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ABSTRACT

Monitoring and analyzing tra�c data generated from large ISP networks imposes chal�
lenges both at the data gathering phase as well as the data analysis itself� Still both tasks are
crucial for responding to day to day challenges of engineering large networks with thousands
of customers� In this paper we build on the premise that approximation is a necessary evil of
handling massive datasets such as network data� We propose building compact summaries of
the tra�c data called sketches at distributed network elements and centers� These sketches
are able to respond well to queries that seek features that stand out of the data� We call such
features �heavy hitters�� In this paper� we describe sketches and show how to use sketches
to answer aggregate and trend�related queries and identify heavy hitters� This may be used
for exploratory data analysis of network operations interest� We support our proposal by
experimentally studying AT�T WorldNet data and performing a feasibility study on the
Cisco NetFlow data collected at several routers�



� Introduction

The Internet is a vast decentralized� self�con	guring� stateless and connectionless entity
with which most of us interact� It is loosely structured into autonomous systems and the
Internet service providers form clouds in this vast space� In order to have operational control
over their network� the service providers have to understand the relationship between their
network and others around them and understand the dynamics� faults and tra�c patterns
within and across their networks� This is a daunting task for most large service providers�
The networking research community has just begun to make progress on building models for
tra�c 
��� identifying the principles that govern network dynamics 
�� developing predictive
mechanisms� etc� In the absence of well developed guidelines for understanding network
behavior and sophisticated automatic tools for network management� service providers have
to rely on monitoring their network and analyzing the tra�c data generated by their network
to respond to day to day �even minute to minute�� challenges of engineering a large network
with customers�
Network data based engineering and operations of IP networks face two challenges�

�� Data Gathering� This is an arduous task� First� the data are massive� the collection
of packet and �ow traces� and routing and con	guration tables� which change rapidly�
can add up to terabytes per week� Second� the network infrastructure to collect data
is sparse since it is expensive to monitor all parts of the network� Finally� the data are
unreliable because the transport mechanism� typically UDP� that is employed to move
the data to a central place is not dependable � packets get lost� delayed or delivered
out of order� measurement points are not always reachable� routes go down� etc�

�� Data Analysis� This is a complex task because many data sources have to be merged
and collated to piece together hypotheses on network behavior� Large amounts of data
may swamp signi	cant signals� More data does not necessarily mean more information�
Forming hypotheses is hard since we do not have a principled approach to IP network
engineering� In addition� we do not have good database models in which to pose
queries� Finally� the massive amount of data makes run time and performance critical
issues� Analysis methods must scale�

Despite these di�culties� there are increased ways to probe the network� set more alarms�
and collect more statistics� Large service providers are strengthening their data gathering
and analysis infrastructures� This promises to be a long process and the research community
must deliver more principles for network data based engineering� While adding tremendous
measurement capability� network operators routinely face very basic questions about the
network� What are the large �ows at a router� What is the di�erence between tra�c at
di�erent routers� di�erent times� If we add a customer how will the loads change� Where
are the hot spots� Are we adhering to various peer agreements this week�
It is clear that ISPs have fundamental questions about data�based network engineering

and operation and that the research community is not yet capable of answering these ques�
tions� Our premise is that we can ask these questions di�erently and still return useful
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answers� In this paper� we will describe a novel proposal for distributed data gathering as
well as analysis� As a result of the challenges presented by data gathering� the commu�
nity of researchers as well as network operators have grown accustomed to the concept of
approximation� whether through sampling� 	ltering� or aggregating network data� Could
this uncertainty be used in a di�erent way� We hypothesize that approximation is a neces�
sary evil of massive scale data analysis and gathering� Our proposal involves computing a
�sketch� that summarizes the data as it streams by� Sketches

� are of small space �say ���K bytes��
� can be computed very quickly as the data stream by�

� can be collected at distributed centers� and
� can interact in a �exible way with the underlying network infrastructure for network
measurement �e�g�� can be transported to a central warehouse periodically or queried
actively��

With this infrastructure� network managers and operators have instant hands�on access
for performing data analysis� In particular� we present a framework to ask any number of
queries on the sketches� including

� simple aggregate queries� such as point or range queries ��slice and dice� the data��
� historic� trend�related queries �behavior over time��
� distributed queries �behavior across di�erent routers�� and
� clustering or similarity measures of the data�

The sketches are able to respond well to the queries that have a clear signal� i�e�� ones that
stand out of the data �this will be formalized in terms of signal energy later�� We call such
features �heavy hitters�� With sketches� we cannot� however� 	nd a needle in a haystack but
we can provide a good enough answer if that answer is signi	cant in the data� We also have
parameters attached to these sketches that allow us to tune the goodness and the signi	cance
of the answer� These types of queries provide valuable perspectives of network data� They
can be used to generate wavelet coe�cients� which themselves can reveal interesting features
of network tra�c 
�� �� �� These queries can also be used to determine the amount of non�
TCP friendly tra�c traversing a network or whether a given ISP is conforming to peering
agreements� for example�
In this paper� we will describe methods for computing and manipulating sketches� We

will also describe how to use sketches to answer queries of network interest� keeping in mind
that these answers are �heavy hitters� and are approximate� We will support our proposal
by looking at AT�T WorldNet data and doing a preliminary feasibility study on the Cisco
NetFlow data collected at several routers� We believe that the proposal of using sketches to
do network data analysis is an exciting new direction� to be explored further�
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Map of the paper� In Sections � we give an overview of the infrastructure and current
data collection methods in large ISPs� we also abstract the data stream model for processing
network data and review existing approaches for network data gathering and analysis� In
Section � we describe our proposal� In Section �� we provide experimental evidence on AT�T
WorldNet data supporting our proposal� Finally� in Section � we conclude�

