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ABSTRACT
Digital content is for copying: quotation, revision, plagiarism, and
file sharing all create copies. Document fingerprinting is concerned
with accurately identifying copying, including small partial copies,
within large sets of documents.

We introduce the class of local document fingerprinting algo-
rithms, which seems to capture an essential property of any finger-
printing technique guaranteed to detect copies. We prove a novel
lower bound on the performance of any local algorithm. We also
develop winnowing, an efficient local fingerprinting algorithm, and
show that winnowing’s performance is within 33% of the lower
bound. Finally, we also give experimental results on Web data, and
report experience with MOSS, a widely-used plagiarism detection
service.

1. INTRODUCTION
Digital documents are easily copied. A bit less obvious, perhaps,

is the wide variety of different reasons for which digital documents
are either completely or partially duplicated. People quote from
each other’s email and news postings in their replies. Collaborators
create multiple versions of documents, each of which is closely
related to its immediate predecessor. Important Web sites are mir-
rored. More than a few students plagiarize their homework from
the Web. Many authors of conference papers engage in a similar
but socially more acceptable form of text reuse in preparing journal
versions of their work. Many businesses, notably in the software
and entertainment industries, are based on charging for each digital
copy sold.

Comparing whole document checksums is simple and suffices
for reliably detecting exact copies; however, detecting partial copies
is subtler. Because of its many potential applications, this second
problem has received considerable attention.

Most previous techniques for detecting partial copies, which we
discuss in more detail in Section 2, make use of the following idea.
A k-gram is a contiguous substring of length k. Divide a docu-
ment into k-grams, where k is a parameter chosen by the user. For
example, Figure 1(c) contains all the 5-grams of the string of char-
acters in Figure 1(b). Note that there are almost as many k-grams
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A do run run run, a do run run
(a) Some text from [7].

adorunrunrunadorunrun
(b) The text with irrelevant features removed.

adoru dorun orunr runru unrun nrunr runru
unrun nruna runad unado nador adoru dorun
orunr runru unrun
(c) The sequence of 5-grams derived from the text.

77 72 42 17 98 50 17 98 8 88 67 39 77 72 42
17 98
(d) A hypothetical sequence of hashes of the 5-grams.

72 8 88 72
(e) The sequence of hashes selected using 0 mod 4.

Figure 1: Fingerprinting some sample text.

as there are characters in the document, as every position in the
document (except for the last k − 1 positions) marks the begin-
ning of a k-gram. Now hash each k-gram and select some subset
of these hashes to be the document’s fingerprints. In all practical
approaches, the set of fingerprints is a small subset of the set of all
k-gram hashes. A fingerprint also contains positional information,
which we do not show, describing the document and the location
within that document that the fingerprint came from. If the hash
function is chosen so that the probability of collisions is very small,
then whenever two documents share one or more fingerprints, it is
extremely likely that they share a k-gram as well.

For efficiency, only a subset of the hashes should retained as
the document’s fingerprints. One popular approach is to choose all
hashes that are 0 mod p, for some fixed p. This approach is easy to
implement and retains only 1/p of all hashes as fingerprints (Sec-
tion 2). Meaningful measures of document similarity can also be
derived from the number of fingerprints shared between documents
[5].

A disadvantage of this method is that it gives no guarantee that
matches between documents are detected: a k-gram shared be-
tween documents is detected only if its hash is 0 mod p. Consider
the sequence of hashes generated by hashing all k-grams of a file
in order. Call the distance between consecutive selected finger-
prints the gap between them. If fingerprints are selected 0 mod p,
the maximum gap between two fingerprints is unbounded and any



matches inside a gap are not detected.1 In experiments with select-
ing fingerprints 0 mod p on HTML data taken from the Web, we
found that gaps between fingerprints chosen 0 mod p can be quite
large. In fact, there are passages much longer than the size of the
average Web page in which no hashes are 0 mod p for reasonable
values of p (Section 5).

In this paper we give the first efficient algorithm for selecting the
fingerprints from a sequence of hashes that guarantees that at least
part of any sufficiently long match is detected. Define a window of
size w to be w consecutive hashes of k-grams in a document (w is
a parameter set by the user). By selecting at least one fingerprint
from every window our algorithm limits the maximum gap between
fingerprints. In fact, our algorithm is guaranteed to detect at least
one k-gram in any shared substring of length at least w + k − 1.

Central to our construction is the idea of a local algorithm (Sec-
tion 4), which we believe captures the essential properties of any
document fingerprinting algorithm which guarantees that matches
are detected. An algorithm is local if, for every window of w con-
secutive hashes hi, . . . , hi+w−1, the algorithm decides to select
one of these hashes as a fingerprint and this choice depends only
on the window’s contents hi, . . . , hi+w−1. Note that some other of
the hashes in this window may also be selected due the action of the
algorithm in one of the (potentially many) overlapping windows.

With respect to a given input distribution, let the density of a
fingerprinting algorithm be the expected proportion of hashes it
selects as fingerprints. In Section 3 we introduce a particular lo-
cal algorithm, the winnowing algorithm. We analyze its perfor-
mance on random (independent uniformly distributed) data. We
show that, with a given window size w, the density is asymptoti-
cally 2/(w + 1). We also prove a lower bound of 1.5/(w + 1) on
the density of local algorithms. Thus the winnowing algorithm is
within 33% of optimal.

We also report on experience with two implementations of win-
nowing. The first is an purely experimental framework for compar-
ing actual performance with the theoretical predictions (Section 5).
Our analysis of all fingerprinting algorithms, including that of win-
nowing, is based on the assumption that the sequence of hashes
generated by hashing k-grams is independent and uniformly ran-
dom. On such random data the performance of our system matches
theoretical predictions perfectly. We have found, however, that
there are situations where real data does not generate sufficiently
random sequences of hashes. In particular, there are clusters of
low-entropy strings on the Web, such as

000000000000000000000000 . . .

or more complex patterns such as

abbaabbaabbaabbaabbaabba . . .

