protocols to deal well with these sit-
uations. However, caching entire documents by name is
fundamentally too coarse grained to suppress the redun-
dant content we just described. Documents may need to be
transferred in their entirety because they fit into any of the
above categories, even if they are quite similar to data that
has already been transferred. In addition, application-level
caching must adapt as new protocols carrying new types of
information such as streaming media emerge and become
popular. Explicit cache support for each protocol must be
added and deployed, and in the interim, mismatches be-
tween usage and cache support will result in unnecessary
transfers.

Instead, we explore in this paper a new, protocol-independent
technique for identifying redundant information that does
not suffer from these disadvantages. The technique is an
adaptation of algorithms first proposed by Manber [11] to
identify similar files in a file system. Because it identifies
similarity between different documents, it generalizes other
content-based schemes of which we are aware, such as delta-
coding [13] and duplication suppression [12]. It is also ef-
ficient: our workstation-based prototype runs at data rates
of approximately T3 (45 Mbps).

‘We have used our redundancy suppression technique to an-
alyze network traffic and find that there is a high level of
repetition in the information being transferred to and from
our trace site. The potential for byte savings by exploiting
this redundancy is the focus of this paper. By comparing
packet contents, we find 30% of all incoming traffic and 60%
of all outgoing traffic is redundant by our measure. Of the

incoming Web traffic, 14% is cacheable by a proxy cache
that uses Squid rules, and a further 41% is then identified
as redundant. We find nearly 25% redundancy in web traf-
fic proxy caching does not, including 40% redundancy in
documents Web proxy caches are prohibited from caching.
This suggests that redundancy suppression and Web proxy
caching would work well in combination.

The rest of the paper is organized as follows. We describe
our technique for finding redundancy in Section 2. In Sec-
tion 3, we present the architecture of a caching scheme that
would exploit this redundancy to reduce bandwidth use over
a bandwidth constrained link. We describe our implemen-
tation, including the choice of algorithm parameters, in Sec-
tion 4. We present an analysis of the redundancy in network
traces, paying particular attention to Web traffic, in Sec-
tion 5. We discuss related work in Section 6 and conclude
in Section 7.

2. FINDING REPETITION WITH
FINGERPRINTS

Our goal is to process a stream of packets and, for each in-
put packet, quickly identify regions that are repeated from
earlier packets. To do this, we adapt a technique developed
by Manber for finding similar files in a large file system [11]
and applied by Broder to detect similar Web documents [3].
A set of representative fingerprints are computed for each
object. Fingerprints are integers generated by a one-way
function applied to a set of bytes. Since good fingerprint al-
gorithms generate well-distributed fingerprints, each finger-
print is not only compact but also unique with high proba-
bility. Manber and Broder then compare the representative
fingerprints of different files to estimate their similarity.

In contrast, we use fingerprints as pointers into the data
stream to find regions of repeated content. We store repre-
sentative fingerprints in an index that maps a fingerprint to
the region it describes in a cached packet payload. These
fingerprints are “anchors” that are used as hints for finding
larger regions of repeated content, both before and after the
fingerprinted region.

2.1 Computing Representative Fingerprints
The representative fingerprints for a packet are generated
by computing a Rabin fingerprint [14] for every § length
substring of the packet, and selecting a deterministic subset
of these fingerprints.

A Rabin fingerprint for a sequence of bytes t1,t2,ts,...13,
of length g is given by the following expression, where p and
M are constant integers:

RF(t1,ta,t3...13) =
(tp? +tap® 7+ tg_1p+1tg) mod M

The form of this expression makes fingerprinting each g
length substring {{t1, t2,...ts}, {t2, ts,...tg+1}, etc.} com-
putationally efficient. If we compute the fingerprints of a
window of size [over the packet from beginning to end,
then at each step, the next fingerprint can be defined in

terms of the previous one:

RF(tH_l ce t3+i) =
(RF(ti .. -tﬂ+i—1) —t; X pB) Xp+itgyi mod M

For fast execution, t; x p? is precomputed and stored in a
table. Since 8 and p are constant, this table has 256 en-
tries. Rather than generate a new fingerprint from scratch,
advancing the fingerprint in this manner requires a subtrac-
tion, a multiplication, an addition, and a mask (by M — 1
to perform the mod M operation, where M is a power of
two).

It is worth noting that MD5 [15], SHA [2], and other se-
cure fingerprint algorithms do not allow this decomposition
for incremental computation. They are not efficient for our
purpose.

2.2 Fingerprint Selection

It is impractical to index every fingerprint that is computed:
it would require nearly one index entry per byte! Yet we can-
not simply select every mth fingerprint and locate shifted
content. That is, if two packets are identical except that
one has an extra byte inserted at the beginning, no redun-
dancy would be found with the “select every nth fingerprint”
strategy.