� Background

This section gives a brief overview of large ISP backbone architectures� It outlines existing
data collection e�orts at distributed points throughout an ISP backbone� We also abstract
the data stream model inherent in this process� Finally� we review known approaches to
data gathering and analysis�

��� ISP architecture

A large ISP backbone network consists of hundreds of gateway and access routers at the edge
of the network� backbone routers at its core� and thousands of bidirectional layer�three links�
The gateway routers connect to neighboring providers �or �peers�� and to public access points
via peering links� These routers implement routing policies for peering relationships� Access
routers serve modem banks� business customers� web�hosting complexes� etc� via access links�
This type of router must 	lter packets based on customers� addresses� enforce tra�c limits�
and mark packets for QoS� Backbone links connect the backbone routers between and within
major cities to facilitate high�speed switching at the core of the network�
The AT�T backbone network is an example of a large operational ISP network� It has

hundreds of routers and over thousands of layer�three links� There are a number of modem
pools around the country for dial�up ISP customers and web�hosting complexes for both
personal and business customers� Figure � depicts the network architecture of a typical
large ISP�

��� Existing data collection at distributed centers

An ISP can collect a variety of data types at a number of sources in its backbone� We focus
on passive measurements and outline the current typical methods of collecting this data�
At the 	nest and most detailed level of observation� packet monitors passively collect

IP packets at a single link �with line speed up to ���Mbs� and record IP� TCP�UDP� or
application layer traces� An IP header is �� bytes long and contains twelve 	elds� four
of which are useful in data analysis� total packet length� transport protocol� and source
and destination IP addresses� A TCP header is also �� bytes long with with such useful
	elds as source and destination port numbers� sequence number� acknowledgment number�
ACK�SYN�FIN�RST �ags� and window size� �Packet sni�ers� are typically separate PCs
that can be placed at di�erent points in the network depending on the goal of the resulting
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Figure �� Architecture of a typical large ISP�

data analysis� For example� we can record tra�c traces at a modem bank to obtain 	ne�
grain detail about dial�up user behavior� on an access link to monitor an important piece
of network architecture� or in front of a web hosting complex to determine where best to
place web caches 
��� Because these devices record the header of each packet on a single
link� the data are voluminous and di�cult to use for an overall picture of network behavior�
They do� however� provide useful answers for several important network operational and
scienti	c questions� estimates of throughput and delay of web downloads� sizes of typical
web transfers� and burstiness of tra�c on the monitored link over time�
At a higher level� we can collect �ow data� These data aggregate the packet header

information to the IP �ow level� A �ow is a group of packets from the same port number
and source�destination pair wherein each consecutive packet is not separated by more than
a certain duration� The packet header statistics we can collect for each �ow �using Cisco
NetFlow� for example� include source and destination IP addresses� source and destination
port numbers� transport protocol� ToS� TCP �ags� etc� in addition to the start and end
time of each �ow and the total number of bytes and packets in the �ow� With NetFlow�
we are also able to gather routing information for each �ow� consisting of the input and
output interfaces the �ow traversed� source and destination IP pre	x� and the source and
destination autonomous system numbers� For approximately each ��� bytes of tra�c� one
byte of �ow data is generated� a savings in space compared to the packet monitors� We can
gather these data in several di�erent ways� connecting a PC to a router that generates �ow
records� using line cards that generate these records� or placing a packet monitor between
two routers� In the AT�T Backbone we currently have a number of routers in di�erent
major cities capable of collecting NetFlow statistics� From the NetFlow data we are able
to determine the distribution of applications� as well as the number of bytes �or packets� in
each �ow� source�destination pairs� load� etc�
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Figure �� Capturing tra�c information in a streaming fashion�

In Section � we focus on distributed data collection and analysis of the NetFlow records
in AT�T�s IP backbone� For this reason we concentrate on the description of packet and
�ow measurement� All our discussions and methods equally apply to other network data�
eg�� fault alarms which play great role in the day�to�day management of an IP network�
There are� however� two other types of passive measurements we can instrument� One is

routing information� including the routing tables and live feeds of link state advertisements
for OSPF and BGP updates� The routing tables and their live feeds are critical for tra�c
engineering tasks such as load balancing on links to customers and peers� It is di�cult to
gain an overall view of network dynamics without this information� The second is fault
alarms which play an even greater role in the day�to�day management of an IP network�
Finally� coupled with all of these types of passive measurements is the underlying network

con	guration� topology� and customer and peering agreements� While these pieces of infor�
mation are very di�erent from passive network measurements� they are crucial components
in any distributed data collection and analysis system�

��� Data streams

Both the packet header and �ow collection methods record information as the tra�c streams
past the packet monitor or router� See Figure � for a picture of this process� In both cases�
special software �and sometimes hardware� must be built in order to gather this information
at very high speed with high accuracy� This type of data input also creates problems from a
data summary and analysis perspective as well� A summary method must be able to work
with data presented in a number of streaming forms� Prabhakar et al 
�� and Gilbert� et
al� 
�� formally de	ne di�erent data stream models� including the �cash register� format�
which is most relevant given the data collection we have described above� In this data input
model� packets �or �ows� from di�erent IP sources �or to di�erent IP destinations� arrive in
an unaggregated fashion and out of order� For example� the packet monitor does not know
how many packets from IP address i arrive during a ten minute period until that period is
over� only then can it generate an aggregate number of packets for that address� In addition�
those packets from address i pass the monitor interspersed among packets from many other
IP addresses�



� � �

��� Di�erent Approaches for Network Data Collection and Anal�

ysis

Analysis of network data must meet a number of stringent requirements that make it im�
possible to rely on a one�size�	ts�all architecture� The data centric approach of analyzing
network data relies on building large Data Warehouses� In the broadest sense� a data ware�
house is a single� integrated informational store that provides stable� point�in�time data for
decision support applications 
��
There are good justi	cations for such an approach�

� On line analytical processing �OLAP� software allows the collected data to be rendered
across any of the collected attributes �e�g� source�destination address�port� protocol�
etc�� and at any level of aggregation �e�g�� ��bit addresses� subnets� autonomous sys�
tems� in an interactive way� This is extremely useful during exploratory data analysis
where patterns are typically discovered in an ad�hoc manner�

� Given that the database schema is relatively static there are o��the�shelf tools that we
can use for mining interesting patterns� report writing� etc�

� The ability to manipulate information from multiple sources in a single analysis plat�
form enables us to make and test more �interesting� hypotheses�

� Archiving information in a centralized store allows historic trend analysis� Historic
information is invaluable not only to 	nd out that something went wrong but also to
understand why it happened �e�g� were there any topology�con	guration changes at
the same period� Was the network a�ected due to a large customer attached to an
access router���

Building such a gigantic information repository of network measurements imposes several
practical di�culties�

� There are many types of data from many sources� including both transactional data
such as packet headers or �ow records and topological con	gurations� Not only do
these data come from varied sources� but they come in an abundance� A large network
has hundreds of routers and thousands of links� With such a large network an extensive
measurement infrastructure may be impossible at all points� including modem banks
and customer access links� We cannot harm the current performance of the network
with measurement tools nor with the delivery of measurement data�

� There are a number of data quality problems once we have built such an infrastructure�
It is di�cult to obtain precise� synchronized timestamps on a variety of measurements�
There are delays in receiving so�called real�time data feeds and these feeds are usually
transferred with an unreliable protocol� resulting in signi	cant losses� In some cases
we can correct for the lost transmittions by joining multiple datasets� For example�
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NetFlow records are transmitted to the collection server using UDP� Limited bandwidth
results in a loss of up to ��� of the UDP packets during heavy load period� Using
link�load statistics from SNMP� we can estimate a correction factor for the received
records to account for lost data 
���

In general a data centric approach is good for harvesting interesting trends in the mea�
sured data and for time�related trend analysis� On the other hand� it is not suitable for
real�time analysis� For such applications a more direct approach is to execute queries at
the network interface card �NIC� of a network monitoring device� Processing such as 	lter�
ing� transformation and aggregation of network tra�c can then be performed at the spot�
Typically these queries are hard�wired into the NIC� however T� Johnson et al� 
�� are im�
plementing new architectures that allow the engineer to load a precompiled query into the
device�
Executing queries at the NIC imposes some restrictions too�

� Network monitoring devices are typically entry�level machines with small processing
and storage capacities� For example in WordNet we use ���Mhz unix workstations
with ��GB disks and ��GB tapes 
�� In comparison the WorldNet Data Warehouse
runs in a Sun Enterprise ���� server with �� processors� ��GB of main memory and
several TBs of disk storage� Thus� we can only expect to perform relatively simple
queries at the NIC and defer complex aggregations to the central store�

� Even though data is processed and 	ltered at the NIC� the query result has to be
shipped back to the analyst� This potentially limits the type of queries we can execute
to simple coarse aggregations of the data� For example� we can not compute the
amount of tra�c sent for each pair of source�destination IP addresses because the
result in aggregate format is comparable to the size of the NetFlow data�

� Even small output queries might require substantial resources �scratch space� for storing
temporal results� Given the limited recourses at the NIC� only a few active queries
might be possible at any given point�

� Our Proposal

��� De�nition of Sketches

Network engineers and researchers have three basic methods for windowing the measurement
data� 	ltering� aggregation� and sampling 
��� We propose a fourth method� sketching�
Sketches are based on random projections� That is� the sketch of a vector a is the inner

product of a with a suitable collection of random vectors� Random vectors are generatd
using �seeds� which can be stored in small space� the properties of sketches di�er based
on the random variables used 
�� ��� The number of random vectors used is also typically
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Figure �� The array sketch synopsis data structure�
sketch t initialize� length t N� distortion t �� threshold t ��

failure prob t ���
sketch t update� sketch t s� index t i� value t v��
sketch t combine� coefficient t c�� sketch t s�� coefficient t c�� sketch t s���
value t norm� sketch t s��
value t cos� sketch t s�� sketch t s� ��

value t query� index t i�� index t i�� sketch t s��

small� This process is an example of dimensionality reduction 
��� used here to summarize
the vector a�� Some of the details about sketches and their properties are described later�

��� Details of the Array Sketch Data Structure

Our main tool is a synopsis data structure 
�� for an array� It maintains a representation of
an array of N elements� and supports updating values of the array and making queries about
the values� The answers have a small chance of arbitrary failure� and� when successful� are
only approximate� But the size of the data structure is much smaller than a traditional data
structure for an array�
The particular data structure we call an array sketch� The data structure supports the

following operations� initialize� update� combine� norm� cos� and query� as indicated in
Figure ��
We now describe these operations in detail�

� The initialize�� function returns a sketch of the all�zeros array of length N �see
query� below� for the semantics of �� � � and ���

� If the sketch s represents the array a� then the update� s� i� v� function returns a
sketch of the array a� gotten by adding v to ai�

� If sketch s� represents array a� and sketch s� represents a�� then combine� c�� s��
c�� s�� returns a sketch of the vector linear combination c�a�  c�a��

� If sketch s represents the array a� then� with probability � � �� norm�s� returns an
approximation to