The important characteristic of such strings is that they have few
distinct k-grams, and therefore few distinct hashes of k-grams. In
the case of a long string of a single character, there is only a sin-
gle k-gram (and hash). The straightforward winnowing algorithm
selects far more fingerprints than predicted on such strings, but a
simple modification of the algorithm reduces the density of fin-
gerprints2. Note that other fingerprint-selection approaches are ex-
posed to the same problem. For example, choosing hashes that are
0 mod p means that on the string “11111111 . . . ” either all or none
of the hashes of the string are selected as fingerprints.

We also report on experience with MOSS, a widely-used ser-
vice for detecting plagiarism, primarily in programming assign-

1See Section 3.1 for a discussion of the expected gap size.
2See Definition 3 “Robust Winnowing” in Section 5.1

ments (Section 5.2).3 Document fingerprinting has worked ex-
tremely well in this setting. Because the basic idea of hashing k-
grams makes minimal assumptions about the form of the input, it
is easy to incorporate fingerprinting for a new data format without
disturbing the underlying hashing engine. False positives appear to
be non-existent, and the infrequent reports of false negatives (in-
stances of shared substrings missed by the system) have always
been tracked back either to implementation bugs or user error.

2. BACKGROUND AND RELATED WORK
Not all copy-detection algorithms are based on selecting finger-

prints of k-grams. To give some basis for discussing different
techniques, we list several criteria that a copy-detection algorithm
should satisfy. These requirements are based on our own experi-
ence (mostly in the context of plagiarism detection), but echo many
of the goals outlined in papers on related techniques.

2.1 Desirable properties
We believe a copy-detection algorithm should have three proper-

ties:

1. Whitespace insensitivity In matching text files, matches should
be unaffected by such things as extra whitespace, capitaliza-
tion, punctuation, etc. In other domains the notion of what
strings should be equal is different—for example, in match-
ing software text it is desirable to make matching insensitive
to variable names.

2. Noise suppression Discovering short matches, such as the
fact that the word the appears in two different documents,
is uninteresting. Any match must be large enough to imply
that the material has been copied and is not simply a com-
mon word or idiom of the language in which documents are
written.

3. Position independence Coarse-grained permutation of the con-
tents of a document (e.g., scrambling the order of paragraphs)
should not affect the set of discovered matches. Adding to a
document should not affect the set of matches in the original
portion of the new document. Removing part of a document
should not affect the set of matches in the portion that re-
mains.

All schemes that we know of handle property (1) in essentially
the same way. A first pass over the data transforms it to eliminate
undesirable differences between documents. For example, whites-
pace and punctuation are removed, all letters are converted to lower
case, or all variable names are replaced by the identifier “V”. The
exact details vary from one type of document to the next, but the
essential feature is that semantic information about the document
type is used to eliminate unimportant differences between docu-
ments.

Schemes based on fingerprinting k-grams satisfy requirement (2)
by choosing k to be sufficiently long that common idioms of the
language have length shorter than k. An important assumption of
this class of algorithms is that there is some threshold k such that
matches with length shorter than k are almost always uninteresting
and matches with length longer than k are almost always interest-
ing. In our experience, there is such a sharp threshold (Section 5).

The most interesting requirement is (3). Before describing meth-
ods for addressing requirement (3), we first give a short history of
the use of hashes of k-grams in copy detection.

3http://wwww.cs.berkeley.edu/˜aiken/moss.html



2.2 Karp-Rabin String Matching
Karp and Rabin’s algorithm for fast substring matching is appar-

ently the earliest version of fingerprinting based on k-grams [10].
Their problem, which was motivated by string matching problems
in genetics, is to find occurrences of a particular string s of length
k within a much longer string. The idea is to compare hashes of
all k-grams in the long string with a hash of s. However, hashing
strings of length k is expensive for large k, so Karp and Rabin pro-
pose a “rolling” hash function that allows the hash for the i + 1st

k-gram to be computed quickly from the hash of the ith k-gram.
Treat a k-gram c1 . . . ck as a k-digit number in some base b. The
hash H(c1 . . . ck) of c1 . . . ck is this number:

c1 ∗ bk−1 + c2 ∗ bk−2 ∗ . . . + ck−1 ∗ b + ck

To compute the hash of the k-gram c2 . . . ck+1, we need only sub-
tract out the high-order digit, multiply by b, and add in the new low
order digit. Thus we have the identity:

H(c2 . . . ck+1) = (H(c1 . . . ck) − c1 ∗ bk−1) ∗ b + ck+1

Since bk−1 is a constant, this allows each subsequent hash to be
computed from the previous one with only two additions and two
multiplications. Further, this identity holds when addition and mul-
tiplication are modulo some value (e.g., the size of the largest repre-
sentable integer), so this method works well with standard machine
arithmetic.

As an aside, this rolling hash function has a weakness. Because
the values of the ci are relatively small integers, doing the addition
last means that the last character only affects a few of the low-order
bits of the hash. A better hash function would have each character
ci potentially affect all of the hash’s bits. As noted in [5], it is easy
to fix this by multiplying the entire hash of the first k-gram by an
additional b and then switching the order of the multiply and add in
the incremental step:

H ′(c2 . . . ck+1) = ((H ′(c1 . . . ck) − c1 ∗ bk) + ck+1) ∗ b

2.3 All-to-all matching
The first scheme to apply fingerprinting to collections of doc-

uments was developed by Manber, who apparently independently
discovered Karp-Rabin string matching and applied it to detecting
similar files in file systems [12]. Rather than having a single can-
didate string to search for, in this problem we wish to compare all
pairs of k-grams in the collection of documents.

The all-to-all nature of this comparison is a key difficulty in doc-
ument fingerprinting. To illustrate, consider the problem of all-to-
all matching on ASCII text. Since there is a k-gram for every byte
of an ASCII file, and at least 4-byte hashes are needed for most in-
teresting data sets, a naive scheme that selected all hashed k-grams
would create an index much larger than the original documents.
This is impractical for large document sets, and the obvious next
step is to select some subset of the hashes to represent each docu-
ment. But which hashes should be selected as fingerprints?