Manber’s insight was to select a fraction of the fingerprints
depending on their values, not locations. Selecting a fraction
of fingerprint values gives a deterministic sample of content
that is not sensitive to location. This means that the same
content that is packetized in different ways and interspersed
with other data can be recognized as repetitive. Because the
fingerprints are random and uniformly distributed, any frac-
tion provides probabilistically good coverage. Selecting a
fraction is easily accomplished in practice by selecting those
binary fingerprints that end in a specified number of zeros;
we use 7y to denote the number of zeros in our experiments.

2.3 Algorithm

Our algorithm for finding repeated content is run for every
packet of a (possibly infinite) input stream. A cache is used
to hold the most recent packets, and it is this cache against
which the input packet is checked for redundancy. The cache
is indexed by the representative fingerprints of the packets
that it holds.

For every packet, the algorithm first generates the repre-
sentative set of fingerprints. Each fingerprint in this set is
checked against the index of the cache. If it is found, then a
packet in the cache has the same content as the input packet
in the regions that correspond to the fingerprint. This re-
gion is compared in the input and cached packets to verify
that there has not been a collision in the fingerprint name
space. We use fingerprints that are sufficiently large that we
observed no collisions in practice. Then the matching region
is expanded, both to the left and to the right, byte-by-byte
in each packet, to find the largest matching region. The to-
tal repeated content that is found is then simply the union
of all largest matching regions. Finally, the packet cache
and fingerprint index are updated by inserting the newly
processed packet, evicting the oldest packets in FIFO order

- O[J0 o1 ‘%
U Ev=—ull=¢

& Tokens
Users

Figure 1: Shared cache architecture. Tokens are
passed in place of replicated bytes between the two
caches ($) on opposite sides of a bandwidth con-
strained link. User machines continue to communi-
cate using unencoded packets.

to make room if necessary. If an index fingerprint refers to
a packet that is no longer in the cache, it is released.

There are two further details. First, we always select the fin-
gerprint at the beginning of every packet (or over the whole
packet if it is shorter than our fingerprint window) to ensure
that every packet is represented in the cache at least once.
Second, fingerprint generation and content matching are ac-
tually interleaved, rather than sequential as our exposition
implies. This does not change the algorithm conceptually,
but results in a more efficient implementation.

3. SHARED CACHE ARCHITECTURE

We envision that our redundancy suppression technique can
be used to improve Web and other protocol performance
with the architecture shown in Figure 1. Caches running our
algorithm are placed at both ends of a bandwidth-constrained
channel. This channel could be an access link or wireless
link, or an end-to-end network path between server and
proxy or server and client. Each cache converts repeated
strings into tokens and passes these encoded, smaller pack-
ets to the other end of the channel, where the original packet
is reconstructed. This trades memory and computation for
bandwidth savings. We emphasize that we have not imple-
mented this overall architecture. The focus of this paper is
the redundancy that is present in network traffic and poten-
tial bandwidth savings, which we characterize by analysis;
we describe an architecture to provide the appropriate con-
text for discussion.

One key problem that we have not explored but which must
be addressed in a complete implementation is the synchro-
nization mechanisms that keep the contents of both caches
consistent. If the caches lose consistency because of packet
losses, then the tokens cannot be decoded at the far end of
the channel. Fingerprints are likely to be of value here. This
is because, assuming there are no collisions, the loss of con-
sistency can be detected when an unrecognized fingerprint
token is received. This can then be repaired by requesting
the missing packet from upstream.

There are two other aspects of our architecture worth not-
ing. First, it can improve the performance of non-Web pro-
tocols. This is because the matching technique is completely
protocol independent. Second, it complements rather than
replaces traditional Web caching. This is because by making
use of application level semantics Web caches can sometimes
eliminate the need to contact the remote server, thereby di-
rectly cutting latency as well as saving bandwidth. With-
out an analogous understanding, our system cannot dispense

with a Web transfer entirely. Rather, it is comparable to a
sophisticated GET-IF-MODIFIED mechanism across the chan-
nel that returns only the parts of a packet or document that
have not already been sent across the channel.

4. IMPLEMENTATION

We describe the implementation of our redundancy analysis
engine in terms of its design, selection of operational param-
eters, and performance.