P
i a

�
i � namely� ��� ��

P
i a

�
i �

� If sketch s� represents vector a� and sketch s� represents a�� then� with high probability�
cos� s�� s� � returns an approximation to the cosine of the angle between a� and a�
provided it is large� namely� if ha�� a�i� � �ka�k�ka�k�� then� with probability � � ��
cos� s�� s�� returns ��� ��ha�� a�i���ka�k�ka�k���

�Other similar techniques include sampling� min�wise independent random variables ��� which is useful for
binary vectors a� etc� Any or all of these techniques may be used in our framework� but we focus on
developing our proposals for sketches and demonstrating their potential�
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� Finally� if s represents the array a� then query� i�� i�� s� returns a value in the range
��� ��

Pi�
j�i�

aj� except with a small failure probability �� provided

�

i� � i�  �

�
i�X

j�i�

aj

��

� �
X
j

a�j �

that is� provided the answer to the query is relatively large� depending on its length�

and parameterized by � � �� �It is always true that �
i��i���

�Pi�
j�i�

aj

��
�Pj a

�
j ��

If the result of a cos�� or query�� operation would be small and therfore unreliable�
the sketch data structure reports that fact� It doesn�t silently return unreliable information
except as parametrized by � and �� All operations take time at most

�log�N�������O��� log������

The size of each sketch �which is invariant under update and combine� is also at most

�log�N�������O��� log������

using an implementation given in 
��� �Typically �� �� and � are considered constant� in that
case� the bound is polylogarithmic in N �� Thus� if N is very large� the size of the sketch is
much smaller than N � the space needed for an exact array data structure� Note also that
one can make the distortion� failure probability� and threshold as small as desired� though�
as one would expect� the time and space required increases as these parameters decrease�
One can similarly sketch arrays of two or more dimensions� The query operation returns

the sum of values in a speci	ed rectangle�
An output answer may be accompanied by error bars �that depend on the prescribed

parameters � and � and on the actual returned answer�� We have observed� however� that
the data structure often performs better in practice than the theoretical guaranteed worst
case performance �which is not� after all� a prediction of performance�� Since there are
some theoretical guarantees� we suspect that more useful heuristic error bars would be well�
behaved and can be determined through an experimental process�

��� Properties of Sketches

Several properties of sketches make them useful in distributed network data analysis� We
now discuss this in more detail�

����� Basic Usage

An array sketch is useful for consuming unaggregated feeds of data and answering queries
about the aggregate� For example� consider a packet monitor that observes packets on a
link� discarding all information except the source IP address and the number of bytes� We
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wish to make queries about the array a� such that ai is the total number of bytes sent from
IP address i� First� call initialize�� to get a sketch s of the zero array� Each time we
see a packet from i with b bytes� call s�update� s� i� b�� At any stage� one can use the
query�� or norm�� operations to 	nd out about a� All operations are fast� only s� which
is small� is stored� If a sketch needs to be shipped across the network� the small size of a
sketch saves bandwidth�

����� Linearity of Sketches and the combine Operation

The combine operation facilitates distributed data collection� Suppose we are interested in
the array of total tra�c that exits our network via two gateway routers� G and G�� �For
example� consider the array a� indexed by source IP address i� and such that each value
ai is the number of bytes transmitted by IP address i�� Router G initializes a sketch and
sends a copy to router G�� �The routers must share a small �sketch handle� that contains
the parameters �� � � and �� and� more importantly� some common random bits used for
subsequent sketch operations�� Each router then constructs a sketch s or s� of its own tra�c
a or a�� then G sends s to G�� and� 	nally� G� combines the sketches to get a sketch of a a��
Without the combine operation �or a similar operation�� to build a synopsis� data would
have to be collected at a single place or raw data would have to be shipped to a single place�

����� Losslessness of update and combine

A sketch is built from an array via updates� which is useful if the array is not given all
at once� For example� consider the array a indexed by IP address such that each value ai
contains the total number of bytes transmitted by i and passing a data collection point C on
a particular day� Typically� as discussed in ������ the tra�c sent by i is not sent all at once�
so C never sees ai� Instead� C typically needs to call update with the index i each of the
many times it sees tra�c from i� The update function is lossless in the sense that the same
sketch is produced to describe the array a� no matter the order in which tra�c is observed�
Similarly� the combine operation is also lossless� That is� if we form sketch s for array a by
a sequence of updates� then form sketch s� for array a� by another sequence of updates� then
combine s and s�� we�d get the same sketch for a a� as we�d get if apply both sequences of
updates to an initialized sketch�
By contrast� some sampling techniques are lossy� Consider again the gateway routers G

and G� that produce the arrays a and a� of total tra�c in bytes� indexed by IP address� This
time� we combine the arrays to get a�a�� Suppose we want to know by how much the tra�c
through G� to Sprint and UUNet exceeds the tra�c through G to Sprint and UUNet� If this
di�erence is a signi	cant fraction of the total tra�c� we will be able to estimate it� Note
that this is the case even if we have the following situation�
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G G� G� �G
Sprint ��� �
UUNet � ���
Sprint�UUNet Total ��� ��� �
Rest of the net ��� ��� ��
All the net ��� ��� ��

The Sprint�UUNet tra�c through G is ��� and the Sprint�UUNet tra�c through G� is
���� so the di�erence is �� The square �� is a signi	cant fraction of the overall number�P

i�ai � a�i�
� � ���� � ����� ! ���� so we will estimate � well� say� to within ���� By

contrast� some sampling�based techniques may ignore or missG�s UUNet tra�c orG��s Sprint
tra�c� which would result in an error of � or � out of �"in general� a worse approximation�
Note that sketches are able to estimate � well even though sketches can not estimate well
G�s UUNet tra�c of � or G��s Sprint tra�c of �� since G�s UUNet tra�c is insigni	cant
compared with all of G�s tra�c and G��s Sprint tra�c is insigni	cant compared with all of
G��s tra�c�

����� Adaptive Greedy Pursuit

The linearity of sketches enables a data analyst to perform adaptive greedy pursuit� using
a tool borrowed from 
��� where it was used in a di�erent context� Suppose the array a
is indexed by IP address and contains the number of transmitted bytes� Suppose further
that aiCNN tra�c dominates the entire dataset� so that no other value is large enough to be
estimated well from a sketch s for a� An analyst proceeds as follows� First� estimate aiCNN
from s� getting #aiCNN � Next� call s

� �update� s� iCNN� �#aiCNN�� The result is a sketch of
the array of tra�c minus our �good� estimate of the CNN tra�c� Any IP address i whose
tra�c is a signi	cant part of the remaining non�CNN tra�c �plus the small approximation
error aiCNN � #aiCNN� that leaks into s��� can be estimated well from s�� In this case� many
new IP addresses may be a signi	cant fraction of the residue tra�c� even if they were not a
signi	cant part of the total tra�c� Note that we do not need to know in advance which is
the dominant IP address �if we knew in advance� we could just record its tra�c separately��
Finally� note that greedy pursuit can be done using other sources of data� For example�
suppose we construct sketches in near real time and get exact data for some IP address
later� We can subtract o� the available exact data from the sketch and use the resulting
sketch to estimate the �now proportionally larger� other IP addresses�

��� Wavelets

An important use of array sketch�s is for wavelet analysis� A wavelet basis vector is a vector
of length N of the form

�j�k ! �

k�jz �� �
�� � � � � ��

�j��z �� �
��� � � � ����

�j��z �� �
�� � � � � �� �� � � � � ����j���
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Figure �� The wavelet sketch synopsis data structure�
w sketch t w initialize� length t N� distortion t �� threshold t ��

failure prob t �� number of terms t B��

w sketch t w update� w sketch t s� index t i� value t v��
w sketch t w combine� coefficient t c�� w sketch t s��

coefficient t c�� w sketch t s���
w representation t w query� w sketch t s��

There areN�� possible wavelet basis vectors� these� together with the vector ��� �� � � � � ���pN
form the orthonormal wavelet basis for the set of all vectors of length N � A wavelet query
on a vector a by �j�k should return the dot product ha� �j�ki �the wavelet coe�cient dj�k��
The vector a is recoverable from all its wavelet coe�cients as a !

P
�ha� ��i��� A lossy

compression of the array a can be given by keeping only a subset $ of the largest coe�cients�
j$j ! B � N � and approximating a as a �P���ha� ��i��� The energy of this approximation

is
P

���ha� ��i�� Since
PN

���ha� ��i� !
PN

i�� a
�
i � the energy of a representation varies from

zero �for the trivial zero approximation� to
PN

i�� a
�
i � for a perfect representation�

����� The Wavelet Sketch Data Structure

A wavelet query is the di�erence of two range queries� so a wavelet query can be answered
directly from the array sketch data structure� A new operation� not quickly supported by
the array sketch data structure� is to 	nd $� the best B�term wavelet representation� This
can be done directly by estimating all N wavelet coe�cients� but a quicker implementation
requires additional data structures� The interface wavelet sketch is summarized in Figure ��
The operations w initialize� w update� and

w combine are similar to the array sketch operations� The new operation� w query� works
as follows�

If the array a is such that the best B�term wavelet approximation R !PB
k�� dk�k captures at least a � fraction of the sum�square�norm� i�e��

P
iR

�
i �

�
P

i a
�
i or� equivalently�

P
i�ai � Ri�

� � �� � ��
P

i a
�
i � then� with probability

� � �� the w query operation returns a B�term wavelet representation #R such
that

P
i�ai � #Ri�

� � ��� �  ���
P

i a
�
i �

That is� the representation returned by w query is� with high probability� at least ����� times
as good as the best B�term representation� provided the best B�term representation is pretty
good� parameterized by � � The time and space needed by the wavelet sketch operations�
using an implementation in 
��� are similar to the array sketch costs� but depend also on B�

�B log�N�������O��� log������
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����� Using Wavelets

Information in Wavelets Themselves First� if the array a being sketched has a good B�
term wavelet representation� the representation itself may provide information about a that
the analyst did not think to ask �for example� there are several wavelet�based statistical
tools for �multi�fractal tra�c analysis 
�� ���

Finding Dominant Values If there is a single i� such that a
�
i�
� �

P
i a

�
i � then� from the

best B�term wavelet representation� we can quickly 	nd i�� Similarly� we can quickly 	nd a
small number of such spikes� These results follow from known properties of wavelets 
��

Using Wavelets for Range Queries If one believes that a has a good B�term wavelet
representation� it might even be advantageous to answer a range query �i�� i�� by calling
w query to get an approximation #R to the best wavelet representation R !