A simple but incorrect strategy is to select every ith hash of a
document, but this is not robust against reordering, insertions and
deletions (requirement (3) above). In fact, prepending one charac-
ter to a file shifts the positions of all k-grams by one, which means
the modified file shares none of its fingerprints with the original.
Thus, any effective algorithm for choosing the fingerprints to rep-
resent a document cannot rely on the position of the fingerprints
within the document.

The scheme Manber chose is to select all hashes that are 0 mod
p. In this way fingerprints are chosen independent of their position,

and if two documents share a hash that is 0 mod p it is selected in
both documents. Manber found this technique worked well.

In [8], Heintze proposed choosing the n smallest hashes of all
k-grams of a document as the fingerprints of that document. By
fixing the number of hashes per document, the system would be
more scalable as large documents have the same number of finger-
prints as small documents. This idea was later used to show that
it was possible to cluster documents on the Web by similarity [6].
The price for a fixed-size fingerprint set is that only near-copies
of entire documents could be detected. Documents of vastly dif-
ferent size could not be meaningfully compared; for example, the
fingerprints of a paragraph would probably contain no fingerprints
of the book that the paragraph came from. Choosing hashes 0 mod
p, on the other hand, generates variable size sets of fingerprints for
documents but guarantees that all representative fingerprints for a
paragraph would also be selected for the book. Broder [5] classi-
fies these two different approaches to fingerprinting as being able
to detect only resemblance between documents or also being able
to detect containment between documents.

2.4 Other techniques
Instead of using k-grams, the strings to fingerprint can be chosen

by looking for sentences or paragraphs, or by choosing fixed-length
strings that begin with “anchor” words [4, 12]. Early versions of
our system also used structure gleaned from the document to se-
lect substrings to fingerprint. The difficulty with such schemes, in
our experience, is that the implementation becomes rather specific
to a particular type of data. If the focus is on English text, for
example, choosing sentences as the unit to hash builds in text se-
mantics that makes it rather more difficult to later use the system to
fingerprint, say, C programs, which have nothing resembling En-
glish sentences. In addition, even on text data the assumption that
one can always find reasonable sentences is questionable: the input
may be a document with a large table, a phone book, or Joyce’s
Finnegans Wake [9]. In our experience, using k-grams as the unit
of hashing is much more robust than relying on common-case as-
sumptions about the frequency of specific structure in the input.

There are approaches to copy detection not based on fingerprint-
ing. For example, in SCAM, a well-known copy-detection system,
one of the ideas that is explored is that two documents are similar
if the distance between feature vectors representing the two docu-
ments is small. The features are words, and the notion of distance is
a variation on standard information-retrieval measures of similarity
[14].

Baker considers the problem of finding near-duplication in soft-
ware and develops the notion of parameterized matches, or p-matches.
Consider two strings, some letters of which are designated as pa-
rameters. The strings match if there is a renaming of parameters
that makes the two strings equal. For example, if we take the pa-
rameters to be variable names, then two sections of program text
could be considered equal if there was a renaming of variables that
mapped one program into the other. Baker gives an algorithm for
computing p-matches and reports on experience with an implemen-
tation in [2] and in a subsequent paper considers how to integrate
these ideas with matching on k-grams [3].

There is an important distinction to be made between copy-detection
for discrete data and for continuous data. For discrete data, such as
text files and program source, after a simple suppression of the un-
interesting pieces of documents, exact matching on substrings of
the remainder is a useful notion. For continuous data, such as au-
dio, video, and images, there have been a number of commercial
copy-detection systems built but relatively little has been published
in the open literature (an exception is [13]). The problems here are



more difficult, because very similar copies of images, for exam-
ple, may have completely different bit representations, requiring
a much more sophisticated first step to extract features of interest
before the matching can be done.

Further afield from copy-detection, but still related, is Digital
Rights Management (DRM). DRM systems seek to solve the prob-
lem of the use of intellectual property by preventing or controlling
copying of documents. DRM schemes are encryption-based: the
valuable content is protected by encrypting it and can only be used
by those who have been granted access in the form of the decryp-
tion key. However, regardless of the copy-prevention technology
chosen, users must ultimately have access to the unencrypted data
somehow—otherwise they cannot use it—and as discussed in Sec-
tion 1, it seems to be nearly a natural law that digital content is
copied. We find ourselves in agreement with [4]: for at least some
forms of digital media copy-prevention systems will have trouble
ultimately succeeding. We suspect that in many environments the
best one can hope for is efficient copy detection.

3. WINNOWING
In this section we describe and analyze the winnowing algorithm

for selecting fingerprints from hashes of k-grams. We give an upper
bound on the performance of winnowing, expressed as a trade-off
between the number of fingerprints that must be selected and the
shortest match that we are guaranteed to detect.

Given a set of documents, we want the find substring matches
between them that satisfy two properties:

1. If there is a substring match at least as long as the guarantee
threshold, t, then this match is detected, and

2. We do not detect any matches shorter than the noise thresh-
old, k.

The constants t and k ≤ t are chosen by the user. We avoid
matching strings below the noise threshold by considering only
hashes of k-grams. The larger k is, the more confident we can
be that matches between documents are not coincidental. On the
other hand, larger values of k also limit the sensitivity to reorder-
ing of document contents, as we cannot detect the relocation of any
substring of length less than k. Thus, it is important to choose k
to be the minimum value that eliminates coincidental matches (see
Section 5).

Figures 2(a)-(d) are reproduced from Figure 1 for convenience
and show a sequence of hashes of 5-grams derived from some sam-
ple text.

Given a sequence of hashes h1 . . . hn, if n > t − k, then at
least one of the hi must be chosen to guarantee detection of all
matches of length at least t. This suggests the following simple
approach. Let the window size be w = t − k + 1. Consider the
sequence of hashes h1h2 . . . hn that represents a document. Each
position 1 ≤ i ≤ n − w + 1 in this sequence defines a window of
hashes hi . . . hi+w−1. To maintain the guarantee it is necessary to
select one hash value from every window to be a fingerprint of the
document. (This is also sufficient, see Lemma 1.) We have found
the following strategy works well in practice.

DEFINITION 1 (WINNOWING). In each window select the min-
imum hash value. If there is more than one hash with the mini-
mum value, select the rightmost occurrence. Now save all selected
hashes as the fingerprints of the document.