4.1 Design

‘We implemented our analysis engine as a user-level process
running on a PC that processes a trace file and outputs
statistics on its redundancy. The design is a straightforward
realization of the algorithm described in Section 2 with the
following features:

e We chose M, the base of the modular arithmetic per-
formed in the fingerprinting algorithm, to be 2%°. This
is sufficiently large to ensure that there are no finger-
print collisions for the range of memory sizes that we
used, but also implies lower performance for finger-
print calculations on 32-bit machines. We chose p, the
factor used in computing the Rabin fingerprint, to be
1,048,583, a large prime.

o We use a simple first-in first-out policy across all pack-
ets to manage the packet store. Clever implemen-
tations could improve on the redundancy we detect
with an admission policy that treats different types
of data differently, an eviction policy that holds refer-
enced packets in the cache longer, or by screening to
avoid multiple copies of the same content.

e Our index maps each fingerprint to the most recent
packet in the cache, for simplicity and performance.

e We strip packet headers including UDP/TCP before
searching for redundancy. This is not required for our
analysis, but improves efficiency, because headers are
typically not repetitive. Effective schemes exist for
compressing TCP headers [10].

e As part of computing the number of redundant bytes,
we charge each match region a small penalty that is
intended to represent the space needed to encode it
for transmission. We felt this penalty important be-
cause, if it were not present, we could ultimately detect
100% redundancy by observing that every short com-
bination of bytes is repeated! The penalty we use is
12 bytes, which is ample to encode a fingerprint plus
a description of the matched range. This description
consists of the offset of the fingerprint in the packet,
with a count of redundant bytes before and after, en-
coded as three, 11-bit integers, sufficient for Internet
datagrams. In practice, this penalty has a small effect
(a few percent overhead) because the average match
region is hundreds of bytes long.

4.2 Algorithm Parameters v and g

The first task we faced when the implementation was com-
plete was to determine the remaining algorithm parameters.
Recall that v determines the fraction (an average of 1 out

Byte Savings (%)

0 100 200

300 400 500
B

Figure 2: Effect of v and 8 on the redundancy that
is found. We used 7y = 5 bits and 8 = 64 bytes for

subsequent experiments.

of every 27) of fingerprints that are selected, and 3 deter-
mines the minimum width of match regions. We were most
concerned about the choice of 8. If 8 is too large, only large
regions are matched, which increases the average “quality”
of matches but decreases the potential byte savings that is
detected. If 3 is too small, the average “quality” of matches
is sacrificed, since shorter matches may be more recent than
better, longer matches. There is also a tradeoff with «
in terms of how well (frequently) each packet is sampled,
which can increase the likelihood of finding a match for a
given packet but cut into the memory available for storing
all packets.

In practice, these tradeoffs were not problematic. Figure 2
shows the amount of redundancy that is found in our trace
data for different values of 4 and 3. (The trace data is de-
scribed in Section 5.) Small 8 and «y are most effective, and
we limit the values we choose only due to the performance
considerations discussed in the next subsection. We chose
B = 64 bytes and v = 5 bits for subsequent experiments.
This setting results in memory consumption split roughly
40% index / 60% packet cache, and finds close to the maxi-
mum redundancy. The proportion of index may seem large;
indexing must be comprehensive in order to be useful.

4.3 Performance

To gauge the approximate performance we could expect in
practice, we measured the throughput of our implementa-
tion over a range of parameter settings. This was done on a
dual processor Pentium III-550 with 1GB of memory, run-
ning Linux 2.2.9. The second processor should have negligi-
ble effect, since only one processor is used by the analysis.
Throughput was measured as the number of packet payload
bytes of trace data processed per second of CPU accounted
time, as reported by the Unix time utility.

Figure 3 shows throughput as a function of 8 and v with a
cache of 128 MB. The computational load increases as 8 and
v decrease: more fingerprints are computed and indexed as
representative. It is also clear that -y should be as large as
possible if performance is an issue; as «y falls, the size of the
index grows exponentially, and this degrades performance

—e— y=3
—&— y=5
—m—y=7
—+—y=9

y=11

Throughput (M bytes/cpu second)

e T e
0 100 200 300 400 500
B

Figure 3: Throughput as a function of 3 at different
values of 7. Cache size was fixed at 128 megabytes.

Throughput (Mbytes/cpu second)

001 01
Memory Size (M egabytes)

10 100 1000

Figure 4: Throughput as a function of cache size.

by both interrupting the fingerprinting process often and by
reducing the memory locality of operations.

Figure 4 shows throughput as a function of memory size. For
B = 64 bytes and v = 5 bits, the parameters we selected for
experiments, throughput is between 10Mbps and 45Mbps
(T3) rates. Throughput falls with memory size, especially
for sizes above 10 MB, presumably due to memory cache
behavior. We expect little locality of access index because
of the randomizing effect of the fingerprints.

These results suggest that reasonable performance can be
obtained with modest effort. In a system with sufficient
network interface to memory performance, speeds of at least
T3 should be readily achievable, and likely much better with
tuned or in-kernel implementations.