PB
k�� dk�k

and then �quickly� answering the range query from #R instead of from a� There are two

advantages� First�
P

iR
�
i may be much larger than

�
i��i���

�Pi�
i�i�

ai

��
� in that case� our

estimate of R will be much more reliable than our direct estimate of
Pi�

i�i�
ai� If R and #R

are good representations of a� then the loss su�ered by answering the query from R instead of
a plus the loss in our approximation #R to R may be less than the loss in our direct estimate
of
Pi�

i�i�
ai� Second� in many applications� the best wavelet representation �which has large

coe�cients� contains the �signal� and the remaining small coe�cients contain �noise�� In
that case� R may be a better representation than a itself of the �true� phenomenon recorded
noisily by a�

Data Visualization A wavelet representation for a is an example of a piecewise constant
representation for a� which is relatively straightforward to render in a way sensible to humans�
There is also a weak converse"a vector with a good piecewise constant representation R
also has a good wavelet representation R� with not many more terms than there are pieces
in R�

��	 Using Sketches for Network Data

To use a sketch to summarize an array� a tra�c engineer needs to decide how the array
should be indexed and what values to store in the array� For example� the array might be
indexed by time period� source or destination IP address or port� etc� the values stored may
be the number of packets or bytes observed�
It is not signi	cantly more expensive to index on both source and destination IP address�

rather than on either alone� This is because� as will be explained� the cost depends on the
logarithm of the number of indices� which increases only by a factor of two from all ���

source addresses to all �	
 pairs of source and destination� It is important to emphasize�
however� that one can only recover the signi	cant information� a concept we formalize later�
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The number of bytes from source is to destination id may be insigni	cant compared with all
the tra�c� while the number of bytes from is to any destination may be signi	cant�
An update may be performed upon seeing each packet� or the raw data can be prepro�

cessed before it is sketched� using any of the existing techniques� For example� one could
	lter packets and sketch only those coming from a particular subnet� One could also use
the Cisco NetFlow facility to aggregate temporally and semantically connected packets� and
sketch that data"e�g�� ai is the number of �ows from IP address i�
A network engineer must decide where to collect data"on a backbone router� gateway

router� or access router� Because �a� sketches are small to store and to transmit� and �b�
sketches produced at di�erent routers can be combined readily and �exibly� it may be sensible
to collect data at all routers� It is also possible to incrementally deploy collectors to one
router at a time to produce useful data�
Our sketching technique can be seen as a special query that runs at the data collec�

tion server and is potentially useful for many di�erent types of analysis� There are several
advantages of using sketches to 	lter the data�

� Sketches can be made small enough to 	t in various computing platforms� with provable
quality guarantees� Storage and processing requirements are 	xed given the size of the
sketch and no additional scratch space is required�

� Sketches provide a compact description of the measured distribution� Thus� they are
relatively cheap to communicate during distributed query execution�

� There are numerous transformations that can be reliably computed from the sketch
with provable error guarantees� The wavelet transformation is such an example� Our
experiments show that wavelet coe�cient provide a very accurate description of the
tra�c on the domain of IP addresses� Other examples include similarity tests on
various tra�c vectors that can be used for clustering� setting up alarms etc�

� One more advantage of sketches over other compiled queries is that the single sketch
query can be optimized well �hardware or software��

Sketches render the measured data in a format that allows us to mine for strong trends�
as long as such trends exists� For example� looking at the wavelet transform of the tra�c
we can argue about self�similarity� Similarly� we can report queries that stand out of the
signal� like heavy�hitters� On the contrary� we don�t expect to accurately report statistics
on blurred parts of the distribution� For instance the direct estimate of the tra�c from an
arbitrary IP address can be arbitrarily bad� when the answer is not signi	cant with respect
to the rest of the tra�c� Such type of queries should be executed as a direct computation
at the NIC or at the Data Warehouse�
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� Experiments

��� Set up

For the experiments presented in this section� we used NetFlow data obtain on three gateway
routers of AT�T�s backbone located in three major cities in the U�S� We refer to these
routers as router�� router� and router� respectively� There is a direct backbone link between
router� � router� and router� � router� but not a direct link between router� and router��
From each router we obtained NetFlow records from a period of two hours� broken down

into �� intervals� each of which covers� roughly� �� minutes� We denote each data	le as Fi�j�
where index i ! �� �� � refers to the router and � � j � �� denotes the time�period� The
overall number of records ��ows� in these 	les was roughly ��M �as presented in the cash
register format� i�e�� unaggregated and in chronological order�� The NetFlow data is in a
raw binary form� where records have information about the particular �engine� �e�g�� which
interface� that measured the �ow and sequence numbers for the �ow records observed by
these engines� Some of the �ow records are lost en route from the router to the collection
server� We can detect such losses� via missing sequence numbers� On the dataset used� the
loss factor was about �� for all individual data	les�
NetFlow records give a tra�c engineer several options on how to index the �ows and

what values to store� For our experiments we indexed on either the source or the destination
IP address� Unless otherwise noted� we aggregated on the number of bytes sent� thus ai is
the number of bytes sent �or received when destination address is used� from IP address i�
The ��M �ows yield ������ distinct source and ������� distinct destination addresses�
In Subsection ��� we compute the wavelet decomposition for the available NetFlow data

and show that network statistics compress well using wavelets� This is a strong result that
justi	es the use of sketches� Using sketches� we expect to capture reliably the large wavelet
coe�cients of the distribution and thus the overall trends of the tra�c� Furthermore� small�
	ne�grained wavelet coe�cients typically capture the inherent noise in the tra�c� Thus� by
eliminating those and using the large coe�cients retained by the sketch we obtain better
point�wise estimates of the tra�c�
In subsection ��� we explore ways to analyze the datasets given that good summary

information of the NetFlow tra�c can be maintained using sketches� For the datasets that
we tested we found that tra�c patterns are quite dissimilar among di�erent routers� but
strongly related on the same router when examined at di�erent time�periods� This result
suggests that is possible to implement various clustering algorithms and use them for on�line
classi	cation of �ows� setting up alarms� etc�
Finally� in subsection ��� we evaluate the estimates obtained from the sketches against

real tra�c measurements� Our results verify that strong patterns �like heavy hitters� large
wavelet coe�cients and cosines� can be detected and used for tra�c analysis�
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Figure �� Decay of SSE with number of Coe�cients Maintained