Figure 2(e) gives the windows of length four for the sequence of
hashes in Figure 2(d). Each hash that is selected is shown in bold-
face (but only once, in the window that first selects that hash). The

A do run run run, a do run run
(a) Some text.

adorunrunrunadorunrun
(b) The text with irrelevant features removed.

adoru dorun orunr runru unrun nrunr runru
unrun nruna runad unado nador adoru dorun
orunr runru unrun
(c) The sequence of 5-grams derived from the text.

77 74 42 17 98 50 17 98 8 88 67 39 77 74 42
17 98
(d) A hypothetical sequence of hashes of the 5-grams.

(77, 74, 42, 17) (74, 42, 17, 98)
(42, 17, 98, 50) (17, 98, 50, 17)
(98, 50, 17, 98) (50, 17, 98, 8)
(17, 98, 8, 88) (98, 8, 88, 67)
( 8, 88, 67, 39) (88, 67, 39, 77)
(67, 39, 77, 74) (39, 77, 74, 42)
(77, 74, 42, 17) (74, 42, 17, 98)

(e) Windows of hashes of length 4.

17 17 8 39 17
(f) Fingerprints selected by winnowing.

[17,3] [17,6] [8,8] [39,11] [17,15]
(g) Fingerprints paired with 0-base positional information.

Figure 2: Winnowing sample text.

intuition behind choosing the minimum hash is that the minimum
hash in one window is very likely to remain the minimum hash
in adjacent windows, since the odds are that the minimum of w
random numbers is smaller than one additional random number.
Thus, many overlapping windows select the same hash, and the
number of fingerprints selected is far smaller than the number of
windows while still maintaining the guarantee. Figure 2(f) shows
the set of fingerprints selected by winnowing in the example.

In many applications it is useful to record not only the finger-
prints of a document, but also the position of the fingerprints in the
document. For example, we need positional information to show
the matching substrings in a user interface. An efficient implemen-
tation of winnowing also needs to retain the position of the most
recently selected fingerprint. Figure 2(f) shows the set of [finger-
print, position] pairs for this example (the first position is num-
bered 0). To avoid the notational complexity of indexing all hashes
with their position in the global sequence of hashes of k-grams of
a document, we suppress most explicit references to the position of
k-grams in documents in our presentation.

3.1 Expected Density
Recall that the density of a fingerprinting algorithm is the ex-

pected fraction of fingerprints selected from among all the hash
values computed, given random input (Section 1). We now analyze
the density of winnowing, which gives the trade-off between the
guarantee threshold and the number of fingerprints required.

Consider the function C that maps the position of each selected
fingerprint to the position of the first (leftmost) window that se-



lected it in the sequence of all windows for a document. We say
we are charging the cost of saving the fingerprint to the indicated
window. The charge function is monotonic increasing — that is, if
p and q are the positions of two selected fingerprints and p < q,
then C(p) < C(q).

To prove this, assume fingerprints are selected at distinct posi-
tions p and q where p < q but C(p) > C(q). Then both positions
p and q are in both windows. Let hp be the hash at position p and let
hq be the hash at position q. There are two possibilities: If hp = hq

then, as p < q, the window C(p) was not charged for p nor for q,
as C(q) < C(p). If hp �= hq then one of C(p) or C(q) was not
charged. These both contradict the hypothesis. We conclude that
the charge function is monotonic increasing.

To proceed further recall that the sequence of hashes we are win-
nowing is random. We assume that the space of hash values is very
large so that we can safely ignore the possibility that there is a tie
for the minimum value for any small window size. We examine the
soundness of this assumption in Section 5.

Consider an indicator random variable Xi that is one iff the ith

window Wi is charged. Consider the adjacent window to the left
Wi−1. The two intervals overlap except at the leftmost and right-
most positions. Their union is an interval of length w+1. Consider
the position p containing the smallest hash in that union interval.
Any window that includes p selects hp as a fingerprint. There are
three cases:

1. If p = i − 1, the leftmost position in the union, then Wi−1

selects it. Since p �∈ Wi, we know Wi must select a hash
in another position, q. This hash is charged to Wi since Wi

selected it, Wi−1 did not select it, and the charge function is
monotonic increasing. Thus in this case, Xi = 1.

2. If p = i+w−1, the rightmost position in the union interval,
then Wi selects it. Wi must be charged for it, as Wi is also
the very leftmost interval to contain p. Again, Xi = 1.

3. If p is in any other position in the union interval, both Wi−1

and Wi select it. No matter who is charged for it, it won’t be
Wi, since Wi−1 is further left and also selected it. Thus in
this case, Xi = 0.

The first two cases happen with probability 1/(w + 1), and so
the expected value of Xi is 2/(w + 1). Recall that the sum of
the expected values is the expected value of the sum, even if the
random variables are not independent. The total expected number
of intervals charged, and therefore the total number of fingerprints
selected, is just this value times the document length. Thus the
density is

d =
2

w + 1
.

3.1.1 Comparison to 0 mod p at same density
Here we compare the 0 mod p algorithm and winnowing at the

same density. That is, we take p = 1/d = (w + 1)/2. For a string
of length t = w + k − 1 consider the event that the 0 mod p al-
gorithm fails to select any fingerprint at all within it. (Recall that
winnowing would never fail to do so.) We now compute the prob-
ability of this event for one given string. Please note that for two
overlapping such strings these events are not independent. Thus
the probability we compute is not a good estimate for the fraction
of all such substrings of a text that do not have a fingerprint selected
using the 0 mod p algorithm.

Again we assume independent uniformly distributed hash values.
Also we assume large w; in our experiments w = 100 (see Sec-
tion 5.1). Thus, the probability that the guarantee fails in a given

sequence of text of length t, i.e. that no hash in a given sequence
of w hashes is 0 mod p, is

(1 − d)w =

(
1 − 2

w + 1

)w

≈ e
−2w
w+1 = e−2+ 2

w+1 ∼ 13.5%.