5. TRAFFIC ANALYSIS

In this section, we present the results of a trace-based anal-
ysis of the redundancy of network traffic. We also com-
pare the redundancy found by our protocol independent
technique with that of alternative approaches, such as Web
proxy caching and packet compression. Overall, we find that
there is a high level of redundancy, especially in Web traffic
(28%), and that this redundancy is not adequately exploited
by alternative approaches.

5.1 Trace Data

The trace data we analyze comes from a corporate research
environment consisting of roughly 3000 users and a handful
of web servers. These traces include all packets exchanged
between the site and the rest of the Internet across the net-
work connecting the border router and firewall gateways, a
region commonly called the DMZ. To the best of our knowl-
edge, Web proxy caches are not used within the site.

We use a mix of online and offline analysis. We analyze data
online when possible in order to process a large volume of
traffic. However, online analysis is limited by the available
computation and memory of the monitoring system. We
user offline analysis over a shorter volume of traffic when
there are insufficient resources for online analysis.

We analyze six traces for offline analysis. The traces were
taken Tuesday, November 16th through Thursday, Novem-
ber 18th, 1999, at 10am and 2pm Eastern Standard Time,
each for about an hour. Our intent was to capture a repre-
sentative sample despite variation by time of day and day
of the week. The trace machine did not lose any packets
during the capture. In total, we analyze 30 million packets
and 10 GB of data. This is the limit of our current analysis
capability because we must save and process entire packets,
not just their headers.

5.2 Amount of Redundancy

The first question we considered was the amount of repeti-
tive data embedded in the traces. This is a function of the
size of our cache. Recall that the cache memory is divided
into packet storage and fingerprint index portions. We in-
clude both portions when describing the required memory
size. Also, recall that when we calculate the amount of re-
dundancy we deduct for every match region a small penalty
(12 bytes) needed to describe it in a real system; this pre-
vents us from ultimately claiming 100% redundancy because
every byte has been seen previously.

We find that more than a third of the traffic is redundant.
The results for incoming traffic and outgoing traffic differ,
and are shown in Figure 5. For each class of traffic, sig-
nificant redundancy (at least 10%) is found with relatively
little memory (less than 1 MB). Redundancy then increases
better than logarithmically with memory size up through
100 MB. Outgoing traffic is almost twice as redundant as
incoming traffic, levelling off around 50% with 200 MB of
memory. This corresponds to the “working set” of the site’s
Web servers. Incoming traffic is more diverse, rising to 30%
redundancy with 400 MB of memory. It also appears that
more redundancy would be observed in systems where more
memory was available, e.g., with a disk-based packet store.
Based on these results, we use a memory size of 50 MB for
on line and 100 MB for off line analyses in this paper.

5.3 Redundancy by Protocol

To narrow the source and type of redundancy, we classified
traffic into different protocols and calculated the amount
of redundancy for each protocol. This was done by using
well-known ports and matching against both the source and
destination port. The results are shown in Table 1. We
consider only incoming traffic, and use a 200 MB cache.

Byte Savings (%)

0.01 0.1 1 10 100
Memory Size (M egabytes)

20

Byte Savings (%)

10

0.01 0.1 1 10 100
Memory Size (M egabytes)

Figure 5: Redundancy found as a function of total
memory allocated. Incoming traffic (top) and Out-
going traffic (bottom) are separated.

The bulk of the traffic is Web-based, agreeing with com-
mon perception and [5, 6, 17]. We exclude cacheable web
responses, and find that this traffic is highly repetitive (30%
redundant). After Web traffic, a significant fraction of the
remaining traffic is streaming media, delivered using pro-
tocols developed by Real Networks and Microsoft. This
traffic is mildly redundant (7%-26%). Many of the less-
significant traffic contributors are also surprisingly redun-
dant. In particular, Telnet and Lotus Notes are 36% and
18% redundant, respectively. Finally, we note that a signifi-
cant amount of traffic (15%) and redundancy (10%), catego-
rized as “Other,” is carried on high-numbered ports that we
have not yet been able to associate with well-known services.

5.4 Peak Traffic Periods

How effective would a redundancy suppression engine be at
peak usage times? Is traffic likely to be more or less redun-
dant when there are many clients? How fast would a link,
operating at capacity, appear to be if enhanced by redun-
dancy suppression? To answer these related questions, we
output the number of redundant bytes and the total num-
ber of payload bytes every two minutes for two months, from
February 25 to April 25, 2000. The cache size was only 50
million bytes, since the machine had only 128 MB during
this analysis.