��� Decay of Wavelet coe
cients on NetFlow Records

Wavelet transforms attempt to capture the trends in numerical functions� Often� very few
of the wavelet coe�cients are signi	cant and thus� a small number of them can be used as a
compact� accurate description of the function� This property makes wavelets appealing for
compressing empirical datasets like images or call detail records 
���
In practice we evaluate how an empirical dataset �compresses� using wavelets by mea�

suring the sum�squared�error �sse� obtained from an approximation R of array a using the
largest B wavelet coe�cients varying B� The rate of decay of sse with increasing B is a good
indication of the applicability of wavelet methodology for a particular dataset�
In Figure � we plot the sse of a B�term wavelet representation of array a for the ���M

NetFlow records of data	le F���� when array a is indexed on source and destination IP
address�� The number of distinct IP addresses in this dataset is �������� The graph shows
a rapid decay of the error� as B increases� Notice that the x�axis interval of the Figure
represents a very small fraction of the wavelet coe�cients obtained� For the particular
data	le� there are about ������� non�zero coe�cients �out of ���!�� ���� ���� ��� possible
coe�cients�� In both cases� ��� coe�cients ��Kbytes� retain about ��� of the energy of the
array and thus result in a equal decrease in the sse� We observe that the network tra�c�
when indexed by destination IP address� has a more rapid decay and thus compresses better
with the same number of coe�cients� This is probably related to the di�erent characteristics
of the distribution of unique source and destination IP addresses�

��� Similarity Tests

The ability to use sketches to estimate the tra�c array a opens new ways of analyzing the
�ows� Recall that sketches could be used to approximate dot products of vectors� as long as
the result is large� In information retrieval� cosines between vectors that describe documents

�Other data�les had similar graphs�
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Figure �� Similarity Matrix Based on cosines

in some feature space are frequently used to measure similarity among two documents� Such
cosines are actually the dot�products of the corresponding normalized vectors� Using the
same principal we can measure similarity of various tra�c measurements along multiple
routers and time periods� Given arrays a and b� indexed on the same domain �e�g� source
IP� the cosine of the two vectors� cos�a� b� ! ha� bi�kak�kbk� can be approximated using
their sketches as explained in Section �� Thus� similarities can be detected reliably when
they exist�
There are numerous ways to use sketches for such a computation� Some of those are

listed bellow�

� Compare tra�c patterns along a timeline� We can use the cosine�metric to test
the hypothesis that tra�c patterns on a router are similar along a timeline for a given
measure �e�g� number of packets�� For example� let at� � at� � � � � � atk be the tra�c vectors
obtained on the router for time periods t�� � � � tn� These can be consecutive hours�days
etc� Using sketches of these vectors we can populate a k � k matrix with cosines of
pairs ati � atj and identify periods with similar tra�c�

� Compare tra�c over multiple routers� We can use the cosine test to hypothesize
on the amount of tra�c that is sent between two routers� Similarly� we can test whether
tra�c is similar due to routing�topology invariants� For example� if a large ISP has
peering links with two routers we can expect similarities on the tra�c vectors obtained
from these routers� as long as tra�c from that ISP is a signi	cant portion of the overall
tra�c in these routers�

� Characterize tra�c patterns using multiple measures� Let abytes and apackets
be the tra�c vectors obtained from a router� counting bytes�packets sent from each
source IP address� We expect the cosine of these two vectors to be large� when there
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is small deviation in the sizes of the packets sent from each source� Thus� we can use
these vectors �or projections of then into appropriate subnets� to characterize sources
�or destination� IPs� For example� tra�c generated from ftp servers should be quite
dissimilar to tra�c due to DNS requests"the latter uses much smaller packet sizes�

We evaluated the cosine metric using arrays ai�j obtained from data	les Fi�j indexed
by source�IP address �using the ��bit pre	x�� Thus� ai�jip measures the number of bytes
received from ��bit subnet ip at router i during ���minute interval j� We computed the
cosines along all pairs of vectors and plotted the result in Figure �� The x� and y�axis of the
Figure represent vectors ai�j� Dark areas reveal pairs with large cosine values� The following
observations are made�

� tra�c among di�erent routers shows small similarities �based on source�IP and number
of bytes sent�� The same pattern was observed when looking at the destination address�
or when using a binary tra�c array� ai ! true i� there has been a �ow from �to� IP
address i� We do not report these experiments here due to space limitations�

� tra�c on the same router� along the measured two�hour interval is quite similar� espe�
cially for router router� and router�� Router router� has more deviation on its tra�c
along the given timeline�

These results also suggest that we may use the cosine test to cluster �ows and detect
abnormal behavior�

��� Using Sketches for Finding Heavy Hitters

In this set of experiments we evaluate using sketches to locate source �destination� IP
addresses that generate a signi	cant proportion of the tra�c� The basic query that we
consider here is to locate the top�k �for some small value of k� source IP addresses on a given
router based on the number of bytes sent� Let L ! fip�� ip�� � � � � ipkg be a list of the top�k
source ��bit addresses based on their tra�c� i�e�� aip� � aip� � 	 	 	 � aipk � By sketching

on source and bytes sent and using function w query we obtain an approximation #R of the
tra�c array� From that we reconstruct a list of heavy�hitters #L ! f #ip�� #ip�� � � � � #ipkg that
is an approximation of L� We can then evaluate the precision of the sketch by comparing
the two lists� A naive approach is to count the number of common elements on L and #L�
This however would be misleading as an approximation that captures the 	rst few�elements
of L is more valuable than one that captures most of the trailing sources� especially in a
long�tailed distribution� To capture that e�ect we evaluate list #L by summing the energy
of the elements in #L�energy�#L� !