3.1.2 Comparison to 0 mod p with guarantee
One may be tempted to try modifying the 0 mod p algorithm

to give a guarantee. There is one straightforward solution that we
know of: In the event that a gap longer than the guarantee threshold
threatens to open up, select all hashes as fingerprints until the next
hash that is 0 mod p.

Let the Safe 0 mod p algorithm be as follows. Partition hashes
into:

• Good if a hash is 0 mod p.
• Bad if it and the w − 1 hashes to its left are not Good, and
• Ugly otherwise [11].

Select all non-Ugly hashes as fingerprints. As we will see in Sec-
tion 4 this algorithm is local and is therefore correct. Note that
we have chosen the parameters so that the guarantee t is the same
as that of winnowing. All that remains is to compute the optimal
expected density.

Fix a document and consider a position i. Let Gi and Bi de-
note the events that the hash at i is good or bad respectively. (Our
notation for an event also denotes the appropriate indicator ran-
dom variable (1 = true and 0 = false) depending on context.) Let
P = 1/p. (Note that to compete with winnowing we would need P
to be rather small: P ≤ 2/(w + 1); however even a slightly larger
P will allow for the 1 + x ≈ ex approximation we use below.) We
have

Pr[Gi] = P

and (except for the very first w − 1 hashes) for small P

Pr[Bi] = (1 − P )w ≈ e−wP .

Again, the expected value of a sum is the sum of the expected
values. Ignoring the error introduced by the first w − 1 hashes, we
have that the expected value of the non-ugliness of a position is

Ex
[∑

Gi + Bi

]
=

∑
Ex [Gi] +

∑
Ex [Bi]

= NP + N(1 − P )w

≈ N(P + e−wP ).

The next step is to minimize the density. Let f(P ) = P +e−wP .
Setting f ′(P0) = 0 and solving we have ewP0 = w, or

P0 =
ln w

w
.

We check that f ′′(P ) = w2e−wP > 0 so we have found the global
minimum. If we use this optimal value, P0, the Safe 0 mod p algo-
rithm has density at least

f (P0) =
ln w

w
+ e−

w ln w
w =

1 + ln w

w
,

which is considerably more than that of winnowing: 2/(w + 1).

3.2 Queries
This section is primarily about how to choose hashes well, but we

digress a bit here to discuss how hashes can be used once selected.
In a typical application, one first builds a database of fingerprints
and then queries the fingerprints of individual documents against
this database (see Section 5). Winnowing gives us some flexibility



to treat the two fingerprinting times (database-build time and query
time) differently.

Consider a database of fingerprints (obtained from k-grams) gen-
erated by winnowing documents with window size w. Now, query
documents can be fingerprinted using a different window size. Let
Fw be the set of fingerprints chosen for a document by winnowing
with window size w. The advantage of winnowing query docu-
ments with a window size w′ ≥ w is that Fw′ ⊆ Fw, which means
fewer memory or disk accesses to look up fingerprints. This may be
useful if, for example, the system is heavily loaded and we wish to
reduce the work per query, or if we are just interested in obtaining
a faster but coarser estimate of the matching in a document.

We can extend this idea one step further. Fingerprint a query doc-
ument with the same window w used to generate the database, and
then sort all of the selected fingerprints in ascending order. Next
look up some number of the fingerprints in the database, starting
with the smallest. If we stop after a few, fixed number of hashes,
we have realized Broder’s and Heintze’s approach for testing doc-
ument resemblance [8, 5]. If we use all of the hashes as finger-
prints, we realize the standard notion of testing for document con-
tainment. There is also a spectrum where we stop anywhere in
between these two extremes. Broder’s paper on resemblance and
containment gives distinct algorithms to compute these two prop-
erties [5]; winnowing naturally realizes both.

4. LOCAL ALGORITHMS
In this section we consider whether there are fingerprinting al-

gorithms that perform better than winnowing. We introduce the
notion of local fingerprinting algorithms. We prove a lower bound
for the density of a local algorithm given uniform identically dis-
tributed random input. This lower bound does not meet the upper
bound for winnowing. We suspect the lower bound can be im-
proved.

Winnowing selects the minimum value in a window of hashes,
but it is clearly just one of a family of algorithms that choose ele-
ments from a local window. Not every method for selecting hashes
from a local window maintains the guarantee, however. Assume,
for example, that the window size is 50 and our approach is to se-
lect every 50th hash as the set of fingerprints. While this method
does select a hash from every window, it depends on the global po-
sition of the hash in a document, and, as discussed in Section 2,
any such approach fails in the presence of insertions or deletions.
The key property of winnowing is that the choice of hash depends
only on the contents of the window—it does not depend on any
external information about the position of the window in the file
or its relationship to other windows. This motivates the following
definition.

DEFINITION 2 (LOCAL ALGORITHMS). Let S be a selection
function taking a w-tuple of hashes and returning an integer be-
tween zero and w−1, inclusive. A fingerprinting algorithm is local
with selection function S, if, for every window hi, . . . , hi+w−1, the
hash at position i+S(hi, . . . , hi+w−1) is selected as a fingerprint.

It can be beneficial to weaken locality slightly to provide flexi-
bility in choosing among equal fingerprints—see Section 5.1. We
now show that any local algorithm is correct, in the sense that it
meets the guarantee threshold t.

LEMMA 1 (CORRECTNESS OF LOCAL ALGORITHMS).
Any matching pair of substrings of length at least t is found by any
local algorithm.

PROOF. The sequence of hashes of k-grams representing the
each substring spans at least one window, W , of length w. Be-
cause the selection function is only a function of the contents of
W , the same fingerprint is selected from W in both copies.

We now consider whether there is any local algorithm that is
better than winnowing. We do not have a matching lower bound
for winnowing, but we can show the following:

THEOREM 1 (LOWER BOUND). Any local algorithm with noise
threshold k and guarantee t = w + k − 1 has density

d ≥ 1.5

w + 1
.

Note that winnowing algorithm, with a density of 2/(w + 1), is
within 33% of this lower bound.

PROOF. Assume the hashes are independent and uniformly dis-
tributed. Consider the behavior of the algorithm on every w + 1st

window. Such windows are separated by a single position that is
not part of either window. Because the windows are disjoint, their
hashes and selected fingerprints are independent of each other, and
each window selects a separate fingerprint.