Figure 6 shows the fraction of traffic that is redundant as a
function of the traffic rate. We draw two conclusions from

Media Type Protocol (Ports) Traffic by Byte | Byte Savings
Web service HTTP (80, 8000, 8080) 64.3% 30%
Real streaming media RTSP (554, 7070) 7.3% 7%
Music transfer Napster (6688, 6699) 2.7% 6%
Lotus Notes Lotus (1352) 2.4% 18%
Secure Web HTTPS (443) 2.3% 4%
File transfer FTP-data (20) 1.9% 4%
Usenet news NNTP (119) 0.9% 7%
Name service DNS (53) 0.7% 15%
Microsoft media ASF (1755) 0.6% 26%
AOL AOL (5190) 0.6% 16%
Name service SMTP (25) 0.5% 20%
Mail receipt POP (109, 110) 0.3% 28%
Remote terminal Telnet (23) 0.1% 34%
Unknown Other 15.3% 10%

Table 1: Redundant incoming traffic by protocol, sorted in decreasing order of traffic contribution. The
volume of incoming traffic, excluding what would be cached by a proxy cache, was 97.5 GB. Web service

includes both incoming requests and uncached incoming responses.

3

40

Byte Savings (%)

0 T T T
0 2 4 6

Traffic Rate (M egabits/second)

Figure 6: How does the percentage of redundant
traffic vary with link utilization?

these results. First, the redundant fraction over two minute
periods can extend beyond 80%! Since this is at periods
of lesser activity, this has less practical use. At off-peak
times, fewer clients are likely to be active, so the cache is
split across fewer clients. We believe that this implies the
performance of the system should scale well for additional
clients with additional cache memory. Second, we notice
that the redundancy generally stays around 20%, even at
relatively high link utilization.

5.5 Combination with Web Caching

To compare our approach with Web caching, we studied
Web traffic that would not have been removed by a proxy
cache, even had one been deployed. There are a number of
reasons why documents may not be cached in addition to
cache misses, for example, to protect user privacy or ensure
that a page is fresh. These motivations are expressed in the
set of cacheability rules used by the Squid [1] proxy cache.
The following request characteristics make a document un-
cacheable:

Question: The object name includes “?”.

e CGI: The object name includes “cgi-bin” or “htbin”.

e Cache Control: The HTTP 1.1 request includes a
“Cache-control” header, such as “private”, “no-cache”,
and “no-store”.

e Method: The request is neither GET nor HEAD.

e Pragma Request: The request includes “Pragma:
no-cache” in its header.

e Authorization (Auth): The request header includes
an “Authorization” header for access control.

Older caching proxies would not cache responses to requests
that included cookies [4, 7]. Since Squid [1] version 2 will
cache such HTTP 1.1 responses, we do not consider requests
that include cookies to be uncacheable.

In addition, the response may have uncacheable properties:

e Cache Control: The HTTP 1.1 response header in-
cludes a “Cache-control” header that prohibits caching.

e Pragma Response: The response includes “Pragma:
no-cache” in its header.

e Set Cookie: The response attempts to set a cookie
for future use by the client.

o Response Status: The response status code is one
which prohibits caching, such as 307 Temporary Redi-
rect or 401 Unauthorized [8].

e Push: The “content-type” is one which suggests that
the server may continuously stream data to the client.

For the analysis we present here, each incoming HTTP re-
sponse was classified as cached, cacheable but not cached, or
uncacheable. Packets from responses that were not cached
were passed to the redundancy suppression engine. The

Document Traffic Volume Redundancy
Type (% total bytes) | (% of category)
Cached Web 12.6% n/a
Uncached Web 87.4% 23.3%
Cacheable 63.4% 15.6%
Uncacheable 24.0% 41.4%

Table 2: Summary of Web document cacheabil-
ity. Documents that were not cached are ei-
ther cacheable, consisting of cache misses, or un-
cacheable, consisting of responses that can not be
cached. The total Web traffic observed consisted of
108.5 GB in 11,024,951 requests.

Reason Traffic Volume Redundant
Uncacheable (% total bytes) | (% of category)
Question 10.7% 52.2%
Method 5.0% 17.4%
CGI 4.2% 53.7%
Cache Control 3.4% 32.0%
Pragma Response 2.3% 76.0%
Pragma Request 1.6% 39.6%
Set Cookie 1.4% 39.7%
Authorization 0.8% 30.6%
Response Status 0.4% 36.3%
Push 0.2% 3.3%

Table 3: Summary of the redundancy of uncacheable
documents by reason for their uncacheability. The
total Web traffic observed consisted of 108.5 GB in
11,024,951 requests.

fingerprints of cacheable object names were inserted into
a 64,000 entry, list, held in least recently accessed order.
Since the average size of a Web document is 8KB [20], this
roughly simulates a 512 MB Web cache. This is a smaller
cache than we would like to simulate, but the limit of our
analysis system. Documents that were uncacheable were
tagged with their uncacheable attributes. Some may be
tagged with more than one; often both “cgi-bin” and “?”
appear in the same request. Our analysis ran with a 200
MB redundancy suppression cache from May 19 to May 26,
2000. A summary of the byte savings found in Cached, Un-
cacheable, and Cacheable (but missed in the proxy cache)
documents is presented in Table 2.