P
ipj��L

a�ipj � By de	nition energy�#L� � energy�L� and

therefore the ratio energy��L�
energy�L�

is less than or equal to � �when #L ! L��
We used dataset F��� from the 	rst router� The dataset contains ���M �ows generated

from ������� distinct IP�sources� We sketched these records using a sketch of size ����
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Figure �� Ratio of energy in approximate top�k list over the energy of the exact answer
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Figure �� Ratio of sse in approximate top�k list over the energy of the exact answer for three
sketch�sizes

�approximately ���Kbytes�� For computing list #L� we reconstructed the tra�c for the top�
���� sources �that we knew from the dataset�� using the sketch� and assumed the estimate
for the tra�c of the remaining sources was zero� This was a shortcut made to decrease the
computation time of our simulation and we don�t expect it to a�ect the results we report
here for k � ���� because of the long�tailed distribution of the tra�c�
Figure � plots the ratio of the energy of the approximate list #L varying k between � and

���� An interpretation of this graph is that the sketch suggests a list of IPs that contain at
least ��� of the tra�c �in L��fashion� of the exact answer� The ratio is relatively steady
with k exceeding ��� as the distribution is indeed long�tailed and there is no real distinction
�tra�c�wise� between IPs in the back of the two lists�
Figure � re�ects the ability to order and report source addresses based on their approx�

imate tra�c calculated from the sketch� however it does not fully characterize the approx�
imation obtained� For the latter we use the sum�squared�error �sse� of approximating the
values in L� sse�L� !

P
ipj�L

�aipj � #Ripj �
��

Figure � plots the sse in approximating the top�k heavy�hitters �varying k� over their en�
ergy �i�e� sse�L��energy�L�� for three di�erent sketch�sizes ����� ���� and ����� ����Kbytes�
���Kbytes� and ���Mbytes� respectively�� As expected� longer sketches provide better esti�
mation� especially on the tails of the distribution�
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Figure �� CUSTOMER tra�c estimates

Among the top���� heavy�hitters for this dataset� we found �� servers for a single AT�T
customer CUSTOMER� Figure � plots the real and estimated tra�c sent from these servers
to router�� In general we do not expect to get a highly accurate description of array a on the
��� domain of IP addresses� by using a sketch containing just ���� values ����Kbytes�� For
reasonable sketch sizes� there will always be cases where tra�c is egregiously miscalculated�
We should evaluate the approximation in terms of the energy maintained by the sketch and
not on individual point�wise estimates�

����� Analyzing Multiple Measures

In practice� we expect to maintain sketches on various metrics� which will allow more �exible
analysis of the tra�c� For example assume that we sketch on both the number of bytes and
number of packets sent from each source using two sketches sbytes and spackets� Using these
sketches we can answer queries that correlate both tra�c measures�
For instance� we can compute sources with signi	cant aggregate volume that sent few

large packets �e�g�� ftp requests� or� similarly� sources that send many small packets �DNS
servers� messages for routing protocols� of small aggregate size� One way to formulate the
query is� �	nd sources that are in the top�k list with respect to the number of bytes sent
but not in the top�k list based on the number of packets sent� and vise versa�� Let Lbytes�
Lpackets be the lists of sources based on bytes�packets sent respectively� We want to compute

L ! Lbytes

S
Lpackets�Lbytes

T
Lpackets� Using the sketches we obtain #Lbytes� #Lpackets and from

these compute their symmetric di�erence #L� We now compare L and #L using precision�recall�

recall ! jL
T �Lj
jLj

precision ! jL
T �Lj

j�Lj
���

Figure �� plots both metrics varying k on the previous dataset� For most cases� precision if
around ��� and recall around ���� This graph emphasizes the weaknesses of our techniques�
In particular� we don�t expect sketches to distinguish among sources with similar values in
either of the lists� This is the reason for recall and precision being relatively low� On the
other hand� using sketches we� most of the time� are able to obtain answers whose quality
�energy�wise� is very close to the exact answer� see Figures �� ��
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Figure ��� precision�recall measurements
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Figure ��� Ratio of energy in approximate top�k list over the energy of the exact answer for
calculating change in tra�c over two periods

����� Exploring linearity of sketches

Suppose we want to 	nd sources whose tra�c patterns have changed signi	cantly between
two time periods �e�g�� between two consecutive days�� Given sketches si�j and si�j

�

of the
tra�c ai�j� ai�j

�

during these periods we obtain s ! si�j � si�j
�

� We can then estimate list L of
the top�k hitters �in absolute terms� in the di�erence a ! ai�j � ai�j

�

as in the previous case�
Providing the net�change in tra�c from a particular IP address is signi	cant with respect to
the cumulative change between the two periods� it can be reliably computed from sketch s�
For the experiment of Figure �� we computed list L of top�k sources with the larger net�

change in tra�c between vectors a��� and a���� The graph plots the energy of the approximate
list #L obtained by subtracting the corresponding sketches� over the energy of the exact answer
L� varying k�

� Conclusions

The challenges of data gathering and analysis in a large network seem to be surmountable
only through the approximation� We have proposed using the sketch of the data to summarize
it� Sketches use small space� they can be computed as data streams by� and can be combined
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across distributed sites� Sketches are able to respond well to queries that seek features �heavy
hitters� that stand out of the data� They can also be used to generate compressed wavelet
representation of the data and similarity measures� We supported our proposal by doing
variety of experimental analysis based on sketches using AT�T WorldNet data� While our
data collection and analysis infrastructure based on sketches is still preliminary� we believe
that sketches are a promising research direction�
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