Now consider all of the windows between the ith and (i+w+1)st

windows Wi and Wi+w+1; these are the w windows that overlap
the disjoint windows at either end. Let Z be the random variable
such that Z = 0 iff among these windows, no additional fingerprint
is selected, and Z = 1 otherwise. We compute a lower-bound on
the expected value of Z.

Let X and Y denote the random variables S(Wi) and S(Wi+w+1)
respectively. Again, because the windows do not overlap, X and Y
are independent.

Now, if Y ≥ X then Z = 1, because the algorithm is required to
select at least one additional fingerprint from a window in between
Wi and Wi+w+1. Otherwise Z ≥ 0. Since X and Y are identically
distributed we have Pr[Y > X] = Pr[X > Y ]. Let Θ denote this
quantity. Let ∆ = Pr[Y = X]. We have 1 = 2Θ + ∆. Thus
Θ + ∆ = (1 + ∆)/2 > 1/2 and

Ex[Z] ≥ Pr[Y ≥ X] = Θ + ∆ > 1/2.

We thus see that in every sequence of w+1 windows, in addition
to the fingerprint selected in the first window we expect to select an
additional distinct fingerprint at least half the time for one of the
subsequent windows. The density of selected points is therefore

d ≥ 1.5

w + 1
.

OBSERVATION 1. This result can be improved slightly: As a bit
of notation let xi = Pr[X = i] for i = 0, 1, . . . , w − 1. Of course∑

xi = 1. Then ∆ = Pr[Y = X] =
∑

x2
i . Apply the Cauchy-

Schwartz inequality to show ∆ ≥ 1/w. The proof above then gives
density

d ≥ 1.5 + 1
2w

w + 1
.

Our lower bound proof relies only on information derived from
two windows that are separated sufficiently to be disjoint. We con-
jecture therefore that 2/(w + 1) is a lower bound on the density of
any local fingerprinting algorithm.



total bytes 7, 182, 692, 852
text bytes 1, 940, 576, 448

hashes computed 1, 940, 576, 399
winnowing fingerprints 38, 530, 846

measured density 0.019855
expected density 0.019802

fingerprints for 0 mod 50 38, 761, 128
measured density 0.019974
expected density 0.020000

longest run with no fingerprint 29983

Figure 3: Results on 500,000 HTML pages

5. EXPERIMENTS
In this section we report on our experience with two different

implementations of winnowing. In Section 5.1 we report on a se-
ries of experiments on text data taken from the World Wide Web,
and in Section 5.2 we give a more qualitative report on experience
over several years with a widely-used plagiarism detection service,
MOSS.

5.1 Experiments with Web Data
Because of its size and the degree of copying, the World-Wide

Web provides a readily accessible and interesting data set for doc-
ument fingerprinting algorithms. For these experiments, we used
500,000 pages downloaded from the Stanford WebBase [1]. We
use the rolling hash function described in Section 2. Because fin-
gerprinting a half-million Web pages generates nearly two billion
hashes and 32-bits can represent only about four billion distinct
hash values, we use 64-bit hashes to avoid accidental collisions.
As an aside, we have found using a rolling (or incremental) hash
function is important for performance with realistic k-gram sizes
(say k = 50) when using 64-bit arithmetic. Recomputing a 64-bit
hash from scratch for each k-gram reduces the throughput of the
fingerprinting algorithm by more than a factor of four.

In our first experiment we simply fingerprinted 8MB of ran-
domly generated text. This experiment serves solely to check that
our hash function is reasonably good, so that we can trust the num-
ber of matches found in experiments on real data. Strings of 50
characters were hashed and the winnowing window was set at 100.
Winnowing selected 0.019902 of the hashes computed, which very
closely matches the expected density of 2/(100 + 1) = 0.019802.
Selecting hashes equal to 0 mod 50 results in a measured density of
0.020005, which is also very close to the predicted value of 0.02.
We also observed a uniform distribution of hash values; taken all
together, the hash function implementation appears to be sufficient
for our fingerprinting algorithm.

Our second experiment calculated the hashes for 500,000 HTML
documents and measured various statistics. We again measured the
density and compared it with the expected density for both winnow-
ing and selecting fingerprints equal to 0 mod p. Again the winnow-
ing window size is 100 and the noise threshold is 50. The results
are shown in Figure 3.

There were interesting things to note in the data. Both algorithms
come close to the expected density in each case. However, the gross
averages cover up some local aberrations. For example, there is a
run of over 29,900 non-whitespace, non-tag characters that has no
hash that is 0 mod 50. It is easily checked that the odds of this
happening on uniformly random inputs are extremely small. (The
chances that a string of 29,900 characters has no hash of a substring
that is 0 mod 50 is (1 − 1/50)29,851, which is less than 10−260.

Even in a terabyte, or 240 bytes, of data, the chances that every
substring of length 29,900 has no k-gram hash that is 0 mod 50,
is less than 10−220.) Clearly the data on the Web is not uniformly
random.

As discussed briefly in Section 1, there are long passages on the
Web of repetitive, low-entropy strings. For example, in one experi-
ment we did (not reported here) we stumbled across a collection of
pages that appear to be raw data taken from sensors in a research
experiment. This data consists mostly of strings of 0’s with the oc-
casional odd character thrown in. Both winnowing as defined so far
and selecting hashes equal to 0 mod p perform poorly on such data.
For the latter, if a long string has few k-grams, then it is very likely
that none of them is 0 mod p, and no fingerprints are selected for
the region at all. This is what leads to the large gaps in fingerprints
for this strategy on real data.

Winnowing, however, has a different problem. In low-entropy
strings there are many equal hash values, and thus many ties for the
minimum hash in a given window. To be truly local and indepen-
dent of global position, it is necessary to take, say, the rightmost
such hash in the winnowing window. But in the extreme case, say
a long string of 0’s with only one k-gram, nearly every single hash
is selected, because there is only a single k-gram filling the en-
tire winnowing window and at each step of the algorithm we must
choose the rightmost copy—which is a new copy in every window.