Table 3 presents the byte savings we found in each class
of uncacheable document, ordered by the volume of traffic
each one represents. Uncacheable documents represent only
one quarter of the bytes transferred. A tremendous amount
of redundancy is found in those responses that include the
“Pragma: no-cache” header, while very little redundancy is
found in those responses for which authorization was neces-
sary.

HTTP requests and responses were identified by examining
packet headers without consideration for source or destina-
tion port numbers, so the volume of traffic does not agree
with that in Table 1.

]

Object
Prefix

Common Property

Object

T T T T 1
0 20 40 60 80 100

Per centage of Repeated Content

Figure 7: When a redundant match is found, what
characteristics do the new and old packets share?
The total volume of repeated content was 22.7 GB.

5.6 Locality of Redundancy

In this section we attempt to determine whether an end-to-
end solution would be appropriate for suppressing redun-
dancy. That is, is there significant redundancy between
streams originating from different servers? If so, a solution
within the network, such as the paired caches we describe
in Section 3 would be appropriate to protect a slow link.
If not, then such a solution within the network would have
little benefit over an end-to-end solution.

To answer this question, for each redundant string of bytes
we find, we consider whether various attributes of both the
newly arrived packet and the stored packet match, when
both are from HTTP responses.

e Server If the source IP addresses match completely,
the redundancy is from the same server, and could be
addressed using a server to proxy system.

e Object Prefix If it is known which HT'TP object was
requested, and the text of the requested objects match
up until the “?” (if any), we consider the “Object
Prefix” to match. This is for comparison with vari-
ous approaches (e.g. [9]) that leverage matching object
prefixes to find redundancy.

e Object If the above holds, and the rest of the object
name matches, we consider the redundancy to be local
to an object. This includes both repeated transfers of
the same object, and similarity found within a single
transfer of an object.

The scope of locality is summarized in Figure 7. Of the total
redundancy found on-line in Web traffic, represented by the
x-axis, each bar represents the number of bytes found by
matching packets from similar sources. Figure 7 suggests
that an end-to-end solution would capture the bulk of the
redundancy. That is, redundant traffic is generally (78% of
the time) from the same server, so the benefit of looking for
redundancy in another server’s traffic is small.

Figure 7 also demonstrates that solutions that seek similar-
ity only between transfers of documents with the same name
miss out on a significant source of additional redundancy. A
server to proxy, content-based solution is likely to detect
significant redundancy that a name-based cache can not.

Caching / Compression Algorithm Byte Savings
Web Proxy 14%
zlib Packet Compression 16%
Web Proxy and zlib Compression 28%
Redundancy Suppression 54%
Web Proxy and Redundancy Suppression 56%

Table 4: Average byte savings over the 6 off-line
traces for different approaches . The cache size was
100 million bytes.

Since our clients are anonymous, we do not correlate the
redundancy by destination, so we do not compare a server
to proxy system with a server to client system. However,
we expect that there is less locality in client requests than
in server responses, and that a proxied system would be
advantageous.

5.7 Comparison with Packet Compression

To compare the value of our technique with more traditional
compression algorithms, we use a packet compression tool
instead of our redundancy analysis. Lacking a standard
packet level scheme that is in widespread use, we elected
to individually compress each packet payload with the zlib
compression library, the same library used by the gzip util-
ity, as a point of reference.

Compression is able to reduce the off-line traces by 15%
on average, less than half of our average gain, and works
more or less independently of Web caching. It was also our
experience that this form of compression was more compute
intensive than our technique.

Moreover, our earlier experiments demonstrate that com-
pression taps a different source of redundancy than our algo-
rithm. The gzip implementation searches a history window
of only 32KB when looking for repeated sequences to com-
press. The results in Figure 5 show that our technique finds
increasing amounts of redundancy for memory sizes through
500 MB, well beyond the range of gzip.

The combination of zlib with a caching Web proxy on our off-
line traces is able to eliminate 28% of the bytes in the trace.
We are encouraged by the orthogonality between the Web
proxy and zlib. Combining this with the relative orthogo-
nality of zlib compression with packet caching as described
in [16], we expect that an integrated solution, using a Web
proxy cache to eliminate requests, redundancy suppression
to remove long-term repetition, and zlib to compress indi-
vidual packets, would significantly improve the performance
of low bandwidth links.