There is, however, an easy fix for this problem. We refine win-
nowing as follows:

DEFINITION 3 (ROBUST WINNOWING). In each window se-
lect the minimum hash value. If possible break ties by selecting
the same hash as the window one position to the left. If not, se-
lect the rightmost minimal hash. Save all selected hashes as the
fingerprints of the document.

Robust winnowing attempts to break ties by preferring a hash
that has already been chosen by a previous window. This is no
longer a local algorithm, but one easily observes that for any two
matching substrings of length t = w+k−1 we guarantee to select
the same hash value and so the match is still found; we simply
no longer guarantee that these fingerprints are in the same relative
position in the substrings. However, the two fingerprints are close,
within distance w − 1. This technique reduces the density on a
string such as “0000 . . . ” from asymptotically 1 to just 1/w, one
fingerprint selected per window-length. We reran the experiment
in Figure 3 and found that the density of winnowing dropped from
0.019855 to 0.019829. One can imagine non-text document sets
where the difference could be greater.

One may wonder why we bother worrying about low-entropy
strings at all, as they are in a technical sense inherently uninterest-
ing. But just because data is low-entropy does not mean that people
are not interested in it—take the example of the sensor data given
above. Such strings do exist and people may want to fingerprint a
large corpus of low entropy data so that copies of it can be tracked
just as they may want to fingerprint any other sort of document.

Our final experiment examines in more detail the structure of
copying in 20,000 Web pages taken from our corpus of 500,000
pages. Interestingly, even though the theoretical predictions based
upon an assumption that the input is uniformly random work very
well, the distribution of real data is hardly uniform. We need two
definitions:

• Let the frequency of a k-gram (or its hash) be the number of
times it occurs.

• Sort the frequencies in monotonically decreasing order. The
rank of a k-gram (or its hash) is the position of its frequency
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Figure 4: Log-log plot of Frequency by Rank for all hashes (upper line) and for fingerprints (lower line) on 20,000 Web pages.

on this list, starting with 1 for the most frequently occurring
k-gram.

Plotting the resulting (rank, frequency) pairs on a log-log scale
one obtains a line of slope about −0.7, demonstrating a power law
relationship between frequency and rank

f ∝ r−0.7.

Two such plots of (rank, frequency) pairs are shown in Figure 4.
The upper curve is all k-gram hashes computed from the entire set
of 20,000 Web pages, while the lower curve is only those hashes
selected as fingerprints by winnowing. (This is the reason we have
limited the data set in this experiment to 20,000 pages. Even on
20,000 Web pages saving the hash of every k-gram requires quite
a bit of storage.) Our data contains an aberrant “plateau”, perhaps
because of one document with a long repeating pattern of text, or
one file that occurs many times in our sample. The peaked-looking
curves labeled “all” show all of the data while the curves labeled
“cleaned” have the aberrant plateau removed.

Since frequencies are integers, they form plateaus where a set
of hashes all have the same frequency. For example, for the upper
curve there are over 20 million fingerprints with one occurrence,
which ties them all for the last rank. While more obvious in the
lower right, these plateaus occur throughout the data. Additionally,
due to the logarithmic scale, almost all points are in the lower right.
Thus, if one were to actually plot all points, the line fit would be
quite poor, as it would just go through the center of the last two
plateaus (we tried this). It would also overwhelm the plotting pro-
gram with points that do nothing other than thicken the horizontal
lines drawn between points.

We plot only the left and right endpoints of each plateau (a plateau
of length one is plotted twice so the weights are not biased during
line fit). The lines are fitted to the cleaned plateau endpoints. The

lines fit quite well, giving a slope of about −0.7, which corresponds
to the exponent of the power law. Zipf seems to have first noticed
the power law phenomenon, stating what has become known as
“Zipf’s Law” [16]: the frequencies of English words are propor-
tional to the inverse of their rank when listed in decreasing order.
That is, frequency and rank of English words exhibit a power law
relationship with exponent −1.

In this experiment, 82% of the fingerprints selected by winnow-
ing were chosen only once; 14% were selected twice; and only 2%
occurred three times. At the other extreme, one k-gram appears
3,270 times across all the documents. The distribution of frequen-
cies for the set of all hashes is nearly identical to the distribution
for winnowed fingerprints; again the number of k-grams that occur
once is 82%, while 14% occur twice and 2% occur three times.

We have looked at some of the most common strings and found
that they are what one might expect: strings taken from menus (e.g.,
“English Spanish German French . . . ”), common legal boilerplate
(e.g., disclaimers), and finally repetitive strings (for some reason
the string “documentwritedocumentwritedocumentwrite” was very
common in our sample). We suspect that the repetitive strings,
in particular, are responsible for the most common k-grams. Be-
cause such strings have relatively few k-grams, they dramatically
increase the frequency of a few k-grams in the overall statistics.

5.2 Plagiarism Detection
One of the authors has run MOSS, a widely-used plagiarism de-

tection service, over the Internet since 1997. MOSS, which stands
for Measure Of Software Similarity, accepts batches of documents
and returns a set of HTML pages showing where significant sec-
tions of a pair of documents are very similar. MOSS is primarily
used for detecting plagiarism in programming assignments in com-
puter science and other engineering courses, though several text



formats are supported as well. The service currently uses robust
winnowing, which is more efficient and scalable (in the sense that
it selects fewer fingerprints for the same quality of results) than pre-
vious algorithms we have tried. There are a few issues involved in
making such a system work well in practice.

For this application, positional information (document and line
number) is stored with each selected fingerprint. The first step
builds an index mapping fingerprints to locations for all documents,
much like the inverted index built by search engines mapping words
to positions in documents. In the second step, each document is fin-
gerprinted a second time and the selected fingerprints are looked up
in the index; this gives the list of all matching fingerprints for each
document.

Now the list of matching fingerprints for a document d may con-
tain fingerprints from many different documents d1, d2, . . .. In
the next step, the list of matching fingerprints for each document
d is sorted by document and the matches for each pair of docu-
ments (d, d1), (d, d2), . . . is formed. Matches between documents
are rank-ordered by size (number of fingerprints) and the largest
matches are reported to the user. Note that up until this last step,
no explicit consideration of pairs of documents is required. This is
very important, as we could not hope to carry out copy detection
by comparing each pair of documents in a large corpus. By post-
poning the quadratic computation to the last step, we can optimize
it by never materializing the matching for a pair of documents if it
falls below some user-specified threshold.

There are a number of issues in a full copy-detection system be-
yond how fingerprints are selected. To give the reader some sense
of how winnowing fits into a complete system, we briefly discuss
the most important problems.

MOSS has several thousand users who wish to do copy detec-
tion for many different kinds of data. As mentioned in Section 1,
we use the following architecture. For each document format, a
front-end specific to that format eliminates features that should not
distinguish documents (e.g., we eliminate white space in text). As
output each front-end produces a string of a standard form, which
is the input to the fingerprinting engine. The fingerprinting code
itself knows nothing about the different kinds of documents. This
architecture has proven essential to maintaining support for a wide
variety of document formats. While this benefit may seem obvious,
we report it because it is very tempting to put some document se-
mantics in the fingerprinting routines, but we have always found it
to be better to keep the document-specific processing separate.

Efficiency is an important consideration for fingerprinting. In
Figure 5 we give code for an efficient implementation of the main
winnowing loop. This implementation takes advantage of the fact
that by far the most common case is that the minimum value from
the preceding window is still within the current window; in this
case checking to see if there is a new minimum requires only a
single comparison. The only instance in which it is necessary to re-
compute the minimum by traversing the entire window is the case
where the minimum hash of the preceding window is just outside
of the current window; note that the loop that does the scan of the
array works from right-to-left to ensure that the rightmost minimal
hash is selected. Thus, the choice of which of several equal hashes
to select is not completely arbitrary. Note the record function
must compute the global position using the relative position, min.
Saving this position, together with the selected hash, creates a fin-
gerprint. This loop implements winnowing—it always selects the
rightmost minimal hash in a window. To implement robust win-
nowing the ≤ comparison on line marked (∗) should be replaced
by <.

As a minor aside, because winnowing selects the minimum hash

void winnow(int w /*window size*/) {
// circular buffer implementing window of size w
hash_t h[w];
for (int i=0; i<w; ++i) h[i] = INT_MAX;
int r = 0; // window right end
int min = 0; // index of minimum hash
// At the end of each iteration, min holds the
// position of the rightmost minimal hash in the
// current window. record(x) is called only the
// first time an instance of x is selected as the
// rightmost minimal hash of a window.
while (true) {
r = (r + 1) % w; // shift the window by one
h[r] = next_hash(); // and add one new hash
if (min == r) {

// The previous minimum is no longer in this
// window. Scan h leftward starting from r
// for the rightmost minimal hash. Note min
// starts with the index of the rightmost
// hash.
for(int i=(r-1)%w; i!=r; i=(i-1+w)%w)
if (h[i] < h[min]) min = i;

record(h[min], global_pos(min, r, w));
} else {

// Otherwise, the previous minimum is still in
// this window. Compare against the new value
// and update min if necessary.
if (h[r] <= h[min]) { // (*)
min = r;
record(h[min], global_pos(min, r, w));

}
}

}
}

Figure 5: Code for winnowing.

in each window, the distribution of hashes selected is skewed. If a
uniform distribution is desired, the selected hashes can be hashed a
second time (not shown in Figure 5).

A very significant issue in a practical copy-detection system is
the ability to ignore boiler-plate. For example, standard copyright
notices, disclaimers, and other legalese would all come under the
heading of material that we would not be interested in for many
applications. In the case of plagiarism detection, boilerplate is usu-
ally material supplied by a course instructor that is expected to be
part of the final solution—i.e., it is sanctioned copying. Excluding
boilerplate is easily done by fingerprinting the boilerplate with a
special document ID that indicates any match with that fingerprint
should be discarded.

Presentation of the results is another important issue for users.
Statistics such as reporting the percentage of overlap between two
documents are useful, but not nearly as useful as actually showing
the matches marked-up in the original text. MOSS uses the finger-
prints to determine where the longest matching sequences are; in
particular, if a1 in document 1 matches a2 in document 2, and b1

in document 1 matches b2 in document 2, and furthermore a1 and
b1 are consecutive in document 1 and a2 and b2 are consecutive in
document 2, then we have discovered a longer match across docu-
ments consisting of a followed by b. While this merging of matches
is easy to implement, k-grams are naturally coarse and some of the
match is usually lost at the beginning and the end of the match. It
is possible that once a pair of similar documents are detected using
fingerprinting that it would be better to use a suffix-tree algorithm
[15] to find maximal matches in just that pair of documents.

In Section 2 we mentioned that there appears to be a sharp thresh-



old between what people consider coincidental similarity (meaning
reuse of idioms, common words, etc.) and copying. We have no
formal experiments on this topic, but we have informally exper-
imented with MOSS by simply examining the results of tests on
sample data. Regardless of input data type, the result is always
the same: There is some value of k (dependent on the document
type) for which the reported matches are likely to be the result of
copying, and for a slightly smaller value of k significant numbers
of obvious false positives appear in the results. Along the same
lines, early versions of MOSS incorporated a technique similar to
Baker’s parameterized matches (Section 2). However, we found
that replacing all of the parameters with a single constant and in-
creasing k by 1 worked just as well. This appears to be a general
trick: sophisticated efforts to exploit document semantics can of-
ten be closely approximated by very simple exploits of document
semantics together with a small increase in k.

We can report that after years of service, MOSS performs its
function very well. False positives (hash collisions) have never
been reported, and all the false negatives we have seen were quickly
traced back to the source, which was either an implementation bug
or a user misunderstanding. Furthermore, users report that copy
detection does dramatically reduce the instances of plagiarism in
their classes.

6. CONCLUSIONS
We have presented winnowing, a local document fingerprinting

algorithm that is both efficient and guarantees that matches of a
certain length are detected. We have also presented a non-trivial
lower bound on the complexity of any local document fingerprint-
ing algorithm. Finally, we have discussed a series of experiments
that show the effectiveness of winnowing on real data, and we have
reported on our experience with the use of winnowing in practice.
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