5.8 Summary

In this section, we have supported the belief that our re-
dundancy suppression technique complements Web proxy
caching and traditional content compression.

The overall off-line byte reductions for each approach is
shown in Table 4. The Web proxy alone only eliminates
14% of the bytes. That this is so small does not appear to
be solely an artifact of the short time scale of the traces,
rather that proxy cache hit rates are often cited in terms

of documents, instead of bytes [4]. In fact, the Web proxy
hit rate by document we observe approaches 25%. Com-
pression yields similar benefits and operates independently
of caching. Redundancy suppression provides still greater
benefits that are not captured by proxy caching alone.

Given this result, we believe that our technique complements
Web caching and traditional packet compression, and taps a
distinct source of repetition. URL-based proxy caching has
the advantage that it can service requests without incur-
ring the latency of communication with the remote server.
Our technique then finds content-based matches that Web
caching does not. This information can readily be used to
further reduce bandwidth requirements and, by implication,
overall latency.

6. RELATED WORK

Much previous work is targeted at reducing Web-related
bandwidth requirements. We omit a general discussion of
Web caching and data compression for brevity; we compared
our technique to both in the previous section. Instead, we
discuss two prior approaches that are most similar to our
own.

6.1 Delta Encoding

Delta encoding, proposed by Housel and Lindquist [9], and
studied by Mogul et al [13], is motivated by the observa-
tion that when pages are updated they are often changed in
only minor ways. Thus it can be more efficient to transfer
only the changes by using a variant of “get-if-modified” that
supports versions.

Conceptually, the main difference between the two is that
delta encoding is based on differences between versions of
a single document, while our technique is able to efficiently
identify differences between all documents. Thus we expect
our technique to find strictly more repetition. Evidence to
support this belief can be seen in Figure 7, where there
is significantly more redundancy available from the same
server than under the same URL.

6.2 Duplicate Suppression
Duplicate suppression involves identifying and suppressing
the transfer of exact duplicates, which are typically identi-
fied by fingerprints. Mogul [12] has explored this approach
as proposed in [18] at the document level, and Santos [16]
has explored it at the packet level.

Again, conceptually, our proposal extends duplicate sup-
pression in a significant dimension: we look for similar, over-
lapping information rather than identical, duplicated infor-
mation. This is a harder problem with potentially greater
benefits. There is some evidence to support this claim in
Figure 2. As the parameter S is increased, only longer re-
gions are considered for matching. The large 8 values on
the right side of the graph thus correspond to whole packet
matching — the equivalent of packet level duplicate suppres-
sion. It is apparent from the graph that as f is reduced, up
to twice as much redundancy is found. We do not have data
to compare directly to document level duplicate suppres-
sion, but have no reason to believe that the results would
be different. Mogul [12] reports that the value of duplicate
suppression varies by data type and on average is low.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new technique for find-
ing redundancy in network traffic. Our technique builds on
the work of Manber to detect similar, but not necessarily
identical, information transfers. In terms of improving Web
performance, it has the potential to exceed the benefits of
other approaches such as delta coding and duplicate sup-
pression. This is because the similarity algorithms on which
it is based include as a subset both exact matches (dupli-
cate suppression) and differences between versions of the
same document (delta coding).

A distinguishing feature of our system is that it is protocol
independent. It makes no assumptions about the syntax or
semantics of HT'TP. This has two distinct advantages. It
is able to identify fine-grained sharing, as may be common
with dynamically generated or personalized pages, as well
as inter-protocol sharing. It does not need to be updated to
take advantage of new types of content, such as streaming
media, as they emerge or delivery protocols are revised.

We used our technique to characterize the redundancy of
network traffic. We found a high degree of repetition in dy-
namically generated Web documents: roughly 50% in CGI
and Question categories. For a class of documents for which
the server prohibited caching, this redundancy approaches
76%. In uncached web documents, 22% of the redundancy
we found originated from different Web servers. Of the re-
dundancy from the same server, only two thirds is found
between objects of the same name. In our protocol analy-
sis, we found byte savings ranging from 4-34% in different
protocols, and 10% savings in protocols we were unable to
identify. These sources of redundancy are not detected by
Web caches and could be exploited to improve performance.

The next step we face is to build a complete system that uses
our technique, most likely in conjunction with Web caching.
Experience with our implementation so far has convinced
us that the basic algorithm is well-suited to online use in
the network or Web infrastructure. Certainly it is suffi-
ciently fast to find applications: even our untuned, user-level
prototype can run at approximately 45 Mbps on PC hard-
ware. We speculate that, with increasingly large amounts
of memory in the future, protocol independent caching may
be applied across bandwidth-constrained links routinely, as
a well-known technique to trade memory for bandwidth.

8. ACKNOWLEDGEMENTS

We wish to thank Alec Wolman and Maureen Chesire for
their help with the HTTP cacheability analysis software
from [20]. We thank Srinivasan Seshan and Vern Paxson for
their assistance. Udi Manber furnished us with the source
for siff as described in [11]. Jeff Mogul kept us from giving
him too much credit in Section 6. Gretta Bartels, Stefan
Savage, Mike Swift, Tom Anderson, Hank Levy, and the
anonymous reviewers provided helpful feedback and greatly
improved the quality of this paper. This research was sup-
ported in part by DARPA Grant F30602-98-1-0205. Neil
Spring was partially supported by a W. Hunter Simpson
Fellowship from the ARCS Foundation.

9. REFERENCES

[1] Squid Web proxy cache. http://www.squid-cache.org/.

[2] National Institute of Standards and Technology,
Specifications for secure hash standard, April 1995. Federal
Information Processing Standards Publication 180-1.

[3] A. Broder. On the resemblance and containment of
documents. In Proceedings of Compression and Complezity
of Sequences (SEQUENCES’97), pages 21-29, March 1998.

[4] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and
M. Rabinovich. Web proxy caching: The devil is in the
details. In Proceedings of the Workshop on Internet Server
Performance, June 1998.

[5] CAIDA. Traffic workload overview.
http://wuw.caida.org/Learn/Flow/tcpudp.html, June
1999.

[6] K. Claffy, G. Miller, and K. Thompson. The nature of the
beast: Recent traffic measurements from an Internet
backbone. In Proceedings of INET ’98, July 1998.

[7] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and
M. Rabinovich. Performance of web proxy caching in
heterogeneous bandwidth environments. In Proceedings of
IEEE INFOCOM’99, May 1999.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol
- HTTP/1.1, June 1999. Networking Working Group
Requests for Comment RFC-2616.

[9] B. C. Housel and D. B. Lindquist. Webexpress: A system
for optimizing web browsing in a wireless environment. In
Proc. 2nd Annual Intl. Conf. on Mobile Computing and
Networking, pages 108-116, Rye, New York, November
1996. ACM.
http://www.networking.ibm.com/art/artwewp.htm.

[10] V. Jacobson. Compressing TCP/IP headers for low-speed
serial links, February 1990. RFC 1144.

[11] U. Manber. Finding similar files in a large file system. In
Proceedings of USENIX Winter 1994 Technical
Conference, January 1994.

[12] J. C. Mogul. A trace-based analysis of duplicate
suppression in HTTP. Technical Report 99/2, Compaq
Computer Corporation Western Research Laboratory,
November 1999. available from http://www.research.
digital.com/wrl/techreports/abstracts/99.2.html.

[13] J. C. Mogul, F. Douglis, A. Feldmann, and
B. Krishnamurthy. Potential benefits of delta encoding and
data compression for HT'TP. Technical Report 97/4,
Compaq Computer Corporation, July 1997. available from
http://www.research.digital.com/wrl/techreports/
abstracts/97.4.html.

[14] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Department of Computer
Science, Harvard University, 1981.

[15] R. Rivest. The MD5 message-digest algorithm, 1992.
Networking Working Group Requests for Comment, MIT
Laboratory for Computer Science and RSA Data Security,
Inc., RFC-1321.

[16] J. Santos and D. Wetherall. Increasing effective link
bandwidth by suppressing replicated data. In Proceedings
of USENIX Annual Technical Conference, 1998.

[17] K. Thompson, G. J. Miller, and R. Wilder. Wide-area
Internet traffic patterns and characteristics. IEEE
Network, 11(6):10-23, Nov. 1997.

[18] A. van Hoff, J. Giannandrea, M. Hapner, S. Carter, and
M. Medin. The HTTP distribution and replication
protocol. Technical Report NOTE-DRP, World Wide Web
Consortium, August 1997.
http://www.w3.org/TR/NOTE-drp-19970825.html.

[19] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,

M. Brown, T. Landray, D. Pinnel, A. Karlin, and H. Levy.
Organization-based analysis of web-object sharing and
caching. In Proceedings of the Second USENIX Symposium
on Internet Technologies and Systems (USITS ’99), pages
25-36, October 1999.

[20] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,

A. Karlin, and H. M. Levy. On the scale and performance
of cooperative web proxy caching. In Proceedings of the
17th ACM Symposium on Operating Systems Principles
(SOSP ’99), pages 16-31, December 1999.

